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Abstract 

 
In the framework of mathematical morphology, watershed transform (WT) represents a key step 
in image segmentation procedure. In this paper, we present a thorough analysis of some existing 
watershed approaches in the discrete case: WT based on flooding, WT based on path-cost 
minimization, watershed based on topology preservation, WT based on local condition and WT 
based on minimum spanning forest. For each approach, we present detailed description of 
processing procedure followed by mathematical foundations and algorithm of reference. Recent 
publications based on some approaches are also presented and discussed. Our study concludes 
with a classification of different watershed transform algorithms according to solution uniqueness, 
topology preservation, prerequisites minima computing and linearity. 
 
 
Keywords: Watershed transform, Flooding, Path-cost minimization, Topology preservation, 
Local condition, Minimum spanning forest. 
 

 
 
1. INTRODUCTION 

 
The watershed concept began with Maxwell [1] who introduces the theory behind representing 
physical characteristics of a land by means of lines drawn on a map. He highlights relationships 
between the numbers of hills, dales and passes which can co-exist on a surface. Subsequently, 
through the work of Beucher and al. [2], watershed transform was introduced to image 
segmentation and nowadays it represents one of the basic foundations of image processing [3].  
 
In this framework, the most simplified description of the watershed approach is to consider a 
grayscale image as a topographic surface: the gray level of a pixel becomes the elevation of a 
point, the basins and valleys correspond to dark areas, whereas the mountains and crest lines 
correspond to the light areas. If topographic relief is flooded by water, watersheds will be the 
divide lines of the attraction’s domains of rain falling over the region [4] or sources of water 
springing from reliefs’ peaks. Another synopsis has shown consistency is that topographic 
surface is immersed in a lake with holes pierced in local minima. Catchment basins will fill up with 
water starting at these local minima, and, at points where water coming from different basins 
would meet, dams are built. As a result, the topographic surface is partitioned into different basins 
separated by dams, called watershed lines. Figure 1 gives a very symbolic description of the 
mentioned approach. In fact, it shows trends in the use of watershed transform for image 
processing. 
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FIGURE 1: (a) Cleavage fractures in steel, (b) contour of (a) obtained truth watershed definition introduced 

by Beusher and al. [2] in 1979, (c) Maximum intensity projection of original human lower limb (d) Bone tissue 
removed using mask extended with 3D watershed transform introduced by Straka and al.[5] in2003. 

 
Despite its simplicity, this concept has been formalized in different ways giving rise to several 
definitions of watershed transform. In the discrete case, which is our main interest in this paper, 
this problem is amplified since there is no unique definition of the path that the drop of water 
would follow. This led to a multitude of algorithm to compute watershed transform. Some of these 
algorithms don’t even meet associated watershed definition. We also note that some definitions 
take the form of algorithm specification which makes the distinction between algorithm 
specification and implementation very complicated. This problem in literature has been partially 
resolved in Roerdink and al. [6] ten years ago. Actually authors presented a critical review of 
several definitions of the watershed transform and the associated sequential algorithms. Even 
they discuss various issues which often cause confusion in the literature; they don’t go further in 
the classification or comparison of different approaches. They instead focus on parallelization 
aspect. In other more recent publications, authors tentatively drawn a comparison chart of some 
watershed transform definition to serve their end goals: showing the relationships that may exist 
between some discrete definition of watershed [7] or showing that most classical watershed 
algorithm do not allow the retrieval of some important topological features of the image [8].  
 
The purpose of this paper is to introduce an intensive study of all existing watershed transform in 
the discrete case: WT based on flooding, WT based on path-cost minimization, watershed based 
on topology preservation, WT based on local condition and WT based on minimum spanning 
forest. Indeed, for each approach, we start by giving informal definition, then we present 
processing procedure followed by mathematical foundations and the algorithm of reference. 
Recent publications based on some approach are also presented and discussed. Our study 
concludes with a classification of different algorithms according to criteria of recursion, 
complexity, basins computing and topology preservation. This paper is organized as follows: in 
section 2, different approaches to compute watershed are presented. In section 3, we draw a 
comparison between the various presented algorithms. Finally, we conclude with summary and 
future work in section 4.  
 
2. WATERSHED TRANSFORMATION 
 
In this section, we propose a comparative study of different approaches to compute the 
watershed transform in the discrete case. The goal is to identify most suited watershed transform 
for parallel processing. This study can also be seen as an update of Roerdink work [6] presented 
ten years ago. Indeed, for each approach, we present processing procedure, mathematical 
foundations and sequential algorithm. Recent publications based on some approach are also 
presented and discussed. 
 
2.1 Watershed based on flooding  
 
Based on flooding paradigm [9,10,11], the intuitive idea underlying this method comes from 
geography.  Since grayscale image can be seen as topographic surface, the intensity of a pixel 
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can be considered as the altitude of a point. Now, let immerge this surface in still water, with 
holes created in local minima. Water fills up basins starting at these local minima. As described in 
algorithm 1, the filling of basins is an iterative process that involves gradually raising the water 
level from Altmin to Altmax. Algorithm must, for each iteration, fill existing basins (extension regions) 
and possibly create new basins (new regions). We denote by LR the region list. Dams will be built 
where waters coming from different basins meet.  
 
Algorithm 1: Flooding watershed process 

1. for level from Altmin to Altmax 
2.      // Action 1 : Extend existing region 
3.      foreach (R∈ LR) do Growing [R] until level Alt; 
4.      end_for 
5.      // Action 2 : Create new region 
6.      foreach (Pixel P ∈ level)  
7.           if (Pixel P is not associated to any region R) then   
8.               Create new region [R] in LR ; 
9.               Add Pixel P to region [R]; 
10.               Growing [R] until level ; 

 
For mathematical formulation of the mentioned process, let Ν→Df : be a digital grey value 
image, with Altmin and Altmax the minimum and the maximum value of. The threshold set of at level 

Alt is:  { }AltpfDpTAlt ≤∈= )(/min         

                                                   
It define a recursion with the gray level Alt increasing from Altmin to Altmax, the basin associated 
with the minima of f are successively expanded. Let XAlt denote the union of the set of basins 
computed at level Alt. A connected component of the threshold set TAlt+1 at level Alt+1 can be 
either a new minimum or an extension of the basin in XAlt . The geodesic influence zone (IZ) of 
XAlt within TAlt+1 can be computed resulting in an update XAlt+1 . Let MINh denote the union of all 
regional minima at altitude Alt. Then we can introduce the following definition: 
 

Definition 2.1 (Flooding watershed) 

 

{ } minminmin )(/ AltAlt TAltpfDpX ==∈=  

 

)(
111 AltTAltAlt XIZMINX

ALT+
∪= ++  

 

 

The watershed )( fWshed  of f is the complement of 
maxAltX in D  :  

 

max/)( AltXDfWshed =  

Vincent and Soille [12] presented an original and efficient implementation (algorithm 2) of the 
flooding watershed. This implementation uses FIFO queue and it needs two steps: 
 
 

(1) Sorting pixels in increasing order of grey values (Altmin ; Altmax) 
 

(2) Flooding process: All nodes with grey level h are first given the initial label. Then those nodes 
that have labeled neighbors from the previous iteration are inserted in the queue, and from 
these pixels geodesic influence zones are propagated inside the set of initial pixels. 

 
In their study [6] Roerdink and Meijster have removed two points of inconsistency in the 
algorithm’s recursion. (i) Only pixels with grey value h are masked for flooding (line 13), instead of 
all non-basin pixels of  (level h≤ ), as the definition (2.2) would require. This explains why labels 

(2.1) 

(2.2) 

(2.3) 
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of wshed-pixels (line 15) are also propagated with labels of catchment basins. (ii) If a pixel is 
adjacent to two different basins; it is initially labeled ‘wshed’.  But it is allowed to be overwritten at 
the current grey level by another neighbor’s label, if that neighbor is part of a basin (lines 35-36).  

 

They also propose some modification to implement the recursion (2.3) exactly. In line 13, all 
pixels with  [ ] hpim ≤  have to be masked, the queue has to be initialized with basin pixels only 
(drop the disjunct lab[q] = wshed in line 15), the resetting of distances (line 50) has to be done in 
line 14, and the propagation rules in lines 32-47 have to be slightly changed.  

 

Algorithm 2 : Flooding watershed [Vincent & Soille] 
Data : Digital grey scale image G=(D,E,im) 
Result : Labelled watershed image lab on D 

1. #define INIT -1   //initial value of lab image 
2. #define MASK -2   //initial value of each level 
3. #define WSHED 0   //label of the watershed pixels 
4. #define FICTITIOUS (-1,1)   //fictitious pixel ∉ D 

5. 0←curlab    //curlab is the current label 
6. fifo_init(queue) 
7. for all  (P∈D) do 

8.    [ ] ;INITplab ←  

9.     [ ] ;0←pdist  //dist is a work image of distances 

10. end_for 
11. SORT pixels in increasing order of grey values ( hmin , hmax) 

             // starting flooding process  
12. for h = hmin to hmax do //geodesic SKIZ of level h-1 inside level h 
13.         for all  (P∈D) with im[p]=h do // mask all pixels at level h 

               //these are directely accessible because of the sorting step 

14.               [ ] ;MASKplab ←  

15.                if (p has a neighbour q) with ((lab[p] > 0 or lab[q]=WSHED)) then  
                  //initialize queue with neighbours at level h of current basins or watersheds                  

16.                 [ ] ;1←pdist  

17.                   );,(_ queueqaddfifo  

18.               end_if 
19.          end_for 

20.      ;1←curdist  

21.     );,(_ queueFICTITOUSaddfifo  

22.      loop   //extend basins 

23.        );(_ queueremovefifop ←  

24.         if (p = FICTITIOUS) then  

25.              if ))(_( queueemptyfifo then  

26.                   BREAK ; 

27.              else ),(_( queueFICTITOUSaddfifo ; 

28.                      ;1+← curdiscurdist  

29.                      );(_ queueremovefifop ←  

30.               end_if 
31.           end_if 

32.          for all  (q∈NG(p)) do //labelling p by inspecting neighbours 
33.                if (dist[q] < curdist) and (lab[q]>0 or lab[q]=WSHED) then 

                   / /q belongs to an existing basin or to watersheds 
34.                   if (lab[q]>0) then 
35.                         if ((lab[p]=MASK) or (lab[p]=WSHED)) then 
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36.                                   [ ] [ ];qlabplab ←  

37.                                else if   [ ] [ ]qlabplab ≠ then  

38.                                            [ ] ;WSHEDplab ←  

39.                                end_if 
40.                   else if (lab[p]=MASK) then  

41.                                       [ ] ;WSHEDplab ←  

42.                          end_if 
43.                    else if  ((lab[q]=MASK) and (dist[q]= 0)) then //q is plateau pixel 

44.                                [ ] ;1+← curdisqdist  

45.                                );,(_ queueqaddfifop ←  

46.                                 end_if 
47.          end_for 
48.      end_loop 
            //detect and process new minima at level h 
49.      for all (p∈D) with (im[p]=h) do 

50.             [ ] ;0←pdist   // reset distance to zero 

51.               if (lab[p]=MASK) then  // p is inside a new minimum 

52.                     ;1+← curlabcurlab //create new label 

53.                    );,(_ queuepaddfifo  

54.                    [ ] ;curlabplab ←  

55.                      while not ))(_( queueremovefifo do 

56.                                         );(_ queueremovefifoq ←  

57.                                          for all (r∈NG(q)) do // inspect neighbours of q 
58.                                               if (lab[r]=MASK) then 

59.                                                         );,(_ queueraddfifo  

60.                                                         [ ] ;curlabrlab ←  

 

From the introduction about immersion simulation above, we can see that the level-by-level 
method during the flood procedure is uniform. Unfortunately, this can cause over-segmentation in 
several cases. Based on this original simulating immersion, Shengcai and Lixu [13] propose, in 
2005, a novel implementation using multi-degree immersion. To our knowledge, it is the last 
update that can be found in the literature, the proposed implementation resists to over-
segmentation problem effectively. It starts by redefining the threshold set of f  at level Alt. 

Instead of the original formula (2.1), they propose the following one: 
 

{ }AltpDiffpfDpTAlt ≤−∈= )()(/  
 

With )( pDiff refers to the immersion level when the flooding reaches pixel p . Segmentation 
results are sensitive to this function. In fact, if 0)( =pDiff , (2.4) can be seen as a special case 
of (2.1). Other extreme case, if )( pDiff reaches its maximum values, all pixels susceptible to be 
dumped, will be. According to the user requirement, )( pDiff can be even a constant function or 
a function computed according to the local characteristic of p . In their paper, Shengcai and Lixu 
define it as introduced in (2.5) with )( pNeighbor is the set of all p neighbors. And conn  refers to 
the predefined connectivity: { }8,4 .  

 

∑ ∈

−
=

)(

)()(
)(

pNeighborq conn

qfpf
pDiff  

 

(2.4) 

(2.5) 
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Obtained results through two implementations of the original and the multi-degree watershed 
shows that multi-degree immersion method resists the over-segmentation problem effectively. 
Indeed, the number of detected region in an image brain (181*217*181 voxel volume), decreases 
from 10991, using the old method, to only 35 using the new method. Computation time and 
consumed memory size are practically the same. More information about implementation can be 
found in [13].  
 
2.2 Watershed based on path-cost minimization 
 
In this class, there are two possible approaches. The first one associates a pixel to a catchment 
basin when the topographic distance is strictly minimal to the respective regional minimum. While 
the second one builds a forest of minimum-path trees, each tree representing a basin. In the 
following we start by introducing watershed  by topographic distance [14] before moving to the 
watershed by image foresting transform [16,17]. 
 
Algorithm 3 : Watershed by topographic distance process 

1. Foreach (marked area ∈ MS ) 

2.      insert pixels into priority queue Q ; 

3. end_for 

4. While  ( φ≠Q  ) 

5.      pEx = extract pixels with highest priority level;  

6.      if (neighbors of pExp ∈  have the same label Lab ) then   

7.               pLab = Lab ; 

8.             Q = all non-marked neighbors 

9.       end_if 

10. end_while 

 
Based on the drop of water principle, the intuitive idea behind topographic watershed approach in 
the steepest descent path principal [14, 15]. A drop of water falling on a topographic relief flows 
down, as "quickly" as possible, until it reaches a regional minimum. Let Ν→Df : be a digital 
grey value image. Let MS be the set of markers, pixels where the flooding shall start, are chosen. 
Each is given a different a label Lab .  

 
Topographic watershed process can be described by algorithm 3. Let us note that priority level 
when inserting neighbors (line 2) corresponds to the gray level of the pixel. In line 6, only 
neighbours that have already been labelled are compared. Finally, only neighbors (in line 8) that 
are not yet in the priority queue are pushed into the priority queue. The watershed lines set are 
the complement of the set of labeled points.  
 
For mathematical formulation of the mentioned process, we follow here the presentation in [6] 
which is based on [14]. For the sake of simplicity, we restrict our self to the minimal set of notion 
that will be useful for our propos. We start by introducing the topographic distance. Let us 
consider )( pNG as the set of neighbors of pixel p , and ),( qpd as the distance associated to 
edge ),( qp . Then the lower slope )( pLS of f at a pixel p can be defined as follow: 
 

{ } 






 −
=

∪∈ ),(

)()(
)(

)( qpd

qfpf
MAXpLS

ppNq G

 (2.6) 
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And the cost for walking from pixel a p  to a neighboring pixel q  can be defined as: 

( )











=+

<

>

=

)()(/),(.)()(
2

1

)()(/),().(

)()(/),().(

),cos(

qfpfqpdqLSpLS

qfpfqpdqLS

qfpfqpdpLS

qp  

 

The topographical distance between p and q  is the minimum of the topographical distances 

),( qpT f

π along all paths between p and q : 
[ ]

),(),( qpTqpT f

qp

f MIN
π

π →∈

=    

 

We recall that the topographical distance along a general path ),...,( 0 lqp=π  is defined as  

),(cos),(),( 1

1

1 +

−

+∑= ii

l

i iif pptppdqpT
π  

 

Finally we can define the topographic watershed for a grey value image f , with *f the lower 

completion of f . Each pixel which is not in a minimum has a neighbor of lower grey value 

( LCff =* ). 
 
Let Iiim ∈)( be the collection of minima of f . The basin )( imCB of f corresponding to a 

minimum Iiim ∈)( is defined as a basin of the lower completion of f : 

{ }{ }),()(),()(:/,)( **

**

jfjifii mpTmfmpTmfiIjDpmCB +<+∈∈=  

 
And the watershed is the set of points which do not belong to any catchment basin: 
 

c

iIi mCBDfWshed )(()( ∈∪∩=  
 
Several shortest paths algorithms for the watershed transform with respect to topographical 
distance can be found in the literature but the reference algorithm is that of Fernand Meyer. In the 
following we present variant of Meyer algorithm with integrate the lower slope of the input image 
as introduced Roerdink and al. [6]. 
 
Algorithm 4 : Watershed by topographical distance [Meyer] 
 
      Data : Lower complete image im on a dgital grey scale image G=(D,E) with cost 

      Result : Labelled watershed image lab on D 

1. #define WSHED 0 //label of the watershed pixels 

2. //Uses distance image dist. On output, div[v]=im[v], for all v ∈ D 

3. for all  (v∈D) do //Initialize 

4.    [ ] ;0←vlab  

5.     [ ] ;∞←vdist  

6. end for 
7. for all  (local minima mi) do  

8.   for all  (v∈mi) do 

9.      [ ] ;ivlab ←  

10.       [ ] [ ];vimvdist ← //Initialize distance with the values of minima 

(2.7) 

(2.9) 

(2.8) 

(2.10) 

(2.11) 
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11.   end for 

12. end for 

13. ;truestable ← //stable is a Boolean variable  

14. repeat 

15.    for all pixels u in forward raster scan order do 

16.        propagate(u) 

17.    end for 
18.    for all pixels u in backward raster scan order do 

19.        propagate(u) 

20.    end for 
21. until stable  

22. procedure propagate(u) 

23.   for all (v∈NG(u)) in the future (w.r.t scan order) for u do 

24.        if  [ ] [ ] [ ]( )udistvutudist <+ ,cos then 

25.              [ ] [ ] ( )vutudistvdist ,cos+←  

26.              [ ] [ ]ulabvlab ←  

27.              falsestable ←  

28.        else if [ ] WSHEDvlab ≠ and [ ] [ ] [ ]( )vdistvutudist =+ ,cos  then 

29.                   if [ ] [ ]( )ulabvlab ≠  then 

30.                        [ ] WSHEDvlab =  

31.                        falsestable ←  

 
The second approach to compute a watershed based on path-cost minimization, as we 
introduced in the beginning, consists on building a forest of minimum-path trees where each tree 
represent a basin. This approach is described in the framework of image foresting transform [16]. 
The IFT defines a minimum-cost path forest in a graph, whose nodes are the image pixels and 
whose arcs are defined by an adjacency relation between pixels. The cost of a path in this graph 
is determined by a specific path-cost function, which usually depends on local image properties 
along the path, such as color or gradient. The roots of the forest are drawn from a given set of 
seed pixels. For suitable path-cost functions, the IFT assigns one minimum-cost path from the 
seed set to each pixel, in such a way that the union of those paths is an oriented forest, spanning 
the whole image. The IFT outputs three attributes for each pixel: its predecessor in the optimum 
path, the cost of that path, and the corresponding root. Returned solution is usually obtained in 
linear time and requires a variant of the Dijkstra [18] , Moore [19] or Dial’s shortest-path algorithm 
[20]. 
 

For mathematical formulation of the IFT-watershed, we start by defining some basic notions of 
image foresting transform as introduced in [16]. Actually, an image ImgIn can be seen as a 
pair ( , )J I where J refers to a finite set of pixels and I  refers to a mapping that assigns to each 
pixel ( )p J∈ , a pixel value ( )I p  in some arbitrary value space. Distinct binary relation between 
pixels of J will define an adjacency relation A . Once the adjacency has been fixed, ImgIn can be 
interpreted as a directed graph, whose nodes are image pixels and whose arcs are pixel pairs 
in A .  
 
Before moving to path cost definition, let’s remember that a sequence of pixels 1 2, ,..., kt t tπ =  
where 1( , )

i i
t t A+ ∈ for (1 1)i k< < − constitute a path. In the following we will denote by ( )org π  the 

origin 
i

t  of π  and by ( )dst π the destination 
k

t of π . Now let assume given a function f that 
assigns to each path π  a path cost ( )f π , in some totally ordered setυ of cost values. We 
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introduce the max-arc path-cost function maxf  that will be used later. Note that ( )h t and 
( , )w s t are fixed. 

 

max ( ) ( )f t h t=  

{ }max max( , ) max ( ), ( , )f s t f w s tπ π⋅ =  

 
For IFT use, a specific function ( )Sf π  can be defined since the search to paths start in a given 
set ( )S J⊂ of seed pixels.  
 

{ ( ) ( ( ) )( )S f if org S

otherwise
f π ππ ∈

+∞  
 

Now, we can introduce the spanning forest concept. We remember that a predecessor map is a 
function P that assigns to each pixel t J∈  either some other pixel J∈  or a distinctive 
marker J∉Μ . Thus, a spanning forest (SF) can be seen as a predecessor map which contains 
no cycles.  

 
Definition 2.2 (Spanning forest) 

 
For any pixel t J∈ , a spanning forest P defines a path *( )P t recursively as t  if 

( )P t = M and *( ) ,P s s t⋅ if ( )P t s= ≠ M , we denote by 0 ( )P t  the initial pixel 
of *( )P t . 

 
Algorithm 5: IFT Algorithm [Falco and Al.] 

      Input: Img = ( , )J I : Image, A JxJ⊂ : Adjacency relation, f :path-cost function 

      Output: P : optimum path forest, ,α β : two sets of pixels with Jα β∪ = . 

1. Set { }α ← , Jβ ← //Initialize 

2. for all pixels t J∈  do //Initialize 

3.      Set ( )P t ← M  

4. end for 

5. while β φ≠ do //Compute 

6.    remove  from β a pixel s such that 
*( ( ))f P s is minimum, 

7.    add s to α  

8.    for each pixel t such that ( , )s t A∈  

9.          If 
* *( ( ) , ) ( ( ))f P s s t f P t⋅ < then 

10.               Set ( )P t s← ; 

 
Falcan and al. algorithm describes IFT computing. Its algorithm is based on Dijkstra’s procedure 
for computing minimum-cost path from a single source in a graph and returns an optimum-path 

forest P for a seed-restricted cost function sf or any pixel t with finite cost ( *( ))sf P t . Pixels will 
belong to a tree whose root is a seed pixel. 

 
The IFT-watershed assumes that seeds pixel correspond to regional minima of the image or to 
markers that can be considered as imposed minima. The max-arc path-cost function maxf is the 

same as (2.12). We remember that ( )h t is a fixed but arbitrary handicap cost for any paths 

(2.12) 

(2.13) 

(2.14) 
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starting at pixel t . We remember also that ( , )w s t is the weight of arc ,s t A∈ , ideally, higher on 

the object boundaries and lower inside the objects.  
 
There are two usual arc weight functions :  
 

a) 1( , ) ( ) ( )w s t J s J t= − , where ( )J s refers to the intensity of pixel of s . In that case IFT-

Watershed is said by dissimilarity.  
 

b) 2 ( , ) ( )w s t G t= , where ( )G t is the morphological gradient of ImgIn at pixel t . In that 

case IFT-Watershed is said on gradient. 
 
Algorithm 6 : IFT-watershed from markers [Lotufo] 

      Data : I : input image, wshed : labeled marker image 

      Result : wshed : watershed catchment basins 

Aux : C : cost map, initialized to infinity; FIFO :hierarchical FIFO queue 

1. for all pixels ( ) 0wshed p ≠  do //Initialize 

2.      ( ) ( )C p I p←  

3.      Insert p in FIFO with cost ( )C p  

4. end for 

5. while  FIFO do //Propagation 

6.    p ←  remove from FIFO   

7.      for each ( )q N p∈  

8.          If { }( ( ) max ( ), ( ) )C q C p I q> then 

9.                { }( ) max ( ), ( )C q C p I q← ; 

10.                 Insert q in the FIFO with cost ( )C q ; 

11.                ( ) ( )wshed p wshed q←  

 
Lotufo and al. [21] introduce the IFT-watershed from markers, algorithm 6, which can be 
computed by a single IFT where the labeled markers are root pixels. Proposed algorithm use 
hierarchical FIFO queue (HFQ).   
 
In this case, the root map can be replaced by the label map which corresponds to the catchment 
basins and the used path-cost function is given by: 
 

{ }{ 1 2max ( ( ), ( ),..., ( )

1 1 1( , ,..., ) nI p I p I p

m
f p p p +∞< > =  

 
Where 1 ( )

i i
p N p+ ∈ and ( )

i
I p is the value of the pixel ( )

i
I p is the value of the pixel 

i
p in the 

image I .  
 
2.3 Topological watershed 
 
The original concept behind topological watershed [22] is to define a “topological thinning” that 
transforms the image while preserving some topological properties, namely the number of 
connected components of each lower cross-section as we will explain in the following.  

 
Before introducing the topological watershed process, algorithm 7, we define some basic notions. 
Some of these notions will be resumed in next paragraph for mathematical formulation.  Let F be 

If  p1  is a marker pixel. 

Otherwise 
(2.15) 
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grayscale image and λ be a grey level, the lower cross-section λF  is the set composed of all the 

points having an altitude strictly lower than λ . A point x  is said to be W-destructible for F   if its 

altitude can be lowered by one without changing the number of connected components of λF , 

with )(xFk = . A map G is called a W-thinning of F if it may be obtained from F by iteratively 

selecting a W-destructible point and lowering it by one. A topological watershed of F  is a W-
thinning of F  which contains no W-destructible point. The major feature of this transform is to 
produce a grayscale image.  
 
The following algorithms give a global description of the computing process. Note that this 
process is repeated on loop until no W-destructible point remains. 

 
Algorithm 7 : Topological watershed process 

1. For all p in E , check the number of connected components of the lower cross-section at the level 

of p which are adjacent to p . 

 
2. Lower the value of p by one if this number is exactly one 

 
For mathematical formulation, we follow description provided in [11]. We start by defining a 
simple point in a graph, in a sense which is adapted to the watershed, and then we extend this 
notion to weighted graphs through the use of lower sections [22]. 
 
Couprie and al. define a transform that acts directly on the grayscale image, by lowering some 

points in such a manner that the connectivity of each lower cross-section λF is preserved. The 

regional minima of the result, which have been spread by this transform, can be interpreted as 
the catchment basins. The formal definition relies on a the following particular notion of simple 
point: 
 

Definition 2.3 (Simple point) 
 

Let ( )Γ= ,EG be a graph and let EX ⊂ . 
The point Xx ∈ is simple (for X ) if the number of connected components of { }xX ∪ equal to 
the number of connected components of X . In other words, x  is simple (for X ) if x  is adjacent 
to exactly one connected component of X . 
 
Now, we can define more formerly destructible point, and the topological watershed: 
 

      Definition 2.4 (Topological watershed) 
 

Let ( )EFF ∈ , Ex ∈ and )(xFk = . The point x  is destructible (for F ) if x  is simple (for kF ). 

We say that ( )EFW ∈  is a topological watershed of F  if W  may be derived from F  by 

iteratively lowering destructible points by one until stability (that is, until all points of E  being non-
destructible forW ). 
Actually checking whether a point is w-destructible, or not, cannot be done locally if the only 

available information is the graph ( ),E Γ and the function F and a point may also be lowered 

several times until it is no more w-destructible. Couprie and al. [23] propose a new algorithms 
making possible to perform this test on all the vertices of a weighted graph in linear time, and also 
to check directly how low the W-destructible point may be lowered until it is no more w-

(2.16) 

(2.17) 
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destructible, thanks to the component tree which may be built in quasi-linear time. In the 
following, we introduce Couprie’s functions to identify W-destructible point.   
 

Algorithm 8 : Function W-destructible 

      Input : Ψ),(, FCF ; 

1. ←V Set of element of )(FC pointed by )(qΨ for all q in )(1 p−Γ ; 

2. If )( φ=V then return [ ]φ,∞ ; 

3. [ ] ←mm ck , HighestFORK )),(( VFC ; 

4. If [ ] [ ]φ,, ∞=mm ck then return )min(V ; 

5. If ))(( pFkm ≤ then return [ ]mm ck , else return [ ]φ,∞ ; 

 

Previous algorithm gives correct results with regard to the definition (2.17) and is linear in time 
complexity with respect to the number of neighbors of p .  
 
Checking whether a point is w-destructible or not, involves the computation of the highest fork of 
different elements of the set V(p),see algorithm 9. This may require a number of calls to BLCA 
(Binary lowest common Ancestor) which is quadratic with respect to the cardinality of  V (p): 
every pair of elements of  V (p) has to be considered. 
 

Algorithm 9 : Function HighestFORK 

      Input : C : a component tree,  

                 V : a set of components of C 

1. [ ] ←11 ,ck )min(V ; // let [k2,c2]...[kn,cn]be the other elements of V 

2. 1kkm ← ; 

3. 1ccm ← ; 

4. for i from 2 to n do 

5.      [ ] ←ck, BLCA [ ] [ ]),,,,( mmii ckckC ; 

6.      If [ ] [ ]ii ckck ,, ≠ then 1kkm ← ; 

7.                                              1ccm ← ; 

8.  

9. If )( 1kkm = then return [ ]φ,∞ else return [ ]mm ck , ; 

 

The HighestFork algorithm returns the highest fork of the setV  , or the indicator [ ]φ,∞ if there is 
no highest fork. This algorithm makes (n- 1) calls of the BLCA operator, where n is the number of 
elements inV . 
 
Let C be a component tree, let V be a set of components of C, we denote by min(V ) an element 
of V which has the minimal altitude. For following algorithm, we assume that C is represented in a 
convenient manner for BLCA. 
 
Thus, we must propose a criterion for the selection of the remaining W-destructible points, in 
order to avoid multiple selections of the same point. Couprie and al. introduce the idea to give the 
greatest priority to a W-destructible point which may be lowered down to the lowest possible 
value. They prove that an algorithm which uses this strategy never selects the same point twice. 
A priority queue could be used to select W-destructible points in the appropriate order. Here, we 
present their specific linear watershed algorithm which may be used when the grayscale range is 
small. 
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Algorithm 10 : Topological watershed [Couprie] 

      Data : Ψ),(, FCF ; 

      Result : F ; 

1. For k from mink  to  )1( max −k  do φ←kL   

2.    For all  )( Ep ∈ do 

3.         [ ] )),(,,(, Ψ−← FCpFleDestructibWci  

4.         If )( ∞≠i then 

5.               { };11 pLL ii ∪← −−  

6.                 { } ;1−← ipK  

7.                 { }←pH pointer to [ ]ci, ; 

8.         end if 
9.     end for 

10.     For k from mink  to  )1( max −k  do 

11.           While )( kLp ∈∃  do 

12.                         { }pLL kk /= ; 

13.                        If ))(( kpK = then 

14.                             ;)( kpF ←  

15.                                );()( pHp ←Ψ  

16.                               For all  )(),(( qFkpq <Γ∈ do 

17.                                                  [ ] )),(,,(, Ψ−← FCqFleDestructibWci ; 

18.                                              If )( ∞=i then ∞←)( pk ; 

19.                                              Else if ))1()(( −≠ ipk then 

20.                                                                 { }qLL ii ∪← −− 11 ; 

21.                                                                 )1()( +← ipk ; 

22.                                                                { }←qH pointer to [ ]ci, ; 

  
2.4 Watershed transform based on local condition 

 
There is a big similarity between this approach and the drop of water one. Actually basin surface 
increases in a progressive manner. The local condition of label continuity is iteratively applied 
along the steepest descent path that reaches the basin minimum. The downhill algorithm, the hill 
climbing algorithm and the toboggan algorithm are based on this approach. More details of the 
first two algorithms are given by [24][25] and the toboggan algorithm will be detailed later in this 
section. Differences between these three algorithms lie in the processing strategy and data 
structure as shown in [6].   
 
For mathematical formulation, we follow description provided in [7]. In witch Audrier and al. start 

by presenting the following catchment basin formulation { }( ) V, L( ) L( )LC i iCB m v v m= ∈ = , 

since local condition watershed assigns to each pixel the label of some minimum
i

m . Thus 

watershed can be defined as follow. We recall that the condition { }( )steepest v ≠P means that v  

has at least one lower neighbor. 
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Definition 2.5 (Watershed based on local condition) 
 

For any lower complete image
CB

L , a function L  assigning a label to each pixel is called 

watershed segmentation if: 

a) ( ) ( ) ,
i j

L m L m i j≠ ∀ ≠ With{ }km , the set of minima of 
LC

L . 

b) For each pixel v with { }( )steepest v ≠P , ( ),L( ) L( )
steepest

p v v p∃ ∈ =P . 

 
As we mentioned earlier, we will introduce the toboggan algorithm [24, 26] as a reference of the 
local condition watershed approach. Actually this algorithm is referred as a drainage analogy. It 
seeks to identify the steepest descent from each pixel of the gradient magnitude of the input 
image to a local minimum of the topographic surface. Then pixels that belong to the same minima 
are merged by assigning them a unique label. Sets of pixels having the same label will define 
catchment basins. The resulting watershed regions are divided by a boundary path which will 
build the watershed lines.  
 

Let consider :G D R
+→ as a gradient magnitude image, where D is the indexing domain of the 

image. D can be decomposed into a finite number of disjoint level sets since pixels are sorted in 

the increasing order. Sets can be denoted by: { }| ( )hD p D G p h= ∈ = . Lin and al [24] define 

the following pixels classes: Class 1C refers to all pixels p in 
h

D with an altitude strictly greater 

than the altitude of its lowest neighbor. Class 2C refers to all pixels p in 
h

D  belonging to a 

connected component with one or more catchment basin and 1p C∉ . Finally, class 3C refers to all 

pixels p in 
h

D  belonging to a connected component without any catchment basin. Thus we can 

give a global description of the computing process.  
 

Algorithm 11 : Toboggan watershed process 

1. Records the sliding directions for all 1 2( ) ( )p C p C∈ ∪ ∈ in D  

a. Records the lowest neighbours of all 1( )p C∈  in D . 

b. Grown region from all 1( )p C∈  

2. Assign label for all 3( )p C∈    

3. Assign label to each unlabeled image by first tobogganing then backtracking using best first 
search. 

 
Based on this process, authors introduce the following algorithm to compute watershed. 
 

Algorithm 12: Toboggan Algorithm [Lin and al.] 

      Data : Img : a gradient magnitude image; 

      Result : L : a label image, Q : empty FIFO queue ; 

1.    For all  ( )p D∈ do //Simulation of sliding for all C1 pixels 

2.         ( )h G p=  

3.         { }min ( ), ( )MINh G q q Neighbor p= ∈  

4.         If ( )
MIN

h h> then 

5.               { }( | ( ) ) & &( ( ))MINS q G q h q Neighbor p= = ∈  

6.                 ( )SlidingList p S=  

(2.18) 
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7.                 Q p←  

8.                 ( ) 0GrowingDist p =  

9.                 Else if : 

10.                ( )SlidingList p φ=  

11.          End if 
12.     End for 

13.     While Q φ≠  do //Simulation of keep- sliding for all C2 pixels 

14.         Qp ←  

15.           ( ) 1d GrowingDist p= +  

16.           ( )h G p=  

17.           For all  ( ( ))q Neighbor p∈ and ( ( ) )G q h= do 

18.              If ( ( ) )SlidingList q φ= then 

19.                   Append ( )p to ( )SlidingList q  

20.                     ( )GrowingDist q d=  

21.                     Q ;q←  

22.              Else If ( ( ) )GrowingDist q d= then 

23.                   Append ( )p to ( )SlidingList q  

24.                End if 
25.        End while 

26.    For all  0( )p D∈ and 0( ( ) )SlidingList p φ= do // labelling C3  pixels 

27.         If 0( )L p is not assigned then 

28.             0( )L p =new_label 

29.             0( )h G p=  

30.             While Q φ≠  do 

31.                Qp ←  

32.                 For all ( ( ))p Neighbor p∈ and ( ( ) )G q h= do                 

33.                           If ( )L q is not assigned then 

34.                                0( ( ) ( ))L q L p=  

35.                                Q p←  

36.                           End if  
37.                      End for  
38.            End while 
39.     End if 
40. End for 

41. For all ( )p D∈ do // Tobogganing – Depth first search 

42.   Resolve( )p  

43. End For 

 

Algorithm 13: Resolve function 
Input : Pixel site p  

1.    If ( )L p is not assigned then 

2.        ( )S SlidingList p=  

3.          For all ( )q S∈ do 

4.              Resolve(q) 
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5.          End for 

6.         If S has a unique label α then 

7.             ( )L p α=     

8.         Else  

9.              ( ) _L p RIDGE label=  

10.         End if  

11.     End if 

 
2.5 Watershed transform based on minimum spanning forest 

 
The original idea is very close to the second case of the path cost minimization based watershed 
that consist on building a spanning forest from a graph as we introduced in section 2.2. Actually, 
the beginning was with Meyer [27] who proposes to compute watershed transform from a 
weighted neighborhood graph whose nodes are the catchment basins corresponding to the 
minima of the image. Arcs of the graph, that separate neighbor catchment basins, are weighted 
by the altitude of the pass between these basins. Extracted minimum spanning forests define 
partitions that are considered solution of watersheds. It’s important to mention that returned 
solutions are multiple. Authors established also the links between the minimum spanning forest 
and flooding from marker algorithms. Trough Meyer’s bases, Cousty and al. [28] introduce the 
watershed-cuts and establish the optimality of this approach by showing the equivalence between 
the watershed-cuts and the separations induced by minimum spanning forest relative to the 
minima.   
 
For mathematical foundations, we will follow the notations in [28] to present some basic 
definitions to handle with minimum spanning forest cuts and watershed-cuts.  
 
Let G be graph with ( ( ), ( ))G V G E G= . ( )V G  is a finite set of vertex of G . Unordered pairs 

of ( )V G , called also edge ofG , constitute the element of ( )E G set. Let denote the set of all maps 

from E toℤ by F and we consider that any maps of  F  weights the edges of G . Let F F⊆ and 

( )u E G∈ , F( )u will refers to the altitude of u and M(F) will refers the graph whose vertex set and 

edge set are, respectively, the union of the vertex sets and edge sets of all minima of F . 
 
Let X  and Y be two sub-graphs of G . We say that Y is a forest relative to X  if Y is an 
extension of X  and for any extension Z X⊂ of X , we have Y=Z  whenever V(Z)=V(Y) . 
 
(i) Y is said a spanning forest relative to X  (for G ) if Y is a forest relative to X  and if  
V(Y)=V . In this case, there exists a unique cut S for Y  . It is composed by all edges of G  

whose extremities are in two distinct components of Y . Since Y  is an extension of X, it can be 
seen that this unique cut S  (induced by Y ) is also a cut for X . 
 
(ii) Y is said a minimum spanning forest relative to X  (for F, in G) if Y  is a spanning forest 
relative to X  and if the weight of Y  is less than or equal to the weight of any other spanning 
forest relative to X . In this case, S  is considered as a minimum spanning forest cut for X . 
 
Trough these equivalences, Cousty demonstrate that the set S E⊆ is a minimum spanning forest 

cut for M(F)  if and only if S is a watershed cut of F , that can be computed by any minimum 
spanning tree algorithm. And he proposes a linear algorithm to compute it using a new ‘stream’ 
notion that we will not detail in this section. Only the stream algorithm will be introduced.  
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Now, before presenting the watershed-cuts algorithm we just recall the definition of the minimal 

altitude of an edge. Let denote by ( )F x− the map from V to ℤ such that for any x V∈ , ( )F x− is 

the minimal altitude of an edge which contains x . Then a path 0 ,..., lx xπ = , is considered as a 

path of steepest decent for F (in G ) if for any [ ]1,i l∈ , { }1 1( , ) ( )i i iF x x F x
−

− −= .   

 
In the following, we introduce the watershed-cuts computing algorithm and stream function.  
 

Algorithm 14: Watershed-cuts algorithm [Cousty and al.] 
      Data : (V,E,F) : Edge-weighted graphs;  

      Result: Ψ: a flow mapping of F 

1. Foreach ( V)x ∈ do ψ(x) NO_LABEL←  ; 

2. _ 0nb labs ←  

3. Foreach ( V)x ∈ such that (ψ(x)=NO_Label) do 

4.                [ ]L,Lab Stream(V,E,F,ψ,x)← ; 

5.                 If ( 1)lab = − then  

6.                         _nb labs + +  

7.                      Foreach ( L)y ∈ do ψ(y) nb_labs← ; 

8.                 Else 

9.                      Foreach ( L)y ∈ do ψ(y) labs← ; 

 

Algorithm 15: Stream function [Cousty and al.] 
      Data : (V,E,F) : Edge-weighted graphs; Ψ : a label of V; x : point of V;  
      Result : [L, lab] : L is a flow obtained from x (source of L) ; lab is the    associated label to 

an Θflux included in L or (–1).  
1. L ←{x} 
2. L’←{x} // the set of sources not yet explored of L 
3. While there exists (y ∈ L’) do  
4.      L’ ← L’ \ {y}; 
5.      breadth_first ← TRUE ; 
6.      While (breadth_first) and (∃ {y,z} ∈ E / z ∉L and F({y,z})= F(y)) do 
7.          If (Ψ(z) # No_label) then  
8.                                           return [L,Ψ(z)] // exist an Θflow L already labelled 

9.         Else if ( ( )F z− < ( )F y− ) then  

10.                      L  ← L ∪ {z}; // z is the only well of L 
11.                      L’  ← {z}; // switch the in-depth exploration first 
12.                      breadth_first ← FALSE 
13.                  Else 

14.                      L  ← L ∪ {z}; // therefore z is a well of L 
15.                      L’  ← L’ ∪ {z}; // continue exploration in width first 
16. return [L,-1] 

 
3. Classification of watersheds transforms  
 
In this section we will learn from different syntheses present in Roerdink [6] and Audigier [7] 
works.  The following table summarizes some characteristic of introduced watershed transform. 
Selected criteria are justified by our objective to identify the most suitable algorithm for parallel 
implementation.  
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Watershed based on 

 Flooding 

Path-cost 

 minimization Topology  
Local 

condition 
MSF 

TD IFT 

Vincent & 

Soille [15] 

 

Meyer  

[17] 

Lotufo 

[25] 

Couprie 

 [9] 

Lin  

[26] 

Cousty 

[4] 

 

Defined in 
Disc. cont. 

space 

Disc. 

cont. 

space 

Only on 

discret

e space 

Disc. cont. 

space 

Disc. 

cont. 

space 

Only on 

discrete 

space 

Classified as 
Line  

WT 

Line  

WT 

Region 

WT 

Line  

WT 

Region 

WT 

Region 

WT 

Gives unique 

solution  
Yes Yes No No No No 

Preserve 

topology 
No No Yes Yes No Yes 

 

Requires a  

sorting step 

Yes No No No No No 

Use of 

hierarchical 

queue 

Yes Yes Yes Yes Yes No 

Minima 

computing 

Yes Yes No No - No 

Is linearity linear - linear Linear* - Linear 

 
TABLE 1: Comparison between main watersheds transforms (definitions & algorithms) 

 

The starting point is the definition space; we note that IFT-Watershed and MSF-Watershed 
definitions are limited to the discrete space while the other watersheds definitions are spread into 
continue space. IFT-Watershed, MSF-watershed and LC-Watershed form the region based 
watershed transform family since pixels are assigned to basins. Flooding-Watershed, TD-
Watershed and Topological-Watershed form the line based watershed family since some pixels 
are labeled as watershed. Only Topological-Watershed defines lines that consistently separate 
basins while Flooding-Watershed and TD-Watershed merely swing between thick and 
disconnected watershed lines. Through definitions, only Flooding-Watershed and TD-Watershed 
return unique solution while all other definitions return multiple solutions. Note that set of solutions 
returned by the IFT-Watershed can be unified by creating litigious zones when solutions differ [7]. 
All six algorithms, that don’t exactly include their definitions, return unique solution but don’t 
preserve the number of connected components of the original input image. Actually, Vincent-
Soille, Meyer and Lin’s algorithm don’t preserve important topological features. Only Lotufo, 
Couprie and Cousty’s algorithm are correct from this point of view. 

    
Regarding computing process, only Flooding-Watershed needs pixel’s sorting while others 
transforms will pass this costly step. But this does not preclude associated algorithms to use 
hierarchical structures when implementing. Except Cousty’s algorithm that doesn’t need any 
hierarchical queue. Vincent-Soille and Meyer’s algorithms impose also a prior minima 
computation, which is not the case of the others. For complexity, observe that Vincent and Soille 
algorithm runs in linear with respect to the number N of pixels in the image which is processed. In 
most current situations of image analysis, where the number of possible values for the priority 
function is limited and the number of neighbors of a point is small constant, Couprie’s algorithm 
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runs also in linear time with O(n + m) complexity. Lotufo and Cousty’s algorithm run also in linear 
time. Cousty’s algorithm is executed at most O(|E|) times.   
 
4. Conclusion 
 
In this paper, we have presented an intensive study of all existing watershed transform in the 
discrete case: WT based on flooding, WT based on path-cost minimization, watershed based on 
topology preservation, WT based on local condition and WT based on minimum spanning forest. 
 
The first major contribution in this paper is the global nature of the proposed study. In fact, for 
each approach, we start by giving informal definition, then we present processing procedure 
followed by mathematical foundations and the algorithm of reference. Recent publications based 
on some approach are also presented and discussed. The second contribution concerns 
algorithms’ classification according to criteria of recursion, complexity, basins computing and 
topology preservation.  
 
In our future work we will present a parallel MSF-Watershed algorithm suitable for shared 
memory parallel machines based on Jean Cousty stream function already presented.  
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