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A converse to Fortin’s Lemma in Banach spaces

Alexandre Ern ∗ Jean-Luc Guermond †

June 22, 2016

Abstract

We establish the converse of Fortin’s Lemma in Banach spaces. This

result is useful to assert the existence of a Fortin operator once a discrete

inf-sup condition has been proved. The proof uses a specific construction

of a right-inverse of a surjective operator in Banach spaces. The key issue

is the sharp determination of the stability constants.

1 Introduction

Let V and W be two complex Banach spaces equipped with the norms
‖·‖V and ‖·‖W , respectively. We adopt the convention that dual spaces are
denoted with primes and are composed of antilinear forms; complex conjugates
are denoted by an overline. Let a be a sesquilinear form on V × W (linear
w.r.t. its first argument and antilinear w.r.t. its second argument). We assume
that a is bounded, i.e.,

‖a‖ := sup
v∈V

sup
w∈W

|a(v, w)|

‖v‖V ‖w‖W
< ∞, (1)

and that the following inf-sup condition holds:

α := inf
v∈V

sup
w∈W

|a(v, w)|

‖v‖V ‖w‖W
> 0. (2)

Here and in what follows, arguments in infima and suprema are implicitly as-
sumed to be nonzero.

Assume that we have at hand two sequences of finite-dimensional subspaces
{Vh}h∈H and {Wh}h∈H with Vh ⊂ V and Wh ⊂ W for all h ∈ H, where the
parameter h typically refers to a family of underlying meshes. The spaces Vh
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and Wh are equipped with the norms of V and W , respectively. A question of
fundamental importance is to assert the following discrete inf-sup condition:

α̂h := inf
vh∈Vh

sup
wh∈Wh

|a(vh, wh)|

‖vh‖V ‖wh‖W
> 0. (3)

The aim of this Note is to prove the following result.

Theorem 1 (Fortin’s Lemma with converse) Under the above assumptions,
consider the following two statements:

(i) There exists a map Πh : W → Wh and a real number γΠh
> 0 such that

a(vh,Πhw − w) = 0, for all (vh, w) ∈ Vh ×W , and γΠh
‖Πhw‖W ≤ ‖w‖W

for all w ∈ W .

(ii) The discrete inf-sup condition (3) holds.

Then, (i) ⇒ (ii) with α̂h ≥ γΠh
α. Conversely, (ii) ⇒ (i) with γΠh

= α̂h

‖a‖ , and

Πh can be constructed to be idempotent. Moreover, Πh can be made linear if W
is a Hilbert space.

The statement (i) ⇒ (ii) in Theorem 1 is classical and is known in the litera-
ture as Fortin’s Lemma, see [5] and [1, Prop. 5.4.3]. It provides an effective tool
to prove the discrete inf-sup condition (3) by constructing explicitly a Fortin op-
erator Πh. We briefly outline a proof that (i) ⇒ (ii) for completeness. Assuming
(i), we have

sup
wh∈Wh

|a(vh, wh)|

‖wh‖W
≥ sup

w∈W

|a(vh,Πhw)|

‖Πhw‖W
= sup

w∈W

|a(vh, w)|

‖Πhw‖W

≥ γΠh
sup
w∈W

|a(vh, w)|

‖w‖W
≥ γΠh

α ‖vh‖V ,

since a satisfies (2) and Vh ⊂ V . This proves (ii) with α̂h ≥ γΠh
α.

The proof of the converse (ii) ⇒ (i) is the main object of this Note. This
property is useful when it is easier to prove the discrete inf-sup condition directly
rather than constructing a Fortin operator. Another application of current
interest is the analysis framework for discontinuous Petrov–Galerkin methods
(dPG) recently proposed in [3] which includes the existence of a Fortin operator
among its key assumptions. The proof of the converse is not so straightforward
if one wishes to establish a sharp stability bound for Πh, i.e., that indeed one
can take γΠh

= α̂h

‖a‖ . Incidentally, we observe that there is a gap in the stability

constant γΠh
between the direct and converse statements, since the ratio of the

two is equal to ‖a‖
α

(which is independent of the discrete setting).
This Note is organized as follows. In Section 2, we establish a sharp bound

on the stability of the right-inverse of surjective operators in Banach spaces.
Since this result can be of independent theoretical interest, we present it in an
infinite-dimnesional setting. Then in Section 3, we prove the converse of Fortin’s
Lemma. The proof is relatively simple once the sharp stability estimate from
Section 2 is available.
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2 Right-inverse of surjective Banach operators

Let Y and Z be two complex Banach spaces equipped with the norms ‖·‖Y
and ‖·‖Z , respectively. Let B : Y → Z be a bounded linear map. The following
result is a well-known consequence of Banach’s Open Mapping and Closed Range
Theorems, see, e.g., [2, Thm. 2.20] or [4, Lem. A.36 & A.40].

Lemma 2 (Surjectivity) The following three statements are equivalent:

(i) B : Y → Z is surjective.

(ii) B∗ : Z ′ → Y ′ is injective and im(B∗) is closed in Y ′.

(iii) The following holds:

inf
z′∈Z′

‖B∗z′‖Y ′

‖z′‖Z′

= inf
z′∈Z′

sup
y∈Y

|〈B∗z′, y〉Y ′,Y |

‖z′‖Z′‖y‖Y
=: β > 0. (4)

Let us now turn to the main result of this section. To motivate the result,
assume that (4) holds; then B is surjective and thus admits a bounded right-
inverse. The crucial question is whether the stability of this right-inverse can
be formulated using precisely the constant β > 0 from (4).

Lemma 3 (Right inverse) Assume that (4) holds and that Y is reflexive.
Then there is a right-inverse map B† : Z → Y such that

∀z ∈ Z, (B ◦B†)(z) = z and β‖B†z‖Y ≤ ‖z‖Z . (5)

Moreover, this right-inverse map B† is linear if Y is a Hilbert space.

Proof Parts of this result can be found in [4, Lem. A.42]; for completeness,
we present a proof. Owing to Lemma 2, B∗ is injective and R := im(B∗) is
closed in Y ′. Since the operator B∗ is injective, it admits a left-inverse linear
map B∗‡ : R → Z ′ such that (B∗‡ ◦ B∗)(z′) = z′ for all z′ ∈ Z ′. Moreover,
the inf-sup condition (4) implies that ‖B∗‡y′‖Z′ ≤ β−1‖y′‖Y ′ for all y′ ∈ R.
Consider now the adjoint B∗‡∗ : Z ′′ → R′. Let Ehb

R′Y ′′ be the Hahn–Banach
extension operator that extends antilinear forms over R ⊂ Y ′ into antilinear
forms over Y ′ (see [2, Prop. 11.23]); Ehb

R′Y ′′ maps from R′ to Y ′′. Let JY (resp.,
JZ) be the canonical isometry from Y to Y ′′ (resp., Z to Z ′′), and observe that
JY is an isomorphism since Y is assumed to be reflexive. Let us set

B† := J−1

Y ◦ Ehb

R′Y ′′ ◦B∗‡∗ ◦ JZ : Z → Y, (6)

and let us verify that B† satisfies the expected properties. We have, for all
(z′, z) ∈ Z ′ × Z,

〈z′, B(B†(z))〉Z′,Z = 〈B∗z′, B†(z)〉Y ′,Y = 〈JY (B†(z)), B∗z′〉Y ′′,Y ′

= 〈Ehb

R′Y ′′(B∗‡∗(JZz)), B∗z′〉Y ′′,Y ′ = 〈B∗‡∗(JZz), B∗z′〉R′,R

= 〈JZz,B∗‡B∗z′〉Z′′,Z′ = 〈JZz, z′〉Z′′,Z′ = 〈z′, z〉Z′,Z ,
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where we have used that B∗z′ ∈ R to pass from the first to the second line.
This shows that (B ◦ B†)(z) = z. Moreover, since JY is an isometry and the
extension operator Ehb

R′Y ′′ preserves the norm, we observe that, for all z ∈ Z,

‖B†z‖Y = ‖B∗‡∗(JZz)‖R′ = sup
z′∈Z′

|〈B∗‡∗(JZz), B
∗z′〉R′,R|

‖B∗z′‖Y ′

= sup
z′∈Z′

|〈JZz, z
′〉Z′′,Z′ |

‖B∗z′‖Y ′

≤ sup
z′∈Z′

‖z′‖Z′

‖B∗z′‖Y ′

‖z‖Z .

We conclude from (4) that β‖B†z‖Y ≤ ‖z‖Z . Finally, if Y is a Hilbert space,
we can consider the orthogonal complement of R in Y ′ (recall that R is a closed
subspace of Y ′) and write Y ′ = R ⊕ R⊥. Then, the Hahn–Banach extension
operator Ehb

R′Y ′′ in (6) can be replaced by the linear map E⊥
R′Y ′′ such that, for

all φ ∈ R′, 〈E⊥
R′Y ′′φ, y′〉Y ′′,Y ′ = 〈φ, r〉R′,R for all y′ ∈ Y ′ with y′ = r + r⊥,

r ∈ R, r⊥ ∈ R⊥. �

3 Proof of the converse in Theorem 1

Let Ah : Vh → W ′
h be the operator defined by 〈Ahvh, wh〉W ′

h
,Wh

:= a(vh, wh)
for all (vh, wh) ∈ Vh×Wh. We identify V ′′

h with Vh and W ′′
h with Wh (since these

spaces are finite-dimensional). We consider the adjoint operator A∗
h : Wh → V ′

h,
and identify A∗∗

h with Ah. We apply Lemma 3 to Y := Wh, Z := V ′
h, and

B := A∗
h. Owing to the discrete inf-sup condition (3), we infer that (4) holds

with β = α̂h. Therefore, there exists a right-inverse map A
∗†
h : V ′

h → Wh such

that, for all θh ∈ V ′
h, (A

∗
h ◦ A∗†

h )(θh) = θh and α̂h‖A
∗†
h θh‖W ≤ ‖θh‖V ′

h
. Let us

now set
Πh := A

∗†
h ◦Θ : W → Wh, (7)

with the linear map Θ : W → V ′
h such that, for all w ∈ W , 〈Θ(w), vh〉V ′

h
,Vh

:=

a(vh, w) for all vh ∈ Vh. We then infer that

a(vh,Πh(w)) = 〈Ahvh, A
∗†
h (Θ(w))〉W ′

h
,Wh

= 〈A∗
h(A

∗†
h (Θ(w))), vh〉V ′

h
,Vh

= 〈Θ(w), vh〉V ′

h
,Vh

= a(vh, w),

which establishes that a(vh,Πh(w)− w) = 0 for all w ∈ W . Moreover,

α̂h‖Πh(w)‖W = α̂h‖A
∗†
h (Θ(w))‖W ≤ ‖Θ(w)‖V ′

h
≤ ‖a‖‖w‖W ,

which proves that α̂h

‖a‖‖Πh(w)‖W ≤ ‖w‖W . In addition, we observe that

〈Θ(A∗†
h (θh)), vh〉V ′

h
,Vh

= 〈Ahvh, A
∗†
h (θh)〉W ′

h
,Wh

= 〈A∗
h(A

∗†
h (θh)), vh〉V ′

h
,Vh

= 〈θh, vh〉V ′

h
,Vh

,

for all vh ∈ Vh, which proves that Θ(A∗†
h (θh)) = θh for all θh ∈ V ′

h. As a

result, Πh(Πh(w)) = A
∗†
h (Θ ◦ A

∗†
h (Θ(w))) = A

∗†
h (Θ(w)) = Πh(w), i.e., Πh is
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idempotent. Finally, if W is a Hilbert space, the right-inverse map A
∗†
h is linear

by Lemma 3, and so is the operator Πh defined from (7).

Remark 1 (Value of γΠh
) Without the use of Lemma 3, one only knows that

A∗
h has a stable right-inverse, but a stability bound for this right-inverse is not

available. In particular, if the discrete inf-sup condition (3) holds uniformly
with respect to h, i.e., if there is α̂0 > 0 such that α̂h ≥ α̂0 for all h ∈ H, then
a uniform stability bound for Πh is γΠh

≥ γΠ0
= α̂0

‖a‖ for all h ∈ H.

Remark 2 (Linearity) Even in the case of Banach spaces, the linearity of the
map Πh can be asserted if one has at hand a stable decomposition Wh = ker(A∗

h)⊕
Kh such that there is κh > 0 such that the induced projector πKh

: Wh → Kh

satisfies κh‖πKh
wh‖W ≤ ‖wh‖W for all wh ∈ Wh (this property holds in the

Hilbertian setting with κh = 1). Then, one can adapt the reasoning at the end

of the proof of Lemma 3 to build a stable, linear right-inverse map A
∗†
h . The mild

price to be paid is that the stability constant of Πh now becomes γΠh
= κhα̂h

‖a‖ .
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