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Existence result for degenerate cross-diffusion
system with constraint:

application to seawater intrusion in confined
aquifer

J. Alkhayal, M. Jazar, R. Monneau

Abstract: We consider a strongly-coupled nonlinear parabolic system which arises from
seawater intrusion in confined aquifers. The global existence of a nonnegative solution is
obtained after establishing a suitable entropy estimate.

1 Introduction

Seawater intrusion is one of the major concerns commonly found in coastal aquifers. It is the
movement of seawater into the freshwater aquifers. In the modelling of such phenomenon,
Jazar and Monneau proposed in [5] two reduced models in confined and unconfined aquifers,
where the freshwater and the saltwater are assumed to be immiscible and one of the dimension
is negligible with respect to the tow others. In this paper, we are concerned with the
confined case (see Figure 1): we consider {z = 0} the interface between the saltwater
and the bedrock, {z = g(t, x)} the interface between the saltwater and the freshwater and
{z = h(t, x) + g(t, x) = 1} the interface between the freshwater and the impermeable layer.
Then the confined model reads

∂th = div {h∇ (p+ ν(h+ g))} in [0,∞)× RN ,
∂tg = div {g∇ (p+ νh+ g)} in [0,∞)× RN ,
h+ g = 1 in [0,∞)× RN ,

(1.1)

where N = 2, 3, p is the pressure on the top confining rock and ν = 1− ε0 ∈ (0, 1) with

ε0 =
γs − γf
γs

and γs and γf are the specific weight of the saltwater and freshwater respectively.
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Figure 1: Confined aquifer

In this paper, we show existence result for a more generalized model of the form
∂tu

i = div

{
ui∇

(
p+

m∑
j=1

Aiju
j

)}
in ΩT , for i = 1, . . . ,m,

m∑
i=1

ui(t, x) = 1 in ΩT ,

(1.2)

where ΩT := (0, T ) × Ω with T > 0 and Ω := TN = (R/Z)N , with N ≥ 1. Here, p appears
as a Lagrange multiplier of the constraint on u = (ui)1≤i≤m, given by the second line of
(1.2). This system has been studied in [3] without the constraint and with p = 0. We will
follow the strategy proposed in [3] to which we will often refer. Note that, a different kind
of seawater intrusion model in confined aquifers, which consists in a coupled system of an
elliptic and a degenerate parabolic equation, has been studied in [6].
In a more general setting, we should replace the second equation of (1.2) by

∑m
i=1 u

i(t, x) =
f(x) on ΩT . Here, we considered f ≡ 1 for the sake of simplicity, though the same result
holds true with some additional conditions of f . Namely, we think that a nondecreasing
condition on f in the direction of the freshwater flux is sufficient.
The strategy of the proof and the organization of the paper are as follow: after discretizing
in time and regularizing we will consider a modified linear elliptic model to which we can
apply Lax-Milgram theorem in Subsection 2.1. Then, in Subsection 2.2 we apply a fixed
point theorem to get the existence of a solution of the nonlinear problem and we establish
an entropy estimate. Finally, in Subsection 2.3, we pass to the limit in all added parameters
in order to recover the expected result.
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1.1 Main result

To introduce our main result, some definitions and assumptions are given.
The space H1(Ω)/R:
We define H1(Ω)/R as the space of functions of H1(Ω), up to addition of constants. A
natural norm is

‖p‖(H1(Ω)/R) = inf
c∈R
‖p− c‖H1(Ω) =

∥∥∥∥p− 1

|Ω|

∫
Ω

p

∥∥∥∥
H1(Ω)

. (1.3)

The function Ψ:
We define the nonnegative function Ψ as

Ψ(a)− 1

e
=


a ln a for a > 0,

0 for a = 0,
+∞ for a < 0,

(1.4)

which is minimal for a =
1

e
.

The positivity condition:
The real m × m matrix A = (Aij)1≤i,j≤m is not necessarily symmetric and satisfies the
following positivity condition: there exists δ0 > 0, such that we have

ξTAξ ≥ δ0|ξ|2, for all ξ ∈ Rm. (1.5)

This condition, as in [3], can be weaken: there exist two positive definite diagonal m ×m
matrices L and R and δ0 > 0, such that we have

ζTLAR ζ ≥ δ0|ζ|2, for all ζ ∈ Rm. (1.6)

In the core of this paper we will assume (1.5) for the sake of simplicity.
Now we state our main result.

Theorem 1.1 (Existence for (1.2))
Assume that A satisfies (1.5). For i = 1, . . . ,m, let ui0 ≥ 0 in Ω satisfying

m∑
i=1

∫
Ω

Ψ(ui0) < +∞, (1.7)

where Ψ is given in (1.4). Then there exists a function u = (ui)1≤i≤m ∈ (L2(0, T ;H1(Ω)) ∩
C([0, T ); (W 1,∞(Ω))′))m, and a function p ∈ L2(0, T ;H1(Ω)/R) such that (u, p) is a solution
in the sense of distributions of (1.2), with ui ≥ 0 a.e. in ΩT , for i = 1, . . . ,m. Moreover, u
satisfies the following entropy estimate for a.e. t1, t2 ∈ (0, T ), with ui(t2) = ui(t2, ·):

m∑
i=1

∫
Ω

Ψ(ui(t2)) + δ0

m∑
i=1

∫ t2

t1

∫
Ω

|∇ui|2 ≤
m∑
i=1

∫
Ω

Ψ(ui0), (1.8)
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and p satisfies: ∫
ΩT

|∇p|2 ≤ m ‖A‖2
m∑
i=1

∫
ΩT

∣∣∇ui∣∣2 . (1.9)

Here ‖A‖ is the matrix norm defined as

‖A‖ = sup
|ξ|=1

|Aξ| . (1.10)

Notice that (1.8) also allows us to define the products ui
m∑
i=1

Aij∇uj and ui∇p in (1.2).

Remark 1.2 (Decreasing energy)
If A is a symmetric matrix then a solution (u, p) of system (1.2) satisfies

d

dt

(
m∑
i=1

m∑
j=1

∫
Ω

1

2
Aiju

iuj

)
= −

∫
Ω

 m∑
i=1

ui
∣∣qi∣∣2 − ∣∣∣∣∣

m∑
i=1

uiqi

∣∣∣∣∣
2
 ,

where qi =
m∑
j=1

Aij∇uj.

2 Existence result

In order to get the existence of (1.1) and an entropy estimate we introduce the following
modified linear discretized in time system (see [3] for details)

ui,n+1 − ui,n

∆t
= div

{
T ε,`(vi,n+1)

(
∇pn+1 +

m∑
j=1

Aij∇ρη ? ρη ? uj,n+1 + δ∇ui,n+1

)}
,

m∑
j=1

ui,n+1 = 1,

(2.1)

where a is a given function in H1(Ω), ∆t = T/K is the time step with K ∈ N∗, η, δ > 0,
0 < ε < 1 < ` < +∞, T ε,` is the truncation operator defined by

T ε,`(a) :=


ε if a ≤ ε,
a if ε ≤ a ≤ `,
` if a ≥ `,

(2.2)

and the mollifier ρη(x) = η−Nρ (x/η) with ρ ∈ C∞c (RN), ρ ≥ 0,
∫
RN ρ = 1,

∫
RN ∇ρ = 1 and

ρ(−x) = ρ(x). Note that we consider the ZN - periodic extension on RN of uj,n+1. We will
look for fixed points solutions vi,n+1 = ui,n+1 of (2.1). Finally, we will recover the existence
result by passing to the limit in all parameters.
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2.1 Existence for the linear elliptic problem (2.1)

In this subsection we prove the existence, via Lax-Milgram theorem, of the unique solution
for the linear elliptic confined system (2.1).
Let us recall our linear elliptic confined system: Assume that A is any m ×m real matrix.
Let vn+1 = (vi,n+1)1≤i≤m ∈ (L2(Ω))m and un = (ui,n)1≤i≤m ∈ (H1(Ω))m. Set

F i
ε,`,η,δ(v

n+1, un+1, pn+1) = T ε,`(vi,n+1)

(
∇pn+1 +

m∑
j=1

Aij∇ρη ? ρη ? uj,n+1 + δ∇ui,n+1

)
,

(2.3)
where T ε,` is given in (2.2). Then for all ∆t, ε, `, η, δ > 0, with ε < 1 < ` and ∆t < τ
where τ is given in (2.5), we look for the solution (un+1, pn+1) = ((ui,n+1)1≤i≤m, p

n+1) of the
following system:


ui,n+1 − ui,n

∆t
= div

{
F i
ε,`,η,δ(v

n+1, un+1, pn+1)
}

in D′(Ω),

m∑
i=1

ui,n+1(x) = 1 in Ω,

(2.4)

where F i
ε,`,η,δ is given in (2.3).

Proposition 2.1 (Existence for system (2.4))
Assume that A is any m×m real matrix. Let ∆t, ε, `, η, δ > 0, with ε < 1 < ` such that

∆t <
δεη2

`2 ‖A‖2 := τ. (2.5)

Then for n ∈ N, for a given vn+1 = (vi,n+1)1≤i≤m ∈ (L2(Ω))m and un = (ui,n)1≤i≤m ∈
(H1(Ω))m, there exists a unique function (un+1, pn+1) = ((ui,n+1)1≤i≤m, p

n+1) ∈ (H1(Ω))m ×
H1(Ω)/R solution of system (2.4). Moreover, this solution (un+1, pn+1) satisfies the following
estimate(

δ − δ∆t

τ

)∥∥un+1
∥∥2

(L2(Ω))m
+ εδ2∆t

∥∥∇un+1
∥∥2

(L2(Ω))m
+mε∆t ‖∇p‖2

L2(Ω) ≤ δ ‖un‖2
(L2(Ω))m .

(2.6)

Proof of Proposition 2.1.
We use Lax-Milgram theorem to prove the existence result.
First of all, let us define for all (un+1, pn+1) = ((ui,n+1)1≤i≤m, p

n+1) and (ϕ, q) =
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((ϕi)1≤i≤m, q) ∈ (H1(Ω))m ×H1(Ω)/R, the following bilinear continuous form

b
(
(un+1, pn+1), (ϕ, q)

)
= δ

m∑
i=1

∫
Ω

ui,n+1ϕi + ∆t
m∑
i=1

∫
Ω

T ε,`(vi,n+1)∇pn+1(δ∇ϕi +∇q)

+∆t
m∑
i=1

∫
Ω

T ε,`(vi,n+1)
m∑
j=1

Aij∇ρη ? ρη ? uj,n+1(δ∇ϕi +∇q)

+δ∆t
m∑
i=1

∫
Ω

T ε,`(vi,n+1)∇ui,n+1(δ∇ϕi +∇q),

and the following linear continuous form:

K(ϕ, q) = δ
m∑
i=1

∫
Ω

ui,nϕi.

Note that we have
m∑
i=1

∫
Ω

(
ui,n+1 − ui,n

)
q = 0.

Step 1: Existence by Lax-Milgram
It remains to prove the coercivity of b to get the existence, by Lax-Milgram theorem, of a
unique solution for system (2.4).
For all (ϕ, q) = ((ϕi)1≤i≤m, q) ∈ (H1(Ω))m ×H1(Ω)/R, we have that

b((ϕ, q), (ϕ, q)) = δ
m∑
i=1

∫
Ω

|ϕi|2 + ∆t
m∑

i,j=1

∫
Ω

T ε,`(vi,n+1)(δ∇ϕi +∇q)2

+∆t
m∑
i=1

∫
Ω

T ε,`(vi,n+1)
m∑
j=1

Aij∇ρη ? ρη ? ϕj∇q

+δ∆t
m∑
i=1

∫
Ω

T ε,`(vi,n+1)
m∑
j=1

Aij∇ρη ? ρη ? ϕj∇ϕi

= b0((ϕ, q), (ϕ, q)) + b1((ϕ, q), (ϕ, q)),

where

b0((ϕ, q), (ϕ, q)) = δ

m∑
i=1

∫
Ω

|ϕi|2 + ∆t
m∑
i=1

∫
Ω

T ε,`(ϕi,n+1)(δ∇ϕi +∇q)2,

and

b1((ϕ, q), (ϕ, q)) = ∆t
m∑
i=1

∫
Ω

T ε,`(ϕi,n+1)
m∑
j=1

Aij∇ρη ? ρη ? ϕj∇q

+ δ∆t
m∑
i=1

∫
Ω

T ε,`(ϕi,n+1)
m∑
j=1

Aij∇ρη ? ρη ? ϕj∇ϕi.
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On the one hand, since
∑m

i=1

∫
Ω
∇q · ∇ϕi = 0, we already have the coercivity of b0:

b0((ϕ, q), (ϕ, q)) ≥ δ ‖ϕ‖2
(L2(Ω))m +mε∆t ‖∇q‖2

L2(Ω) + εδ2∆t ‖∇ϕ‖2
(L2(Ω))m .

On the other hand, we have

|b1(ϕ, ϕ)| ≤ ∆t` ‖A‖
√
m ‖∇ρη ? ρη ? ϕ‖(L2(Ω))m ‖∇q‖L2(Ω)

+δ∆t` ‖A‖ ‖∇ρη ? ρη ? ϕ‖(L2(Ω))m ‖∇ϕ‖(L2(Ω))m

≤ ∆t` ‖A‖
√
m

(
1

2d
‖∇ρη ? ρη ? ϕ‖2

(L2(Ω))m +
d

2
‖∇q‖2

L2(Ω)

)
+δ∆t` ‖A‖

(
1

2c
‖∇ρη ? ρη ? ϕ‖2

(L2(Ω))m +
c

2
‖∇ϕ‖2

(L2(Ω))m

)
≤ εδ2∆t

2
‖∇ϕ‖2

(L2(Ω))m +
mε∆t

2
‖∇q‖2

L2(Ω) +
∆t`2 ‖A‖2

εη2
‖ϕ‖2

(L2(Ω))m ,

where in the second line we have used Young’s inequality, and chosen c =
εδ

` ‖A‖
and d =

ε
√
m

` ‖A‖
in the third line, with ‖A‖ is given in (1.10).

So we get that

b((ϕ, q), (ϕ, q)) ≥
(
δ − δ∆t

τ

)
‖ϕ‖2

(L2(Ω))m +
εδ2∆t

2
‖∇ϕ‖2

(L2(Ω))m +
mε∆t

2
‖∇q‖2

L2(Ω) , (2.7)

is coercive, since ∆t < τ .

Step 2: Proof of estimate (2.6)
Using (2.7) and the fact that b((un+1, p), (un+1, p)) = K((un+1, p)) we get(
δ − δ∆t

τ

)∥∥un+1
∥∥2

(L2(Ω))m
+
εδ2∆t

2

∥∥∇un+1
∥∥2

(L2(Ω))m
+

mε∆t

2
‖∇p‖2

L2(Ω)

≤ δ

2
‖un‖2

(L2(Ω))m +
δ

2

∥∥un+1
∥∥2

(L2(Ω))m
,

which gives us the estimate (2.6). �

2.2 Existence for the nonlinear time-discrete problem

In this subsection we prove the existence, using Schaefer’s fixed point theorem, of a solution
for the nonlinear time discrete confined system (2.10) given below.
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For this purpose, let the function

Ψε,`(b)−
1

e
=



b2

2ε
+ b ln ε− ε

2
if b ≤ ε,

b ln b if ε < b ≤ `,

b2

2`
+ b ln `− `

2
if b > `,

(2.8)

which is continuous, convex and satisfies that Ψ′′ε,`(x) =
1

T ε,`(x)
, where T ε,` is given in (2.2).

Let us introduce our nonlinear time discrete system: Assume that A satisfies (1.5). Let
u0 = (ui,0)1≤i≤m := u0 = (ui0)1≤i≤m that satisfies

C1 :=
m∑
i=1

∫
Ω

Ψε,`(u
i
0) < +∞, (2.9)

such that ui0 ≥ 0 in Ω for i = 1, . . . ,m. Then for all ∆t, ε, `, η, δ > 0, with ε < 1 < ` and
∆t < τ , for n ∈ N, we look for a solution (un+1, pn+1) = ((ui,n+1)1≤i≤m, p

n+1) of the following
nonlinear system:

ui,n+1 − ui,n

∆t
= div

{
F i
ε,`,η,δ((u

n+1, un+1), pn+1)
}

in D′(Ω),
m∑
i=1

ui,n+1 = 1 in Ω,
(2.10)

where F i
ε,`,η,δ is given in (2.3).

Proposition 2.2 (Existence for system (2.10))
There exists a sequence of functions un+1 = (ui,n+1)1≤i≤m ∈ (H1(Ω))

m
and a function pn+1 ∈

H1(Ω)/R such that (un+1, pn+1) is a solution of system (2.10), that satisfies the entropy
estimate

m∑
i=1

∫
Ω

Ψε,`(u
i,n+1)+δ∆t

n∑
k=0

∥∥∇uk+1
∥∥2

(L2(Ω))m
+δ0∆t

n∑
k=0

∥∥∇ρη ? uk+1
∥∥2

(L2(Ω))m
≤

m∑
i=1

∫
Ω

Ψε,`(u
i
0),

(2.11)
and

∆t
∥∥∇pn+1

∥∥2

L2(Ω)
≤ C2, (2.12)

where

C2 =
`2m(‖A‖+ δ)2C1

δ
, (2.13)

where C1 is given in (2.9).
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Proof of Proposition 2.2
Step 1: Existence of a solution for (2.10)
We define, for a given w := un = (ui,n)1≤i≤m ∈ (L2(Ω))m and v := vn+1 = (vi,n+1)1≤i≤m ∈
(L2(Ω))m, the map θ as:

θ : (L2(Ω))m → (L2(Ω))m

v 7→ u

where u := un+1 = (ui,n+1)1≤i≤m = θ(vn+1) ∈ (H1(Ω))m is such that (u, pn+1) is the unique
solution of system (2.4), given by Proposition 2.1. Moreover, we can prove that θ is continu-
ous, compact mapping and the set {u ∈ X, u = λΦ(u) for some λ ∈ [0, 1]} is bounded.
Then θ has a fixed point un+1 on (L2(Ω))m by the Schaefer’s fixed point theorem [2, Theorem
4 page 504]. This implies the existence of a solution (un+1, pn+1) for system (2.10).

Step 2: Proof of estimate (2.11)
Since Ψε,` is convex we have

m∑
i=1

∫
Ω

Ψε,`(u
i,n+1)−Ψε,`(u

i,n)

∆t
≤

m∑
i=1

∫
Ω

(
ui,n+1 − ui,n

∆t

)
Ψ′ε,`(u

i,n+1)

= −
m∑
i=1

∫
Ω

(
T ε,`(ui,n+1)∇pn+1 + δT ε,`(ui,n+1)∇ui,n+1

+T ε,`(ui,n+1)
m∑
j=1

Aij∇ρη ? ρη ? uj,n+1

)
Ψ′′ε,`(u

i,n+1)∇ui,n+1

= −
m∑
i=1

{
−
∫

Ω

∇pn+1 · ∇ui,n+1 + δ

∫
Ω

|∇ui,n+1|2 +

∫
Ω

m∑
j=1

∇ρη ? ui,n+1Aij∇ρη ? uj,n+1

}

≤ −
m∑
i=1

δ

∫
Ω

|∇ui,n+1|2 − δ0

m∑
i=1

∫
Ω

|∇ρη ? ui,n+1|2,

which, after a reccurence, gives us (2.11).
Now, taking the sum on i of system (2.10) then by multiplying by pn+1 we get

0 =
m∑
i=1

∫
Ω

T ε,`(ui,n+1)
∣∣∇pn+1

∣∣2 +
m∑
i=1

∫
Ω

T ε,`(ui,n+1)
m∑
j=1

Aij
(
∇ρη ? ρη ? uj,n+1

)
· ∇pn+1

+ δ
m∑
i=1

∫
Ω

T ε,`(ui,n+1)∇ui,n+1 · ∇pn+1.
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Thus we have that∥∥∇pn+1
∥∥2

L2(Ω)
≤ ` ‖A‖

√
m
∥∥∇ρη ? ρη ? un+1

∥∥
(L2(Ω))m

∥∥∇pn+1
∥∥
L2(Ω)

+ `δ
√
m
∥∥∇un+1

∥∥
(L2(Ω))m

∥∥∇pn+1
∥∥
L2(Ω)

≤ `
√
m (δ + ‖A‖)

∥∥∇un+1
∥∥

(L2(Ω))m

∥∥∇pn+1
∥∥
L2(Ω)

≤ `
√
m (δ + ‖A‖)

(
1

2d

∥∥∇un+1
∥∥2

(L2(Ω))m
+
d

2

∥∥∇pn+1
∥∥2

L2(Ω)

)
≤ 1

2

∥∥∇pn+1
∥∥2

L2(Ω)
+
`2m(‖A‖+ δ)2

2

∥∥∇un+1
∥∥2

(L2(Ω))m
,

where we have used in the fourth line the Young’s inequality, chosed in the fifth line

d =
1

`
√
m(‖A‖+ δ)

. Moreover using, from the entropy estimate (2.11), the fact that

∆t
∥∥∇un+1

∥∥2

(L2(Ω))m
≤ C1

δ
we get estimate (2.12). �

2.3 Proof of Theorem1.1

Passage to the limit in all parameters
The techniques used here are very similar to [3].
Step 1: Passage to the limit when (∆t, ε)→ (0, 0) ([3, Proposition 3.3])
For all n ∈ {0, . . . , K − 1} set tn = n∆t and let the piecewise continuous in time functions:

u∆t(t, x) = (ui,∆t(t, x))1≤i≤m := (ui,n+1(x))1≤i≤m, for t ∈ (tn, tn+1]. (2.14)

p∆t(t, x) := pn+1(x), for t ∈ (tn, tn+1]. (2.15)

The first term on the left-hand side of (2.11) implies that ui,∆t ∈ L∞(0, T ;L1(Ω)) for i =
1, · · · ,m. Now, using (2.11) with a suitable interpolation we can find q > 2 and a constant
C independent of ε and ∆t such that∥∥ui,∆t∥∥

Lq(0,T ;L2(Ω))
+
∥∥ui,∆t∥∥

L1(0,T ;H1(Ω))
+
∥∥ui,∆t∥∥

Var([0,T );H−1(Ω))
≤ C,

where
∥∥ui,∆t∥∥

Var([0,T );H−1(Ω))
=

K−1∑
n=0

∥∥ui,∆t(tn+1)− ui,∆t(tn)
∥∥
H−1(Ω)

. Therefore, by a variant of

Simon’s Lemma [3, Theorem 2.4] there exists a function u = (ui)1≤i≤m ∈ (L2(0, T ;H1(Ω)))
m

such that u∆t → u strongly in (L2(0, T ;L2(Ω)))
m

. Moreover, (2.12) and Poincarré-
Wirtinger’s inequality imply that there exists a function p ∈ L2(0, T ;H1(Ω)/R) such that
p∆t → p weakly in (L2(0, T ;H1(Ω)/R))m. Passing to the limit as (∆t, ε)→ (0, 0) in (2.10),
by using in particular the weak L2 - strong L2 convergence in the products, we obtain that
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(u, p) is a solution of the following system
∂tu

i = div
{
F i

0,`,η,δ(u, p)
}

in D′(ΩT ),
m∑
i=1

ui(t, x) = 1 in ΩT ,

ui(x, 0) = ui0(x) in Ω,

(2.16)

where

F i
0,`,η,δ(u, p) = T 0,`(ui)

(
∇p+

m∑
j=1

Aij∇ρη ? ρη ? uj + δ∇ui
)
,

the initial condition is recovered by Aubin’s Lemma [4, Proposition 2.1 and Theorem 3.1,
Chapter 1] and [3, Proposition 5.1] since (2.11) implies that ∂t(u

∆t ? ρ∆t) is uniformaly
bounded in L2(0, T ;H−1(Ω)) for some mollifier ρ∆t (see [3, Proposition 3.3]).
Moreover, the boundedness on the entropy function due to (2.11) implies the nonnegativity
of the limit u and then together with

∑m
i=1 u

i = 1 imply that 0 ≤ ui ≤ 1 and T 0,`(ui) = ui.
So we do not need to pass to the limit as `→∞.
Therefore, taking the lim inf as (ε,∆t) → (0, 0) in (2.11) we obtain that (u, p) satisfies the
following entropy estimate for a.e. t1, t2 ∈ (0, T )∫

Ω

m∑
i=1

Ψ(ui(t2)) + δ
m∑
i=1

∥∥∇ui∥∥2

L2(t1,t2;L2(Ω))
+ δ0

m∑
i=1

∥∥∇ρη ? ui∥∥2

L2(t1,t2;L2(Ω))
≤
∫

Ω

m∑
i=1

Ψ(ui0).

(2.17)
The same calculation leading to (2.12), but with integration in time and space, yields us to

‖∇p‖2
L2(0,T ;L2(Ω)) ≤ C4, (2.18)

where C4 :=
m(‖A‖+ δ)2C0

δ
and C0 :=

∑m
i=1

∫
Ω

Ψ(ui0) < +∞.

Step 2: Passage to the limit when η → 0 ([3, Proposition 3.5])
Let uη a solution of (2.16). By (2.17) and a suitable interpolation we can find q > 2 such
that ∥∥ui,η∥∥

Lq(0,T ;L2(Ω))
+
∥∥ui,η∥∥

L1(0,T ;H1(Ω))
+
∥∥∂tui,η∥∥L1(0,T ;(W 1,∞(Ω))′)

≤ C.

Then, by Simon’s Lemma [7] we can find a function u = (ui)1≤i≤m ∈ (L2(0, T ;H1(Ω)))
m

and
a function p ∈ L2(0, T ;H1(Ω)/R) such that, as (η)→ (∞, 0), uη → u in (L2(0, T ;L2(Ω)))

m
,

∇uη → ∇u weakly in (L2(0, T ;L2(Ω)))
m

and pε → p weakly in L2(0, T ;H1(Ω)/R). Note
that ui ≥ 0 a.e. in ΩT . Therefore, passing to the limit as η → 0 in (2.16) we get that (u, p)
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is a solution of the following system
∂tu

i = div

{
ui

(
∇p+

m∑
j=1

Aij∇uj + δ∇ui
)}

in D′(ΩT ),

m∑
i=1

ui(t, x) = 1 in ΩT

ui(x, 0) = ui0(x) in Ω,

(2.19)

where the initial condition is recovered by [3, Proposition 5.1] since we have that ∂tu
η is

uniformly bounded in Ls(0, T ; (W 1,∞(Ω))′) with s = 2q
q+2

> 1. Moreover, u satisfies for a.e.

t1, t2 ∈ (0, T ) ∫
Ω

m∑
i=1

Ψ(ui(t2)) + δ0

m∑
i=1

∥∥∇ui∥∥2

L2(t1,t2;L2(Ω))
≤
∫

Ω

m∑
i=1

Ψ(ui0), (2.20)

and p satisfies
‖∇p‖2

L2(0,T ;L2(Ω)) ≤ C5, (2.21)

where C5 :=
m ‖A‖C0

δ0

.

Step 3: Passage to the limit when δ → 0 ([3, Theorem 1.1])
Similarly, we pass to the limit when δ → 0 in system (2.19) to get the existence result,
announced in Theorem 1.1, of a solution for system (1.2) that satisfies (1.8) and (1.9). �
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