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Abstract— Transparent organisms such as fish embryos are
being increasingly used for environmental toxicology studies.
These studies require estimating a number of physiological
parameters. These estimations may be diverse in nature and
can be a challenge to automate. Among these, an example is
the development of reliable and repeatable automated assays
for the determination of heart rates. To achieve this, most
existing method rely on cyclical luminance variations, since as
the heart fills and empties, it become respectively brighter and
darker. However, sometimes direct measurement of the heart
rate may be difficult, depending on the age of the embryo, its
actual transparency, and its aspect under the microscope. It may
be easier to seek an indirect measurement. In this article, we
estimate the heart function parameters, such as heart frequency,
either from measuring the heart motion or from blood flow in
arteries. This measurement is more complex from the image
analysis point of view, but it is more precise, more physically
meaningful and easier to use in practice and to automate than
measuring illumination changes. It may also be more informative.
We illustrate on medaka embryos.

Keywords— Stabilization, registration, frequency analysis, op-
tical microscopy, motion analysis.

I. INTRODUCTION

Fish embryo models are used increasingly for human dis-
ease modeling, chemical toxicology screening, drug discovery
and environmental toxicology studies [1]. In many of these
studies, assessing the fish embryo cardiovascular function is
key to predict the potential adverse effects of chemicals at
sub-lethal concentrations [2], [3]. Testing large numbers of
molecules with this model at various exposure concentrations
requires a fast and reliable tool able to process large amounts
of data. To this end, we propose a unique, robust and automatic
tool for estimating the frequency of various physiological
processes from videos taken under a microscope. We illustrate
this tool on medaka embryo. The Medaka (Oryzias latipes) is
a commonly used fish embryo model in toxicology, ecotoxi-
cology and developmental biology [3]. The embryonic stages
of development are transparent and internal organs, such as
heart and vessels, are readily visible. Manipulations such as
nano and micro-injections are also easier to perform on such
organisms.

In this article we study elements that exhibit cyclic behavior,
such as a beating heart, or the speed of blood cells in vessels.
We propose a single tool capable of analyzing these two
different types of cycles. Various methods already exist for
estimating frequencies based on motion: for instance tracking
methods [4], [5], integrated box methods [6], measuring the
amount of changing pixels between frames [7], and optical

flow [8]. Tracking methods follow one or more elements of a
sequence. Hence they can estimate a proper motion together
with a position, and so can be used to estimate frequencies
associated with variations in motion. Integrated boxes, such as
linescans, measure the change of luminosity in a fixed image
subset. Change of luminosity in the box over time yields a
pattern associated with the motion. Variations in grey level
in the box through the sequence can be used to estimate the
frequency of spatial cycles. Similarly, measuring the number
of changing pixels between frames is correlated to the speed of
the change, under ideal conditions [7]. Optical flow is defined
as the apparent motion of objects between two consecutive
images.

In our case, tracking methods are in practice unusable,
particularly since moving elements of interest can be difficult
to identify and segment. Indeed, the appearance of moving
elements may change significantly during motion, since it
occurs in 3D and we only measure 2D information. We
cannot use integrated box methods either because motion
may not be spatially cyclic, is 3D and may not involve
large illumination variations. Similarly, measuring changing
pixels between frames is simple, but does not correspond to
a physical measurement, is sensitive to noise and spurious
motion. In contrast, optical flow can be rendered insensitive
to global motion via image stabilization, is generally robust to
noise and does indeed correspond to a physical measurement.

The remainder of the article is as follows: in Section 2 we
present our methodology, in Section 3 we show our results.
We validate in Section 4 and then conclude in Section 5.

II. METHODOLOGY

A. Experimental protocol

Medaka embryos were anaesthetized with tricaine for im-
mobilization, placed under a Leica DMi8 inverted brightfield
microscope and 600×480 2D video was acquired with a ×20
objective and a ×10 focusing lens, at a frame rate of 100
frames per second via a high-speed camera. The calibration
was 2µm per pixel, sufficient to identify the motion of blood
cells in the bloodstream. Embryos were captured at various
stages of their development between 1-7 days after hatching,
and exposed to various substances, some of which induced
either bradycardia or tachycardia. The acquired video stream
exhibit various artifacts, including noise, global motion due
to vibrations, remaining embryo motion and spurious stage
motion, as well as sensor pattern.



B. Frame preprocessing

In a production environment, microscopes may be difficult
to stabilize and so vibrations may be present in our sequences
and the embryo may still move slightly. Our acquisitions show
not only the subject of study but also a fixed-grid texture-like
pattern often present in high-speed sensors. After sequence
stabilization, this grid would no longer be fixed and so would
impair further processing. We therefore need to remove this
texture beforehand. To obtain an image of this texture, we
computed the average image of the unstabilized sequences, and
we subtracted it from the same image on which we applied a
Gaussian filter with σ = 1. This high-pass filter conserves only
the high-frequency elements. This texture is then subtracted
from each image of the whole sequence. This removes the
grid without blurring the sequence. The result may contain
other high-frequency, non-grid elements of the sequences, but
these are non-moving and so do not affect the end result. This
is illustrated in Fig 1.

∀I ∈ S : Iclear = I −
(
S̄ − Gσ=1(S̄)

)
(1)

with Gσ=1 a gaussian filter with standard deviation σ = 1, S̄
is the average of the sequence S . S2 is the sequence of the
Iclear.

(a) (b)

(c) (d)

Fig. 1. Removing sensor pattern from the acquisition. (a) The average
of the sequence yields the non-moving parts of the sequence. (b) Blurred
average removes thin and textured elements. Computing (a)-(b)=(c) yields
the sensor pattern. (d) Finally, we subtract this pattern from all the images of
the sequence.

Next, we used a robust rigid registration method to stabilize
our structures of interest. We propose an adaptive registration,
taking as parameter the list of frames, the range of the
registration and a binary mask. The range of the registration
specifies how long a reference frame is use for. The mask
parameter selects a region of interest for registration. To find
the transformation, we used a keypoint-based method, that
matches keypoints by pairs. Key points were extracted in
images using the SIFT method [9]. Point descriptors were
matched via brute force and sorted according to their distance

coefficient. We kept at most the 10 best pairs of points belong-
ing to the mask. This yields the transform parameters after an
iterative RANSAC-like method [10] to weed out the outliers.
Due to lack of space, we do not fully develop this method here,
however matching pairs rather than individual points allow us
to better constrain the result [11]. We also perform model
selection, allowing three types of transformations between
each pair of frame: identity, pure translation or translation
plus rotation. We neglect non-rigid deformations. We choose
the best model taking into account both the error and the
complexity of the model.

P1 = P2 ×R+ T (2)

Where P1 and P2 are the sets of points of the two frames we

seek to match, R =

(
cos θ sin θ
− sin θ cos θ

)
is the rotation matrix.

T = (dx, dy) is the translation;

∀(x, y) ∈ Iclear : Ireg(x, y) = Iclear(x
′, y′) (3)

with the estimated R and T , [x′ y′]> = R[x y]> + T . S3 is
the resulting stabilized sequence of Ireg

Then we computed the average image of the sequence
(Fig. 2 (b)), yielding an image of the non-moving parts of
the sequence. We subtracted this result from each frame. This
operation removes the static parts of the sequence and yields
only a sequence of moving elements.

∀Ireg ∈ S3 : Imov = Ireg − S̄3 (4)

with [x′ y′]> = R[x y]> + T . S4 is the sequence of Imov

(a) (b)

(c) (d)

Fig. 2. Detecting the moving areas of the sequence. (a) Initial frame. (b)
Averaging of the sequence yielding the non-moving parts, including all the
parts that are not blood cells. (c) Areas with motion from the difference
between frames and (b). (d) Equivalent result on a beating heart.

Illumination variations may occur during the sequences.
To correct for these, we compute the average value of the
sequence, and multiply each pixel by this value divided by



the average of the frame. For each pixel :

∀(x, y) ∈ Imov : Icorr[x, y] = Imov[x, y]
µS4
µImov

(5)

where µS4 is the average value of the sequence and µImov

is the average value of the frame We obtain a sequence S5

where the average value of all frames is constant throughout
the sequence.

C. Segmentation of motion area

At the end of our pipeline, the areas where motion is present
are our regions of interest, but each region may not exhibit
the same motion everywhere. We segment them according
to connectivity criteria, under the assumption that connected
parts will exhibit consistent motion (e.g. in a single vessel
all blood cells move in the same direction). To achieve this,
we integrated the absolute value of the first few frames to
obtain an image of the motion areas. Then we computed a
labelled mask using a morphological closing and connectivity
criteria [12].

sumdiff =

10∑
i=0

Iicorr − Ii+1
corr (6)

M = γB5
(ϕB5

((sumdiff )≥θO )) (7)

Where θO is the Otsu threshold [13]; γB5
and ϕB5

are
respectively the morphological opening and closing [14] by
structuring element B5, a discrete Euclidean ball of radius 5.
M is the mask of the vessels. We created ML in which all
connected component are distinguished with the attribution
of a label. We should expect a maximum number of 2
labels (corresponding to the artery and the vein) for vessels
sequences, whereas in heart we should expect a unique label.
Figure 3 shows the steps of this segmentation.

III. RESULTS

A. Optical flow

Optical flow is the apparent motion of objects between two
consecutive images. We make three assumptions: object pixels
intensities do not change between consecutive images; the
acquisition rate is sufficiently high to ensure motion is smooth
enough for differential calculus to be used, and neighbouring
pixels show similar motion.

Because we are working on complex sequences of living
models, various frequencies may be present all over the image.
A dense optical flow method is preferable when coupled with
a labelling of the zones with consistent motion and frequency.

B. Algorithm

We used the Färneback’s algorithm for computing the
optical flow [15]. It works by dividing the frame with a grid,
and calculating global motion in relation to its consecutive
frame for each zone. The global motion is assigned to a point
representing the center of the zone. For each point we have a
displacement vector (see Fig. 4(a,b)). This method is suitable

(a) (b)

(c) (d)

(e)

Fig. 3. Sequence of operations for segmentation. (a) Difference between two
consecutive frames. (b) Integrating motion yields segmentation (c) and vessel
labeling (d). Equivalent labeling in a heart (e): a single area is segmented.

because it is not possible to track individual blood cells in our
videos.

V (i) =
⋃

α∈ML

Vα(i) (8)

∀α ∈ML, Vα = {vi ∈ V/ML(xvi , yvi) = α} (9)
Vα(i) = median(Vα(i)) (10)

V (i) is the list of the displacement vectors between two frames
Icorr(i), Icorr(i + 1). Vα(i) is the list of the displacement
vectors belonging to the component α of ML. For each region
α, we have a median displacement value Vα(i) which is the
global value of displacement in the α region. We validate the
choice of the median with speed vector clustering (see Fig.
4(c)).

We identify average motion vectors with each segmented
and labelled region. The plot of the magnitude of the speed
vs. time in each labelled region allows us to identify useful
physiological measurements, such as frequency, minimum and
maximum speed, motion regularity and so on. Frequency
analysis is performed using the Fast Fourier Transform. These
are illustrated in Fig. 5.

C. Speed variations analysis

We can observe two different behaviours in blood vessels:
speed profile of veins and arteries are different. We observed
wide variations of speed in the arteries while in the veins
the speed is almost constant (see Fig. 4(d)). This is to be
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Fig. 4. Speed analysis on a sequence. Optical flow estimation in a heart (a)
and vessel (b). Left vessel is the artery, right is the vein. (c) Speed vector
clustering and median values, notice speed consistency in each labeled region.
(d) Median speeds during a whole sequence, showing direction and speed
variation.

expected since arteries are closer to the ventricular expulsion,
whereas veins convey blood that has gone through the whole
body and so speed variations are damped. For this reason, we
focus only on measurements in arteries to extract physiological
parameters such as heart rate.

IV. VALIDATION

Our optical flow-based method can be used to measure
speed variations in arteries and around the heart, and so should
be correlated with heartbeats. To validate our approach, we
first consider frequency estimations in heart sequences. Then
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Fig. 5. Speed frequency analysis on a sequence. Speed variations vs. time
over a complete heart sequence (a) and vessel sequence (c). Corresponding
Fast Fourier Transform (b) and (d) (cropped to 100 Hz).



1.4 1.5 1.6 1.7 1.8 1.9
frequency (Hz)

1.4

1.5

1.6

1.7

1.8

fr
e
q
u
e
n
cy

 (
H

z)

heart-heart
artery-artery
mean
heart-artery

(a)

1.6 1.8 2.0 2.2 2.4 2.6 2.8
frequency(Hz)

1.5

2.0

2.5

3.0

fr
e
q
u
e
n
cy

(H
z)

artery vs heart
heart vs heart
heart +/- 5%

(b)

Fig. 6. Correlation between heart and arteries sequences (a) in a single fish
embryo with multiple observations and (b) for 10 subjects exposed to varying
environmental conditions.

we compared frequency estimation in vessels with frequency
estimation in the heart. Finally, we compare our speed esti-
mations with another method.

A. Manual heart rate validation

For a first validation of our frequency estimation procedures,
we first estimated manually the beating frequency in the heart.
This is acceptable since the fish embryo heartbeat is easy to
follow in the sequence. We recorded several sequences on
various embryos (the video acquisition lasted several minutes
for each embryo) and we counted the number of heart cycle
by watching the sequences at low speed. We compared it with
the estimation of our approach. In all the cases, we obtained
the same results for both methods up to rounding.

B. Heart vs. vessel validation

To validate our approach in vessels, we estimated heartbeat
frequencies in a single fish embryo. Each estimation was
performed on 18 different video acquisitions separated by
several minutes, and we estimated the frequencies in both the
heart and the arteries. Because heart estimation was validated
previously, we considered it as our ground truth. In Fig. 6(a),
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Fig. 7. Comparison with the method of [7] in the ideal single-vessel case.

we plotted all possible couples of measurements against each
other. All measurements appear consistent and fit within a 5%
uncertainty circle, so we can now consider them reliable.

C. Heart rate variations validation

We also measured the heart rate in the heart and artery in 10
fish embryos subjected to varying environmental conditions,
causing the heart rate to vary significantly. We see that our
estimations of the heart rate and the frequency measured in
the arteries correlate very well as illustrated in Fig. 6(b).

D. Speed measurement validation

Finally we compared our blood cell speed measurement
vs. the method of [7]. This latter, simpler method relies on
counting changing pixels between frames rather than estimat-
ing a flow. It is only reliable in a sequence containing a
single vessel, in a noise-free and vibration-free environment.
However in this ideal case it is well-correlated, although non-
linearly, with ours. The non-linearity in the correlation may
be explained because our speed estimate uses a multi-scale
approach, whereas [7] is single-scale. Consequently our speed
estimates have a wider range (a ratio of 5 vs. 3 between the
highest and lowest values). However, reproducibility between
cycles is good (see Fig. 7).

V. CONCLUSIONS

We have proposed novel ways of estimating frequencies
from some cyclic physiological parameters such as heart
function and blood flow in arteries in medaka embryo. To
achieve this, we have described a complete, versatile, robust
pipeline including denoising, sensor grid elimination, stabiliza-
tion, and optical flow measurement. We have shown that we
can successfully estimate frequencies from optical flow speed
variations, both around the heart and in blood vessels. The
frequencies are consistently estimated and correlate with each
other with a low margin of error. This ability to accurately
estimate the heart rate from optical flow rather than intensity
variations extends the range of possible physiological mea-
surements. Indeed, it is often easier to locate an artery in the
tail of a fish embryo than to obtain a clear view of the heart,
especially in later stages of development. In future work, we



will study more sophisticated measurements such as estimation
of ejection fractions.
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