
Hardware design to accelerate PNG encoder for binary

mask compression on FPGA

Rostom Kachouri, Mohamed Akil

To cite this version:

Rostom Kachouri, Mohamed Akil. Hardware design to accelerate PNG encoder for binary
mask compression on FPGA. SPIE 9400, Real-Time Image and Video Processing, Feb 2015,
San Francisco, California, United States. <10.1117/12.2076483>. <hal-01305864>

HAL Id: hal-01305864

https://hal-upec-upem.archives-ouvertes.fr/hal-01305864

Submitted on 21 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48317381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-01305864

Hardware design to accelerate PNG encoder for
binary mask compression on FPGA

Rostom Kachouri
ESIEE Paris, LIGM, A3SI,
2 Bd Blaise Pascal, BP 99,

93162 Noisy-Le-Grand, France
Email: rostom.kachouri@esiee.fr

Mohamed Akil
ESIEE Paris, LIGM, A3SI,
2 Bd Blaise Pascal, BP 99,

93162 Noisy-Le-Grand, France
Email: mohamed.akil@esiee.fr

Abstract—PNG (Portable Network Graphics) is a lossless com-
pression method for real-world pictures. Since its specification, it
continues to attract the interest of the image processing commu-
nity. Indeed, PNG is an extensible file format for portable and
well-compressed storage of raster images. In addition, it supports
all of Black and White (binary mask), grayscale, indexed-color,
and truecolor images. Within the framework of the Demat+
project which intend to propose a complete solution for storage
and retrieval of scanned documents, we address in this paper a
hardware design to accelerate the PNG encoder for binary mask
compression on FPGA. For this, an optimized architecture is pro-
posed as part of an hybrid software and hardware co-operating
system. For its evaluation, the new designed PNG IP has been
implemented on the ALTERA “Arria II GX EP2AGX125EF35”
FPGA. The experimental results show a good match between the
achieved compression ratio, the computational cost and the used
hardware resources.

Keywords—PNG encoder, Prediction, LZ77, Huffman, binary
masks, Hardware design, FPGA.

I. INTRODUCTION

Within the framework of the Demat+1 project, we aim
to propose a complete solution for storage and retrieval of
scanned documents. In this context, the intended paperless
application to achieve have to transmit the scanned documents
with a low-bandwidth network to a computer cloud. The
overall idea consist to partition the source document into three
layers: a foreground layer, a background layer, and a binary
mask [7], and then to use different compression strategies for
the same document. In literature, the often used taxonomy
distinguishes two categories of image compression format: the
lossless compression formats and the lossy ones [2]. The loss-
less compression formats perform compression on the image
matrix. It is worth noting that the transformation between a raw
format and the lossless compression one is bijective [5], [3].
Which means that when decompressing a lossless compressed
image, the original image is restored, and it is a 100% identical
copy of the original. On the other side, the lossy compression
formats achieve better compression rate at the cost of image
degradation [4], [6]. A quantification stage is applied in this
case on the frequency transform of the image2. We note that the
foreground and background layers which contain, respectively,

1Demat+ is a project established between the SagemCom company and
the ESIEE Paris engineering school.

2JPEG [4] uses the discrete cosine transform, and JPEG2000 [6] uses the
wavelet transform.

the color information of the text and the original background
of the image can be compressed via a lossy compression
format like JPEG [4] for example. By against, the binary
mask, where the text, and possibly pieces of thin strokes
when they exist, are located is necessarily subjected to a non-
destructive compression. One of the most interesting lossless
compression formats is PNG (Portable Network Graphics).
In fact, it provides a portable, legally unencumbered, well-
compressed, well-specified standard for lossless bitmapped
image files [5]. To respond to real-time constraints, aimed to be
respected by the SagemCom company, we expect in this paper
to accelerate the employed PNG encoder for binary mask com-
pression through a hardware implementation. Indeed, while
compare with software encoding, parallel processing is the
most significant feature of high efficiency. Front of a custom
development, based on ASIC technology, the capacity and
performance of current FPGAs are such that they present a
much more realistic alternative than they have been in the
past. Effectively, FPGAs allow a rapid soft reconfiguration
of on chip hardware. Moreover, with a sufficient number of
parallel operations, FPGAs can offer better performance-price
and power dissipation than state of the art microprocessors
or DSPs. Many implementations of lossy and lossless image
compression encoders and decoders were performed on re-
configurable FPGA circuits [9], [10], [1]. In this paper, we
discuss a hardware accelerated implementation of the PNG
encoder for binary mask compression on FPGA. An optimized
architecture is proposed as part of an hybrid software and
hardware co-operating system. For its evaluation, the new
designed PNG IP has been implemented on the ALTERA
“Arria II GX EP2AGX125EF35” FPGA. The experimental
results show a good match between the achieved compression
ratio, the computational cost and the used hardware resources.
The paper is organized as follows: first we present briefly the
PNG encoder in section II. The performed PNG encoder op-
timizations, in order to well-ensure binary mask compression,
are provided in section III. Section IV describe the proposed
hardware design to accelerate the optimized PNG encoder on
FPGA. Then, the obtained experimental results are discussed
in section V. Finally, section VI concludes the discussion.

II. PNG ENCODER

The PNG format is very simple, where each PNG file is
composed out of a signature3 and chunks4. A valid PNG file
consists at least of an IHDR chunk, one or more IDAT chunks,
and an IEND chunk [5]. A minimal PNG file might look as
shown in figure 1.

Fig. 1. Minimal PNG File

The PNG encoder [5] is principally composed of two main
stages, namely a prediction step followed by a compression
step. Indeed, PNG uses prediction in order to increase re-
dundancy and therefor enhancing its compression rate. The
prediction errors are then compressed using the Deflate algo-
rithm [12]. Deflate is a lossless compression method which
uses a combination of the LZ77 algorithm [14] and Huffman
coding [11]. Deflate is independent of CPU type, operating
system, file system and character set, and hence can be used
for interchange [8]. The illustrated flowchart in figure 2 shows
the involved steps in the PNG encoder.

Prediction

Binary mask

Compression step: Deflate

PNG file

Huffman coding LZ77

Fig. 2. Overview of the PNG encoder

In the following, we detail the different performed opti-
mizations of the PNG encoder in order to well-ensure binary
mask compression. To meet the standard defined by the format,
the PNG file formatting can not be modified and remains
unchanged regardless of the type of compressed data.

3The PNG file signature consists of eight bytes: <0x89 0x50 0x4e 0x47
0x0d 0x0a 0x1a 0x0a>.

4A chunk consist of four fields: <Length, Chunk Type, Chunk Data, and
CRC>.

III. PROPOSED OPTIMIZATIONS OF PNG ENCODER FOR
BINARY MASK COMPRESSION

A. Prediction stage

One of the key-features of PNG is the ability to chose out of
five predictors (filters) for the predictive coding, namely: None
(0), Sub (1), Up (2), Average (3) and Paeth (4). These filters
are completely lossless and are applied to the raw image data
before it is compressed and written to the output file. Every
scan line of the image is preceded by a byte indicating the
number of the used predictor among the five filter types.

PNG format do not impose any contrainte on the type
of filter to use. In addition, filters do not have the same
effectiveness on the used data. Therefore, the PNG prediction
stage consists to determine which filter allows a better data
compression. A suggestion in the PNG specification is to apply
every filter to each scan line, compress it and check the size.
This is not very fast but it is easy to implement and this
approach results in the best possible compression ratio. On
the other hand, the None filter is recommended for images of
bit depth less than 8 [5]. For low-bit-depth grayscale images,
particularly the binary masks in our case (only 1 bit depth), it
may be a net win to transmit all scan lines unmodified; it is
just necessary to insert the filter type byte “0” before the data.

In this context, we conducted a study to determine the best
filter to use in this work. For this, we examined the impact of
each filter on the compression rate of a panel of binary masks.
Indeed, one filter may be more effective than all the others.
In such case, we implement only the corresponding filter in
the proposed hardware design in place of the whole prediction
stage. Figure 3 illustrates the obtained sizes in kilobytes of
the PNG coded binary masks. For all images, a single filter
is used each time. For comparison reason, the standard PNG
prediction is also used, and noted by Pred.

Fig. 3. Efficiency of various PNG prediction filters through a panel of binary
masks

According to this study, we can deduce the efficiency
of each filter depending on the obtained compression rates.
Indeed, we can observe in figure 3 that both Sub and Average
filters are less suitable to the treated masks. The Paeth filter
and the standard PNG prediction are also excluded in our
case. They have a high complexity degree and a great need
for memory resources while they conducts to similar PNG
compression results as the remaining filters. Finally, the choice
between Up and None filters is to not apply any filtering
because, based on the conducted study, these two filters have

almost the same compression results. This choice guarantees a
competitive compression results while significantly simplifying
our implementation. Hence, we maintain only the None filter
in our hardware design, which amounts to not filter masks
before Deflation.

B. Compression stage

After prediction, the coded pixel data is stored in a bit-
stream which is subsequently deflated. As mentioned above,
the Deflate algorithm [12] is a combination of LZ77 [14],
[13] and Huffman coding [11]. It uses a variably sized sliding
window and sorted hash tables to identify data patterns and
compresses them using Huffman coding. We discuss in this
section the optimizations made of the Deflate algorithm for
binary mask compression.

1) LZ77 (Hash function): LZ77 [14] finds duplicated ar-
bitrary sequence of bytes in the input data. The second
occurrence of a string5 is replaced by a pointer to the previous
one, in the form of a pair <length, backward distance>,
corresponding respectively to the length of the redundancy and
the distance separating the two redundant strings. Distances are
limited to 32 kilobytes, and lengths are limited to 258 bytes.
When a string does not occur anywhere in the previous 32
kilobytes, it is emitted as a sequence of literal bytes. For this,
linked lists are created to quickly find the redundant strings in
dictionary and research is done by triplets of bytes to ensure
a minimum compression rate. Depending on the available
memory resources and the desired performance, the PNG
compression can be carried out using various hash functions.
For each string of three new bytes, a new hash value is
computed based on the previous one and stored in hash table.
As exposed by equation 1, the general formula of the possible
hash functions remains the same, only the size of the final
result and the shift made during the computation may change.

H = ((h << shift len) XOR C) AND (2hash len − 1) (1)

With H : hash value of the new triplet.
h : hash value of the previous triplet.
C : last byte of the new triplet.
shift len : shift bit number.
hash len : hash bit number.

In the PNG specification [5], shift len and hash len are
respectively equals to 6 and 15. Thus, computed hash values
are coded on 15 bits (see table I), and the used hash table has
a 32 kilobytes size. The standard used hash function, named
in the following Hash 15, is given by equation 2:

H = ((h ∗ 4016) XOR C) AND 7FFF16 (2)

With a view to optimize the needed memory resources
and speed up the hash value computations, more adapted
hash functions can be considered to treat binary masks. The
greater the hash len value is low, less is the required memory
resources. However, fewer bits has the drawback of increasing

5String here must be taken as an arbitrary sequence of bytes, and is not
restricted to printable characters.

the execution time. A statistical study to compute the triplets
of bytes occurrence commonly encountered in binary masks
was conducted. Based on the results of this study, two new
hash functions Hash 10 and Hash 8 with respectively 10 and
8 bits hash len are proposed. Hash 10 and Hash 8 formulas
are shown respectively by equations 3 and 4:

H = ((h ∗ 1016) XOR C) AND 3FF16 (3)

H = ((h ∗ 816) XOR C) AND FF16 (4)

Given that H, h and C in equation 2, 3 and 4 follow the same
notation used in equation 1.

A summary of shift len and hash len values of the studied
hash functions is provided in table I.

TABLE I. SHIFT LEN AND HASH LEN VALUES OF THE STUDIED HASH
FUNCTIONS

hash function shift len hash len

Hash 8 3 ==> (23 = 816) 8 ==> (28 - 1 = FF16)
Hash 10 4 ==> (24 = 1016) 10 ==> (210 - 1 = 3FF16)
Hash 15 6 ==> (26 = 4016) 15 ==> (215 - 1 = 7FFF16)

We note that, the obtained compression rates corresponding
to Hash 8 and Hash 10 (equation 3 and 4) remain accept-
able (see table III). However, a comparative study shows that
Hash 10 provides a better compromise between runtime and
compression rate. In addition, it still reducing significantly the
needed memory resources (dictionary memory size becomes 1
kilobyte < 210 > instead of 32 kilobytes < 215 >). Moreover,
when coupled with optimal parameters6, the selected hash
function Hash 10 allows to further speed up the final hardware
design.

2) Huffman coding: Huffman coding [11] is an entropy
encoding algorithm used for lossless data compression. The
principle of this coding is to use fewer bits for strings which
appear more often in data stream and more bits for the less
frequently ones. To avoid conflicts of code, Huffman coding
respect the prefix property. That means there is no bit-sequence
encoding which can be the prefix of any other bit-sequence.
Many variations of Huffman coding exist, some of which use
a Huffman-like algorithm, and others of which find optimal
prefix codes. In the PNG specification [5], the compressed data
within the LZ77 data stream is stored as a series of blocks,
each of which can represent LZ77-compressed data encoded
with custom or fixed Huffman codes.

Custom Huffman code is computed dynamically based on
the appearance frequency of the strings in the data stream.
This kind of coding contributes, generally, to the improvement
of the achieved compression rates. However, this is at the
cost of system slowdown and implementation complexity. By
against, as shown in table II, fixed Huffman code are obtained
according to a static lookup table specific to the standard.

A comparative study of performance time, computational
complexity and compression rate was conducted using respec-
tively custom and fixed Huffman coding for PNG compression

6Parameters refer to the maximum number of searches to do “MaxSearch”
and the length of the minimum redundancy to extract “MinLength”.

TABLE II. STATIC HUFFMAN LOOKUP TABLE

Input byte values Number of bits Fixed Huffman Codes
0 - 143 8 [00110000 .. 10111111]

144 - 255 9 [110010000 .. 111111111]
256 - 279 7 [0000000 .. 0010111]
280 - 287 8 [11000000 .. 11000111]

of binary masks. To strengthen the choice of the selected
hash function Hash 10, all three evaluated hash functions
are employed in this study. Table III presents the obtained
compression rates of this study. We note that the difference
between the average compression rates, obtained with custom
and fixed Huffman coding, is very insignificant. Indeed, against
an average compression rate around “0.89” obtained with
custom Huffman coding, fixed one leads to achieve “0.8689”.
Therefore, in order to speed up computing and reduce needed
memory resources, we chose to implement the fixed Huffman
coding.

TABLE III. PNG COMPRESSION RATES ACCORDING TO CUSTOM AND
FIXED HUFFMAN CODING AND USING THREE DIFFERENT HASH FUNCTIONS

Images
Compression rates

Huffman Custom Fixed
Hash Hash 15 Hash 15 Hash 10 Hash 8

20minutes 300 0,85 0,7992 0,7993 0,7993
facture 002-recto 0,88 0,8652 0,8650 0,8650
facture 002-verso 0,97 0,9552 0,9550 0,9552
facture 012-recto 0,92 0,8999 0,8999 0,8999
facture 012-verso 0,88 0,8467 0,8467 0,8467
facture 062-recto 0,89 0,8710 0,8707 0,8708
facture 062-verso 0,98 0,9744 0,9744 0,9744
journal 07-recto 0,82 0,7856 0,7857 0,7857
journal 07-verso 0,81 0,7777 0,7779 0,7779
magazine 02-verso 0,81 0,7893 0,7893 0,7893
mobilesmag 300 0,91 0,8789 0,8789 0,8789
plaquette 0,99 0,9839 0,9838 0,9838

Average 0,89 0,8689 0,8689 0,8689

Furthermore, for the used panel of binary masks and
regardless of the used hash functions (Hash 15, Hash 10, and
Hash 8), the obtained compression rate with the fixed Huffman
coding are almost invariable. So, it is obvious that Hash 10,
and Hash 8 have no effect on the compression rate, however
they reduce the amount of used memory compared to the
Hash 15 function. As mentioned in section III-B1, Hash 10
provides a better compromise between compression rate, run-
time and used memory ressources, and therefore maintained
in our design.

IV. ACCELERATED PNG ENCODER HARDWARE DESIGN

Based on the described optimizations in the previous sec-
tion, the proposed hardware design in this work is a part of
an hybrid software and hardware co-operating system.

As shown in figure 47, the PNG encoder design gathers a
hardware implementation on FPGA and an external processor
running a C program. These two elements have distinct roles:

• The Hardware implementation on FPGA performs
data compression: optimized Deflate algorithm (no
prediction, Hash 10, and fixed Huffman coding),

7The used color code in these figures is: Purple ==> Control Elements,
Orange ==> Logical Elements, and Green ==> Memory Blocks.

Fig. 4. Overview of the proposed PNG encoder design

• The external processor ensures the formatting of com-
pressed data: issuance of PNG file header, the header
of the IDAT chunks and the ancillary chunks. It
launches also the PNG compression of masks.

In the following, we present the proposed hardware design
to accelerate the PNG encoder on FPGA. Particularly the
Input/Output, the Data, and the Hash managers, and the Data
coder modules are described. The developed C code to ensure
the software part is not described in this paper.

A. Input/Output manager

This module receives control signals from the processor
(software part of the proposed design). Having the necessary
informations8 for the proper operation of the IP, it manages the
inputs and outputs of the PNG encoder hardware part. Indeed,
the Input/Output manager ensures an entry point of our design
by collecting and filtering the incoming data, and an exit point
by putting in shape the compressed data before transmission
to the external system.

For each new incoming byte of uncompressed image, it up-
dates four byte values (adler32) to be transmitted, sequentially,
byte by byte to the LZ77 module. The Input/Output manager
performs also the filtering of data, discussed at section III-A.
We recall that in this work the used filter is the None one.
Thus, byte “0” is just added in the beginning of each line.
Finally, paging module is used to group compressed data by
32-bit words to send the output. Figure 57 shows an overview
of the Input/Output manager module.

B. Data manager

The data manger module plays a central role within the
proposed design. It allows to manage memories in which
the redundancy research is made. For this, two memories are
instantiated in the data manager memories block:

• window: contains the data dictionary on which the
redundancy research is made,

• lookahead: contains the next bytes in the image that
we look for matches in the window memory.

8Based on image dimensions received from the processor, lines and columns
counters are used by the Input/Output manager module to determine if the
entire image was read.

Fig. 5. Input/Output manager Overview

We use in our design a dictionary memory of 1024 bytes
(due to the use of the Hash 10 function, see section III-B1)
and a lookahead memory of 256 bytes. However, various
configurations can be seen in the context of improving system
performance. Figure 67 shows an overview of the data manager
module.

Fig. 6. Data manager Overview

The data manager memories block manages window and
lookahead memories. Addresses of reading and writing are
computed automatically based on the performed actions (up-
date, redundancy research).

The len calc block compares all received data from the
data manager memories to determine the redundancy lengths.
For the same triplet of bytes, only the maximum length of the
obtained redundancies and the corresponding position thereto
are stored.

The controller of the data manager module cares about its
proper operation but also acts as a master for the hash manager
module (see following subsection IV-C). The main actions of
the data manager ctrl block are:

• Obtain research positions from hash manager,

• Start and stop redundancy researches,

• Update window and lookahead Memories,

• Order the update of the hash manager module.

C. Hash manager

The hash manager module manages, essentially, the two
used hash tables trieur and pointeur:

• Trieur: this table is addressed according to the hash
values of the triplets to index. It stores the position
of the last occurrences of each hash value. These
positions point elements of the pointeur hash table,

• Pointeur: each cell of this table contains the position
of the next occurrence of the hash value originally
pointed to by the trieur hash table. Stored values in
this table are therefore pointers to other cells in the
same table.

Fig. 7. Hash manager Overview

Through the received order from data manager, hash man-
ager module can update hash tables or perform researches
thereto. Figure 77 shows an overview of the data manager
module.

The hach calc block receives the triplet of bytes to encode
byte by byte throw the data in input signal. It ensures the
computation of the corresponding hash value according to the
employed Hash 10 function.

D. Data coder

It may be difficult to achieve a hardware coding according
to the provided tables in the deflate method [12]. using lookup
tables.

To obtain the codes corresponding to lengths and distances
so this module uses a sequential method to determine the range
of values in which are the distance and length. The algorithms
used are described below.

Figure 87 shows an overview of the data manager module.

Fig. 8. Data coder Overview

V. RESULTS

For evaluation, the proposed PNG IP has been im-
plemented on the FPGA board ALTERA: “Arria II GX
EP2AGX125EF35”. Only simple formatting tasks were de-
ported on the NIOS processor. In order to optimize the data
path of the LZ77 module and obtain an optimal compres-
sion speed, two parameters were identified and assessed:
MaxSearch and MinLength. They respectively indicate maxi-
mum number of searches to do and the length of the minimum
redundancy to extract.

Fig. 9. Average Clock Cycles of the proposed PNG encoder architecture
according to combinations of MaxSearch and MinLength parameters

Un panel de factures recto-verso a t utilis pour les tests.
Les masques binaires de ces factures sont extraits, en 150 ppp,
l’aide de la mthode de segmentation en couches fond/forme
DjV u [7]. Les rsultats de compression PNG de ces masques,
obtenus avec l’architecture propose, sont illustrs par les figures
9 et 10. Ces deux figures affichent respectivement les nombres
de cycles moyens et les taux de compression moyens de
l’architecture PNG propose en fonction d’un ensemble de
combinaisons des paramtres MaxSearch et MinLength.
Les exprimentations sont ralises en utilisant six valeurs de
Max−Search : 50, 100, 150, 200, 250 et 300 et trois valeurs
de MinLength : 50, 150 et 250.

Les courbes illustres par les figures 9 et 10 reprsentent des
factures verso (triangles verts), recto (carrs rouges) et recto-
verso, indiqu par All dans la lgende des courbes, (losanges
bleus). Souvent, les faces recto des factures contiennent plus de
donnes que celles du verso. Ceci explique, comme le montre
les figures 9 et 10, l’augmentation du nombre de cycles de
compression PNG dans le cas des faces recto et leur faible
taux de compression par rapport aux faces verso.

Les rsultats obtenus montrent que MinLength = 50 pour
toutes valeurs de MaxSearch assure de meilleurs temps d’ex-
cution c’est--dire moins de cycles de calcul (voir figure 9).
Toutefois, des valeurs plus faibles de MaxSearch acclre le
processus de compression. En effet, la rduction de la longueur
minimale permet de trouver des redondances plus rapidement.
De plus, limiter le nombre de recherches maximal permet
d’interrompre les recherches assez longues sans avoir pour
autant un grand impact sur les taux de compression dans

Fig. 10. Average compression rate of the proposed PNG encoder architec-
ture according to combinations of MaxSearch and MinLength parameters

le cas des images binaires testes (voir figure 10). Ainsi, la
combinaison optimale choisie lors de nos exprimentations est
:
<MaxSearch = 50, MinLength = 50>.

VI. CONCLUSION

This paper presented an optimized design of PNG encoder,
with the aim of accelerating the binary mask compression on
FPGA. Firstly, the PNG encoder was studied and obtained
compression rates on binary masks were assessed. According
to this study, a set of optimization was introduced namely the
non use of the prediction stage, the proposition of a new hash
function and the choice of the more suitable Huffman coding.
As a part of an hybrid co-operating system, we proposed a
new hardware design of the optimized PNG encoder. The
experimental results was conducted on the “Arria II GX
EP2AGX125EF35” ALTERA FPGA board.

The experimental results show

A good match between achieved compression rate and
consumption in terms of computational costs, memory area
and number of used logic elements.

ACKNOWLEDGMENT

The authors would like to thank Mr. Jérôme Berger, image
and signal processing engineer at SagemCom company and
Mr. Geoffroy Marpeau engineer at ESIEE Paris, they are
very kind and patient.

REFERENCES

[1] Huang, Shizhen, and Tianyi Zheng. Hardware design for accelerating
PNG decode. Electron Devices and Solid-State Circuits, 2008. EDSSC
2008. IEEE International Conference on. IEEE, 2008.

[2] Michel Chilowicz. Une synthse sur les formats usuels d’images num-
riques fixes. Rapport de recherche 2006.

[3] Graphics Interchange Format (GIF) specification. URL
http://www.fileformat.info/format/gif/spec/index.htm.

[4] International Telecommunication Union (ITU). URL
http://www.w3.org/Graphics/JPEG/itu-t81.pdf.

[5] G. Randers-Pehrson, et. al. PNG (Portable Network Graphics) Specifi-
cation Version 1.2. URL http://www.libpng.org/pub/png/ PNG Develop-
ment Group, July 1999.

[6] Cs Msu Graphics&Media Lab Video Group. JPEG 2000 Image Codecs
Comparison. Moscow, September 2005.

[7] Lon Bottou, Patrick Haffner, Paul G. Howard, Patrice Simard, Yoshua
Bengio, and Yann Lecun. s.l. High quality document image compression
with djvu. Journal of Electronic Imaging, 1998, Vol. 7, pp. 410-425.

[8] RFC-1951, Deflate Specification.
[9] Sanjeevannanavar, S., Nagamani, A.N. Efficient design and FPGA im-

plementation of JPEG encoder using verilog HDL. Nanoscience, Engi-
neering and Technology (ICONSET), 2011 International Conference on,
vol., no., pp.584-588, 28-30 Nov. 2011

[10] Daryanavard, H., Abbasi, O., Talebi, R. FPGA implementation of
JPEG-LS compression algorithm for real time applications. Electrical
Engineering (ICEE), 2011 19th Iranian Conference on , vol., no., pp.1-
4, 17-19 May 2011

[11] Huffman, D. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the IRE 40 (9): 10981101, 1952.
doi:10.1109/JRPROC.1952.273898

[12] Peter, Deutsch L. Deflate Compressed Data Format Specification ver-
sion 1.3. gzip.org, 1996. URL: http://www.gzip.org/zlib/rfc-deflate.html.

[13] P. Deutch, J.-L. Gailly, and M. Adler. GZip URL http://www.gzip.org.
[14] Ziv J., Lempel A., A Universal Algorithm for Sequential Data Com-

pression, IEEE Transactions on Information Theory, 1977, Vol. 23, No.
3, pp. 337-343.

