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ABSTRACT

It is shown that distributions arising in Rényi-Tsallis max-
imum entropy setting are related to the Generalized Pareto
Distributions (GPD) that are widely used for modeling the tails
of distributions. The relevance of such modelization, as well
as the ubiquity of GPD in practical situations follows from
Balkema-De Haan-Pickands theorem on the distribution of
excesses (over a high threshold). We provide an entropic view
of this result, by showing that the distribution of a suitably
normalized excess variable converges to the solution of a
maximum Tsallis entropy, which is the GPD. This highlights
the relevance of the so-called ‘Tsallis’ distributions in many
applications as well as some relevance to the use of the
corresponding entropy.

I. I NTRODUCTION

Generalized Pareto Distributions (GPD) are widely used in
practice for modeling the tails of distributions. The underlying
rationale is the Balkema-De Haan-Pickands theorem [?], [?],
which asserts that the distribution function of the excess
variableX −u|X > u (that is the distribution of the (shifted)
variableX exceeding a thresholdu) converges to a GPD with
survival function, asu ∞:

SX(x) = Pr (X > x) =
(

1 +
γ

σ
x
)− 1

γ

, (1)

whereσ is a scale parameter andγ a shape parameter. For
γ = 0, the GPD reduces to the exponential distribution.

In applied fields, GPD have encountered a large success
since they were obtained as the maximizers of a special en-
tropy, the Tsallis (Harva-Charvat-Daróvczy) entropy [?], with
suitable constraints. It is worth mentioning that monotonous
transforms of the latter entropy also exhibit the same GPD
maximizers: an important example is Rényi entropy [?]. Of
course, in a wide variety of fields, experiments, numerical re-
sults and analytical derivations fairly agree with the description
by distribution (1). This distribution is of very high interest
in many physical systems, since it enables to model power-
law phenomena. Indeed, power-laws are especially interesting
since they appear widely in physics, biology, economy, and
many other fields [?].

In this communication, we give an interpretation of
Pickands’ result which links it to the maximum (Rényi/Tsallis)
entropy setting with emphasis on the the importance of GPD
for modeling excess distributions. This view gives a possible
interpretation for the ubiquity of ‘Tsallis’ (GPD) distributions
in physics applications, as well as in other fields, an an
argument in support to the use of Rényi/Tsallis entropies.

In the following, we deal with univariate distributions
defined on R or on a subset ofR. Our approach is as
follows. First, we show that the GPD can be obtained as the
solution of as resulting of a Rényi-Tsallis maximum entropy
problem, with normalization and moment constraints. Second,
we consider distributions in the domain of attraction of Fréchet
distributions. This family includes for instance Cauchy, Stu-
dent and Pareto distributions. We characterize the associated
q-norm and first moment of the survival function associated
to the excess variableX − u|X > u. Using an appropriate
normalization, we define a variable whose survival functionq-
norm and moment converge to constant values. Third, we show
that it is possible to exhibit a parameterq, as a function of the
the parameter of the Fréchet family, such that the maximum
entropy and values of the constraints coincide with those of
the normalized variable from the Fréchet family. Therefore,
since the maximum entropy with given constraints is unique,
we obtain that the excess variable from a distribution in the
domain of attraction of Fréchet distribution asymptotically
follows a Generalized Pareto Distribution (1).

II. SOLUTION TO THE MAXIMIZATION OF TSALLIS’
ENTROPY

We first begin by the expression of the solution to the
maximization of Tsallis’ entropy subject to normalizationand
moment constraints.

Theorem 1: Consider the setF = {G : R+ → R}
The maximum Tsallis entropy problem (or equivalently the

maximumq-norm problem), withq < 1, defined by

max
G∈F

Sq(G) = max
G∈F

1

1 − q





∫

D

G(z)qdz − 1





subject to
+∞
∫

0

zG(z)dz = µ and

+∞
∫

0

G(z)dz = θ (2)



has for unique solution

G∗(z) = α
1

q−1

(

1 +
β

α
z

)
1

q−1

(3)

with, for q ≥ 1/2

µ =
(q − 1)

2

q (2q − 1)

α
2q−1

q−1

β2
, θ =

α
q

q−1

β

(1 − q)

q
(4)

and Sq(G∗) =
α

2q−1

q−1

β

(1 − q)

(2q − 1)
. (5)

The mean is not defined forq < 1/2.
Proof: We follow here the approach of [?]. Consider the

functional Bregman divergence:

B(f, g) =

∫

d(f, g)dx (6)

=

∫

−
(

f(x)q − g(x)q − q (f(x) − g(x)) g(x)q−1
)

dx

(7)

associated to the (pointwise) Bregman divergenced(f, g) built
upon the strictly convex function−xq for q ∈ (0, 1). Then
let us evaluate the divergence between the distributionG∗(z)
in (3) and any distributionG(z), with G dominated byG∗,
G(z) ≪ G∗(z), and satisfying (2):

B(G,G∗) = −

∫

S

G(z)q − G∗(z)q − α(G(z)G∗(z)q−1 − G∗(z)q)dz

(8)

= −

∫

S

G(z)qdz +

∫

S

G∗(z)qdz, (9)

whereS denotes the support ofG∗(z). The second line follows
from the fact that sinceG andG∗ both satisfy (2), then, using
(3) it is easy to check that

∫

S

G(x)G∗(x)q−1dx =

∫

S

G∗(x)qdx.

The Bregman divergenceB(G,G∗) being always positive and
equal to zero if and only ifG = G∗, the equality (9) implies
that, for q ∈ (0, 1),

Sq(G∗) ≥ Sq(G) (10)

which means thatG∗ is the distribution with maximum Rényi-
Tsallis entropy, withq ∈ (0, 1), in the set of all distributions
G ≪ G∗ satisfying the constraints (2). Values of the con-
straints (4) and of the maximum entropy (5) follow by direct
calculation.

III. T HE DISTRIBUTION OF EXCESSES FOR DISTRIBUTIONS

IN FRÉCHET FAMILY

In the following, we consider the set of distributions which
belongs to the Fréchet domain of attraction. This is the set of
all distributionsF such that if variablesXi are independent
and identically distributed according to a distribution inF ,
thenmaxi=1..N Xi converges to the Fréchet distribution. This
family typically represents heavy-tailed distributions whose

tail behave as a power-law. It was shown by Gnedenko [?] that
a necessary and sufficient condition for a distribution to bein
the Fréchet domain of attraction is that its survival function
satisfies

lim
z→+∞

S(z)

S(cz)
= ca,

with c > 0, a > 0. Equivalently, this can also read

lim
z→+∞

S(z) = z−al(z),

where l(z) is a slowly varying function, i.e. a function such
that limz→+∞

l(zt)
l(z) = 1, ∀t > 0.

Let us consider the excess variableXu = X − u|X > u.
Its survival function is

SXu
(z) =

SX (z + u)

SX (u)
.

Theorem 2: Suppose thatXu belongs to the Fréchet do-
main, with

SXu
(z) ∼ z−al (z) ,

then itsq−norm is asymptotically

‖SXu
‖q ∼

u

aq − 1

and its first moment is asymptotically, witha ≥ 2,

∫ +∞

0

zSXu
(z) dz =

u2

(1 − a) (2 − a)
.

Proof: the q−norm writes

‖SXu
‖q =

∫ +∞

0

(

SX (z + u)

SX (u)

)q

dz

=

∫ +∞

u

(

SX (z)

SX (u)

)q

dz

= u

∫ +∞

1

(

SX (wu)

SX (u)

)q

dw

∼ u

∫ +∞

1

(uw)
−aq

u−a

(

l (wu)

l (u)

)q

dw

∼ u

∫ +∞

1

(uw)
−aq

u−a
dw

= u

∫ +∞

1

w−aqdw =
u

aq − 1
,

with 1 − aq ≤ 0, since a ≥ 2, q ≥ 1/2. Of course, we
immediately obtain, takingq = 1, that

‖SXu
‖1 =

u

a − 1
.



Similarly, the first moment is
∫ +∞

0

zSXu
(z) dz =

∫ +∞

0

z
SX (z + u)

SX (u)
dz

=

∫ +∞

u

(z − u)
SX (z)

SX (u)
dz

=

∫ +∞

1

u (w − 1)
SX (wu)

SX (u)
udw

∼ u2

∫ +∞

1

(w − 1) w−adw

=
u2

(1 − a) (2 − a)
.

We have a simple corollary to this theorem:
Corollary 1: The survival functionSYu

of random variable
Y = X/g (u) , where functiong is such thatg (u) ∼ u, has
asymptotical norms

‖SYu
‖q ∼

1

aq − 1
and ‖SYu

‖1 =
1

a − 1
.

and an asymptotical first moment
∫ +∞

0

zSYu
(z) dz ∼

1

(1 − a) (2 − a)
.

Proof: The results forSYu
follow directly from Theo-

rem 2, with
SYu

(z) = SXu
(zg (u)) . (11)

IV. T HE ENTROPY OF THE DISTRIBUTION OF EXCESSES

Of course, coincidence of the survival functionSYu
(z) of

the normalized excessYu with the maximum entropy solution
(3) imposes

a =
1

1 − q
.

Then, it is easy to check that
Theorem 3: if X belongs to the Fréchet family, then choos-

ing q < 1 such that

a =
1

1 − q
,

the excess distribution ofYu reaches asymptotically the maxi-
mum q−norm solution under constraints asymptotically equal
to µ andθ providedα = β = 1.

Proof: Choosinga = 1
1−q

yields

‖SYu
‖q ∼

1

aq − 1
=

1 − q

2q − 1
,

‖SYu
‖1 ∼

1

a − 1
=

1 − q

q

and
∫ +∞

0

zSYu
(z) dz ∼

1

(1 − a) (2 − a)
=

(q − 1)
2

q (2q − 1)

which coincide with the unique maximumq−norm function
with constraintsµ andθ if and only if α = β = 1.

We can now return to the distribution of the excess without
normalization. Then we obtain a Generalized Pareto Dis-
tribution, whose shape parameter is given by the exponent
parameter of the Fréchet family, and where the scale parameter
is a function of the thresholdu and of the Fréchet parameter
a. This can be stated as follows.

Theorem 4: If X belongs to the Fréchet family, then the
survival function of its excesses over a thresholdu converges
(in the q−norm sense) to

G (z) =
(

1 +
γ

σ
x
)− 1

γ

(12)

with γ = 1/a and σ = g(u)/a for any positive functiong
such thatg (u) ∼ u.

Proof: The proof is immediate by (11).
At this point it is still important to emphasize that the GPD
(12) enjoys a threshold stability property: the distribution of
the excesses over a threshold of GPD remains a GPD, with the
same exponent but a different shape parameter. This stability
result is certainly also a reason of the ubiquity of GPD in
many applications.

Theorem 5: Given a GPD with parametersγ, σ the dis-
tribution of excesses remains a GPD with parametersγ and
σ′ = σ

(

1 + γ
σ
u
)

.
Proof: As usual, letu denotes the threshold,SX the

survival function of the original GPD andSXu
the survival

function of variableXu.Then,

SXu
(x) =

SX(x + u)

SX(u)
=

(

1 + γ
σ

(x + u)
)− 1

γ

(

1 + γ
σ
u
)− 1

γ

=
(

1 +
γ

σ′
x
)− 1

γ

where the last expression is obtained after having factoredthe

term
(

1 + γ
σ
u
)− 1

γ in the numerator.

We have shown that the distribution of excesses in the
Fréchet family, which is a Generalized Pareto Distribution,
can be interpreted as a maximumq-entropy (or maximumq-
norm) solution. With this result, it is possible to connect the
ubiquity of heavy-tailed distributions in physics, economics or
signal processing, the distribution of the excesses over a (often
unknown) threshold, and a maximum entropy construction.
The final paper will present a numerical illustration in the
Student case, and will include a simple extension to the
Weibull family, wich leads to distributions with exponential
tails.
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