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Existence result for degenerate cross-diffusion
system with constraint:
application to seawater intrusion in confined
aquifer

J. Alkhayal, M. Jazar, R. Monneau

Abstract: We consider a strongly-coupled nonlinear parabolic system which arises from
seawater intrusion in confined aquifers. The global existence of a nonnegative solution is
obtained after establishing a suitable entropy estimate.

1 Introduction

Seawater intrusion is one of the major concerns commonly found in coastal aquifers. It is the
movement of seawater into the freshwater aquifers. In the modelling of such phenomenon,
Jazar and Monneau proposed in [5] two reduced models in confined and unconfined aquifers,
where the freshwater and the saltwater are assumed to be immiscible and one of the dimension
is negligible with respect to the tow others. In this paper, we are concerned with the
confined case (see Figure 1): we consider {z = 0} the interface between the saltwater
and the bedrock, {z = g(t,z)} the interface between the saltwater and the freshwater and
{z = h(t,x) + g(t,z) = 1} the interface between the freshwater and the impermeable layer.
Then the confined model reads

oh = div{hV(p+v(h+g))} in[0,00) x RV,
Og = div{gV(p+vh+g)} in [0,00) x RY, (1.1)
h+g = 1 in [0,00) x RY,

where N = 2,3, p is the pressure on the top confining rock and v =1 — gy € (0,1) with
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and 7, and 5 are the specific weight of the saltwater and freshwater respectively.
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Figure 1: Confined aquifer

z=0

In this paper, we show existence result for a more generalized model of the form

ot = div {uiV <p+ ZAijuj>} in Qp, fori=1,...,m,
j=1

(1.2)
Sul(t,z) =1 in Qrp,
i=1

where Q7 := (0,T) x Q with T > 0 and Q := TV = (R/Z)", with N > 1. Here, p appears
as a Lagrange multiplier of the constraint on u = (u')1<j<m, given by the second line of
(1.2). This system has been studied in [3] without the constraint and with p = 0. We will
follow the strategy proposed in [3] to which we will often refer. Note that, a different kind
of seawater intrusion model in confined aquifers, which consists in a coupled system of an
elliptic and a degenerate parabolic equation, has been studied in [6].

In a more general setting, we should replace the second equation of (1.2) by > u'(t,z) =
f(z) on Qp. Here, we considered f = 1 for the sake of simplicity, though the same result
holds true with some additional conditions of f. Namely, we think that a nondecreasing
condition on f in the direction of the freshwater flux is sufficient.

The strategy of the proof and the organization of the paper are as follow: after discretizing
in time and regularizing we will consider a modified linear elliptic model to which we can
apply Lax-Milgram theorem in Subsection 2.1. Then, in Subsection 2.2 we apply a fixed
point theorem to get the existence of a solution of the nonlinear problem and we establish
an entropy estimate. Finally, in Subsection 2.3, we pass to the limit in all added parameters
in order to recover the expected result.



1.1 Main result

To introduce our main result, some definitions and assumptions are given.

The space H'(Q)/R:

We define H'(Q2)/R as the space of functions of H(f2), up to addition of constants. A
natural norm is

(1.3)

1
Il ~ inf [p — ] :Hp—— -
(HY(Q)/R) — H() 19| Jq HQ)

The function V:
We define the nonnegative function ¥ as

1 alna for a >0,
U(a) — - = 0 for a=0, (1.4)
+oo for a<0,

1
which is minimal for ¢ = —

e
The positivity condition:
The real m x m matrix A = (A4;)1<ij<m 1 not necessarily symmetric and satisfies the
following positivity condition: there exists oy > 0, such that we have

ETAE > 6l€)?,  for all € € R™. (1.5)

This condition, as in [3], can be weaken: there exist two positive definite diagonal m x m
matrices L and R and dg > 0, such that we have

C'LARC > 6>, forall ¢ €R™ (1.6)

In the core of this paper we will assume (1.5) for the sake of simplicity.
Now we state our main result.

Theorem 1.1 (Existence for (1.2))
Assume that A satisfies (1.5). Fori=1,...,m, let ul >0 in Q satisfying

Z/ ) < +o0, (1.7)

where U is given in (1.4). Then there exists a function u = (u')1<ij<m € (L*(0,T; H(Q)) N
C([0,T); WhE=(Q)))™, and a function p € L*(0,T; H*(2)/R) such that (u,p) is a solution
in the sense of distributions of (1.2), with u* > 0 a.e. in Qp, fori=1,...,m. Moreover, u
satisfies the following entropy estimate for a.e. ty,ty € (0,T), with u'(ty) = u'(ty,-):

Z/ () +5OZ/ /yvu|2<z/ (), (1.8)



and p satisfies:
il12
/ yvp\ngHAH?Z/ Vel (1.9)
Qr i=1 YT

Here || A is the matrix norm defined as

|All = ‘3@1 |AE] . (1.10)

Notice that (1.8) also allows us to define the products u’ Z A V! and w'Vp in (1.2).
i=1

Remark 1.2 (Decreasing energy)
If A is a symmetric matriz then a solution (u,p) of system (1.2) satisfies

p (ZZ/QéAijuluj> :—/Q Zullqu— ;uqu

i=1 j=1 i=1

2

where ¢' = Z AijVuj.

j=1

2 Existence result

In order to get the existence of (1.1) and an entropy estimate we introduce the following
modified linear discretized in time system (see [3] for details)

u'L,nJrl — b

Y = div {TE’Z(Ui’”Jrl) (Vp”“ + ;Aijv,on * pp * udm T 4 5Vui’"+1> } ,
. 1= (2.1)
Zui,n+1 — 1,

j=1

where a is a given function in H*(Q2), At = T/K is the time step with K € N*, n, § > 0,
0<e<1</{< 400, T is the truncation operator defined by

e ifa<e,
Ta):={ a ife<a<l/, (2.2)
¢ ifa>"¢,

and the mollifier p,(x) =n~Vp (x/n) with p € C(RY), p >0, [oxnp =1, [pn Vo =1 and
p(—x) = p(x). Note that we consider the Z"- periodic extension on RY of u/"1. We will
look for fixed points solutions v®" 1 = 4#"*1 of (2.1). Finally, we will recover the existence
result by passing to the limit in all parameters.
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2.1 Existence for the linear elliptic problem (2.1)

In this subsection we prove the existence, via Lax-Milgram theorem, of the unique solution
for the linear elliptic confined system (2.1).

Let us recall our linear elliptic confined system: Assume that A is any m x m real matrix.
Let v" ™! = (0" o0 € (LA(Q))™ and u" = (u"")1<i<m € (H'(Q2))™. Set

F27£7n76(vn+1a un—i—l’pn—l—l) _ TG,Z(Ui,n—H) (vpn+1 + ZA’LJVPU * Py *uj,n—i—l + 5vui,n+1) ’
j=1
(2.3)
where T is given in (2.2). Then for all At, ¢, ¢, 1,0 > 0, withe <1 < £ and At < T
where 7 is given in (2.5), we look for the solution (u"™!, p"*™) = ((u""™)1<jcm, p" 1) of the
following system:

iwn+l

At

u ubm

= div {Fei,f,n,é(anrl’ unJrl’ pn+1)} in D/(Q),
(2.4)
Z u" () = 1 in

where F!, is given in (2.3).

Proposition 2.1 (Ezistence for system (2.4))
Assume that A is any m x m real matriz. Let At, €, £, n, § >0, with e <1 < { such that

den?
2 ]| All
Then for n € N, for a given v"*' = (v, € (L2(Q)™ and u™ = (u"")1<icm €

(HY(Q))™, there exists a unique function (u™, p"™) = (W) 1cicm, p" ™) € (H(Q))™ x
H'(Q)/R solution of system (2.4). Moreover, this solution (u™, p"™1) satisfies the following
estimate

OAtL
(5 - T) ”“nHH?L?(Q))m +ed” At Hvun+1H?L2(Q))m + meAL [ Vpll7a) < 810" [2(pm

(2.6)
Proof of Proposition 2.1.
We use Lax-Milgram theorem to prove the existence result.
First of all, let us define for all (u™* p"™) = ((u""™)icicm,p"™) and (¢,q) =



(¢ )1<i<m>q) € (HY(Q))™ x HY(Q2)/R, the following bilinear continuous form
b((un+1,pn+l),<@7Q)) — 52/ui,n+1gpi+At2/Ts,€<vi,n+1>vpn+1<5vgpi+vq)
i=1 79 i=1 79
+ALY / T (W)Y " AV py * py x w6V + V)
i=1 79

j=1

oAty / T () Vi (Y + V),
i=1 79

and the following linear continuous form:
K(p,q) = 52/{21/'%%}
i=1

Note that we have Z/ (" —u") g = 0.
i=1 7%

Step 1: Existence_by Lax-Milgram
It remains to prove the coercivity of b to get the existence, by Lax-Milgram theorem, of a

unique solution for system (2.4).
For all (¢, q) = ((¢")1<i<m,q) € (H'(2))™ x H'(Q)/R, we have that

Z/Ts,f(vi,n+l)(5vwi+vq)2
Q

ij=1

(.0 () = 6 / G2+ AL

+At2/ T (v ZAiijn * py* PV q
i=1 78 =1
+OALY / T (o) Y~ AV py x PV
i=1 79 j=1
= bo((¢,9), (0,q)) +0:((¢,9), (©,q)),

where . .
bo((9, ), (0.0) =65 / PR+ ALY / T4 (") (Vg + Vg)2,
=1 =1

and

b((p.a) (eq) = Ay /Q T4 (57 1) S Ay, * py + V4
i=1 j=1

+ 5Atz/QT‘E’f(sO"’”“)ZAiijn*pn*sojVsoi~
=1

J=1
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On the one hand, since » ;" , fQ Vq-V¢' =0, we already have the coercivity of by:

2 2 2
bo((p,q), (0, q)) = 6 ||90||(L2(Q))m + meAt quHL2(Q) +ed?At ||V<P||(L2(Q))m

On the other hand, we have

(e, )| < AAVMANV py* py* Dl 12(qpym [Vl 1200
HOALL ANV py * py *80||(L2(Q))m IVell 2y

1 2 d 2
< 8l Vi (37 10 o s + 5 1l )
1 2 ¢ 2
TOALL || A % IV oy % py % 90||(L2(Q))m + B} IVollz2)ym
g(mt m&?At At€2 [ —
< HVSOH(L2(Q) +——1IVqg HL2 T [l (2 (0yym -
: : . : €d
where in the second line we have used Young’s inequality, and chosen ¢ = A and d =
KH/AEH in the third line, with [|A|| is given in (1.10).
So we get that
OAt 52At msAt

b0, (20) 2 (3= 22 ) Il + 5 19l + 5 Vel (2)
is coercive, since At < 7.
Step 2: Proof of estimate (2.6)
Using (2.7) and the fact that b((u™*!, p), (w1 p)) = K((u"!,p)) we get

OAt ed> At 2 msAt
n+1 n+1
(5= 2 1 e + L N9 Py + 2 19l
6 n|2 0 n+1(]2
< 3 " [ p2ym + B u H(L2(Q))m ;

which gives us the estimate (2.6). O

2.2 Existence for the nonlinear time-discrete problem

In this subsection we prove the existence, using Schaefer’s fixed point theorem, of a solution
for the nonlinear time discrete confined system (2.10) given below.



For this purpose, let the function
Y tblne—£5  ifb<e,
U, (b)—= =< blnb ife<b</, (2.8)

Pybinl—Lt  ifb>¢,

which is continuous, convex and satisfies that W7 ,(z) = where T is given in (2.2).

1
et (l’) ’
Let us introduce our nonlinear time discrete system: Assume that A satisfies (1.5). Let

u? = (u")1<icm = up = (u})1<i<m that satisfies

C) = Z/ W o(uf) < +o0, (2.9)
i=1 /&

such that u) > 0in Q for i = 1,...,m. Then for all At, e, £, n, § > 0, with e < 1 < £ and
At < 1, for n € N, we look for a solution (u", p"™) = ((u"" ™)1 <i<pm, p™ ") of the following
nonlinear system:

ui,n—l—l _ ui,n

A

E uhmtt = 1 in €,
i=1

where F!, s is given in (2.3).

= div{F,, (" u ), p"} in DI(Q),
(2.10)

Proposition 2.2 (Ezistence for system (2.10))

There exists a sequence of functions u™ = (u»"*1) i, € (HY(Q))™ and a function p"** €
HY(Q)/R such that (u™** p"*™) is a solution of system (2.10), that satisfies the entropy
estimate

Z/Q\IJ&K(UL”H)jL(SAtZ HVukJrlH?LQ(Q))m—i—(SDAtZ HV@7 * ukHH?LQ( Z/Q co(up),
=1 k=0

k=0 i=1
(2.11)
and
At||vp”+1HL2 < Oy, (2.12)
where 2 p 20
C, — m(||All +0)*Cy (2.13)

5 ’
where C is given in (2.9).



Proof of Proposition 2.2
Step 1: Existence of a solution for (2.10)
We define, for a given w := u" = (u"")1<j<pm € (LA())™ and v := "™ = (v 1)), €
(L2(2))™, the map 6 as:

0 . (L))" — (L))"

v — u

where u := u"™ = (u""t) 0y = 00" ) € (HY(Q))™ is such that (u,p™™!) is the unique
solution of system (2.4), given by Proposition 2.1. Moreover, we can prove that € is continu-
ous, compact mapping and the set {u € X, u=A®(u) forsome X € [0,1]} is bounded.

Then 6 has a fixed point v"** on (L?(2))™ by the Schaefer’s fixed point theorem [2, Theorem
4 page 504]. This implies the existence of a solution (u"*1, p"™) for system (2.10).

Step 2: Proof of estimate (2.11)
Since W, is convex we have

ul n+1 m ubntl ubn )
§- [ v (e

_ _Z/ (Ta,é(ui,n+1)vpn+l+5T5,€(ui,n+l)vui7n+l
i=1 v

+T5,Z(ui,n+1> ZAijVPn*Pn *uj,nJrl) \Ilglve(ui,n+1>vui,n+1

j=1

— _Z _/ Vanrl _vui,nJrl +5/ |Vui,n+1|2+/van*ui,n+1Aijvpn*uj,n+l
i=1 Q Q Q=
_25/ |Vt — 602/ |V py % w2,
i=1 /O i=1 /&

IN

which, after a reccurence, gives us (2.11).
Now, taking the sum on i of system (2.10) then by multiplying by p"*! we get

0= Z/ Te!(uim-i-l) ‘vpn—‘rl}Q + Z/ Ta,ﬁ(ui,n-‘rl ZAW V,On*Pn*U] n—H) . vpn—}—l
i=1 79 i=1 7% j=1
+ 52/ Te,é(ui,n+1>vui,n+1 . vpn+1.
i=1 /&



Thus we have that

IN

HVPHIH;(Q) AN VM [V oy * py * un+1H(L2(Q))m HVPnHHB(Q)
t5/m HVUHH H(LZ(Q))m HanH ||L2(Q)

tvm (6 + [|All) HvunHH(m(Q))m VPRHHH(Q)

1 n do n
< Vm (5 + [ All) (2_0[ [Vu +1||?L2(Q))m T3 [Vp +1H2L?(Q)>

Cm(||All +9)*
2

IN +

1 n 2 n 2
< ) HVp +1HL2(Q) + HV“ +1||(L2(Q))m’

where we have used in the fourth line the Young’s inequality, chosed in the fifth line

J = 1
(/m(|| Al +6)

n 2
At |[Vu +l”(L?(Q))m <

Moreover using, from the entropy estimate (2.11), the fact that
C
71 we get estimate (2.12). O

2.3 Proof of Theoreml.1

Passage to the limit in all parameters

The techniques used here are very similar to [3].

Step 1: Passage to the limit when (At,e) — (0,0) ([3, Proposition 3.3])

For all n € {0,..., K — 1} set t,, = nAt and let the piecewise continuous in time functions:

UAt(t, (L’) = (Ui’At(t,ZE))lgiSm = (ui’n+1($))1gi§m, fort € (tn, tn+1]. (214)

pRi(t ) = p T (z), for t € (tn, tns1]. (2.15)
The first term on the left-hand side of (2.11) implies that u>?! € L>(0,T; L*(Q)) for i =
1,---,m. Now, using (2.11) with a suitable interpolation we can find ¢ > 2 and a constant
C independent of € and At such that

(o I <0,

0.1:L2(@) T Hui’AtHLl(o,T;Hl(n)) + Hui’AtHVar([O,T);H—l(Q))

K-1
where Hui’m||Var([07T);H71(Q)) = Z Hui’At(th) — ui’At(tn)HHﬂ(Q). Therefore, by a variant of
n=0

Simon’s Lemma [3, Theorem 2.4] there exists a function u = (u')1<ij<m € (L*(0,T; H*(Q)))™
such that ' — wu strongly in (L%*(0,T;L*(Q)))™. Moreover, (2.12) and Poincarré-
Wirtinger’s inequality imply that there exists a function p € L?(0,T; H*(2)/R) such that
pAt — p weakly in (L2(0,T; HY(Q)/R))™. Passing to the limit as (At,e) — (0,0) in (2.10),
by using in particular the weak L? - strong L? convergence in the products, we obtain that

10



(u,p) is a solution of the following system

ou’ = diV{F&M’&(u,p)} in D'(Qr),
d ditr) = 1 in Qp, (2.16)
1=1

u'(z,0) = up(x) in

where
Fy g5 (s p) = T (u') (Vp + ) AV * py el + 5Vui> :
j=1

the initial condition is recovered by Aubin’s Lemma [4, Proposition 2.1 and Theorem 3.1,
Chapter 1] and [3, Proposition 5.1] since (2.11) implies that 0;(u®! x pa;) is uniformaly
bounded in L?(0,7; H~'(€)) for some mollifier pa; (see [3, Proposition 3.3]).

Moreover, the boundedness on the entropy function due to (2.11) implies the nonnegativity
of the limit u and then together with 7" ' = 1 imply that 0 < v’ < 1 and T%(u') = u'.
So we do not need to pass to the limit as £ — oo.

Therefore, taking the liminf as (¢, At) — (0,0) in (2.11) we obtain that (u,p) satisfies the
following entropy estimate for a.e. t1,t, € (0,7T)

/Q S (t) + 0> [V |Gz + 00 2 Von* 0 s sz < / > (up).
=1 =1 =1 =1

(2.17)
The same calculation leading to (2.12), but with integration in time and space, yields us to

2
|’vaL2(07T;L2(Q)) < Cy, (2.18)

m([[A]l +0)*Co

where Cy := and Cp := > 7" [, W(uh) < +oo.
Step 2: Passage to the limit when 7 — 0 ([3, Proposition 3.5])
Let u" a solution of (2.16). By (2.17) and a suitable interpolation we can find ¢ > 2 such

that , . i
1" oo zszqny 19 o ey 100 | s gigwncepyy < €

Then, by Simon’s Lemma [7] we can find a function v = (u')1<;<mm € (L*(0,T; HY(22)))™ and
a function p € L2(0,T; H'(2)/R) such that, as () — (00, 0), u" — u in (L?(0,T; L*(2)))™,
Vu'" — Vu weakly in (L*(0,T; L*(Q2)))™ and p* — p weakly in L*(0,T; H'(Q)/R). Note
that u’ > 0 a.e. in Qp. Therefore, passing to the limit as n — 0 in (2.16) we get that (u,p)

11



is a solution of the following system

¢ m
8tui = div {uZ <Vp + Z Aijvuj + 5VU2> } n D/(QT)a

j=1
mo (2.19)
Zu’(t,x} =1 in Qp

i=1

_ui(x, 0) = uy(x) in

\

where the initial condition is recovered by [3, Proposition 5.1] since we have that d,u" is
uniformly bounded in L*(0,T; (W>°(Q))’) with s = q% > 1. Moreover, u satisfies for a.e.
t1,t2 € (0,T)

/Q;\I/(w(h)) + 50; HvuiH;(n,tz;m(Q)) < /Q;\P(UB)’ (2.20)

and p satisfies
2
||vp||L2(O,T;L2(Q)) < Cs, (2.21)

m [ Al Co

do
Step 3: Passage to the limit when § — 0 ([3, Theorem 1.1])
Similarly, we pass to the limit when § — 0 in system (2.19) to get the existence result,
announced in Theorem 1.1, of a solution for system (1.2) that satisfies (1.8) and (1.9). O

where C5 :=
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