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Strength of a matrix with elliptic criterion reinforced by rigid inclusions

with imperfect interfaces

François Bignonnet∗, Luc Dormieux, Eric Lemarchand

Université Paris-Est, Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR, F-77455 Marne-la-Vallée, France

Abstract

Elliptic effective strength criteria in the mean-deviatoric stress plane are encountered in porous media for
a granular material made of rigid grains with cohesive frictional interfaces or a material with pores in
a Drucker-Prager matrix. The macroscopic strength criterion of a heterogeneous material comprising a
matrix with elliptic strength criterion reinforced by rigid inclusions with perfect or imperfect interfaces
is studied. Considered imperfect interfaces follow either a Tresca or a Mohr-Coulomb strength criterion.
Derived macroscopic criteria are shown to be a combination of a larger ellipse, which corresponds to the
criterion for perfectly bounded interfaces, conditionally truncated by a smaller ellipse resulting from the
activation of interfacial mechanisms. The activation of the interfacial mechanisms depends on the matrix
and interfaces strength properties, inclusions concentration, as well as the macroscopic strain triaxiality
ratio.

Keywords: Strength, Homogenization, Interfaces, Micromechanics, Mohr-Coulomb, Tresca

1. Introduction

Imperfect interfaces between constituents of heterogeneous media are increasingly understood to play a
major role on the effective strength properties. Such imperfect interfaces can be characterized by a criterion
the stress vector acting on the interface must not exceed. Thanks to homogenization methods, the strength
of granular geomaterials has been investigated, successively considering the cases of rigid grains interfaced by
a Tresca criterion (Dormieux et al., 2007), a frictional criterion (Maalej et al., 2009) or a cohesive frictional
criterion (He et al., 2013), as well as the competition between Tresca interfacial and Von Mises intra-granular
strength (Dormieux et al., 2010).

Additionally, several types of porous media have been recognized to be governed by an elliptic effective
strength criterion in the mean-deviatoric stress plane. For example, a composite made of pores in a matrix
with a Von Mises (Barthélémy, 2005) or Drucker-Prager (Barthélémy, 2005; Maghous et al., 2009) strength
criterion has an elliptic macroscopic strength criterion. Above a critical porosity threshold, the granular
material with cohesive frictional interfaces considered in He et al. (2013) also proves to follow a similar
criterion. Elliptic strength criteria are thus of great interest in geomechanics, for instance to describe the
clay matrix of a shale. However, it is worth noting that this class of elliptic strength criteria is obtained
only by applying the so-called modified secant modulii approach (Suquet, 1995) to the homogenization of
ductile porous materials, which is precisely the method we intend to adopt in the present work for a second
homogenization step. A Gurson-type analysis (Gurson, 1977) of the strength of porous materials would have
led to the use of a different criterion for the clay matrix, but will not be considered here.
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Figure 1: Example of thought-of material. Cohesive frictional granular material reinforced by rigid particles
with imperfect interfaces. According to the separation of scale principle, rmicro ≪ rmeso. This paper deals
with upscaling from meso to macro scales.

Driven by the thought-of example of shales for which the clay matrix is reinforced by silica or calcite
inclusions (Fig. 1), the macroscopic strength of a material made of a matrix with an elliptic strength criterion
reinforced by rigid inclusions is yet to be investigated. Furthermore, the degradation of this reinforcement,
coming from matrix-inclusion interface imperfections, is of critical interest. The case of perfect interfaces
will be compared to Tresca or Mohr-Coulomb interfaces. The present work addresses the imperfection of
the interfaces under the hypothesis of ductility, whereas matrix-inclusion debonding had previously been
studied in the context of fracture mechanics (see e.g. Mantič (2009) and Greco et al. (2013)).

This paper aims at addressing this strength issue using continuum micromechanics. From a technical
point of view, Barthélémy and Dormieux (2004) developed a strength homogenization method in which the
macroscopic stress states lying on the boundary of the effective strength criterion domain are obtained
by solving a fictitious non linear viscous problem. In turn, the non linear problem can be solved using
secant or affine methods (Suquet, 1995, 1997) which rely on the solution to the associated linear problem.
These methods proved successful to predict the strength of heterogeneous material, even in the presence
of interface effects (Barthélémy, 2005; Barthélémy and Dormieux, 2004; Dormieux et al., 2010, 2006, 2007;
He et al., 2013; Maalej et al., 2009; Maghous et al., 2009; Sanahuja and Dormieux, 2005).

To start with, the homogenization method is briefly recalled and the fictitious non linear problem is
derived from the strength properties of the components in section 2.

Next, the non linear homogenization method is presented in section 3 after resolution of the linear
problem underlying the fictitious problem arising from the previous section.

Finally, the macroscopic strength criteria are derived in section 4 in the case of perfect, Tresca or Mohr-
Coulomb interfaces.

Notations The second and fourth order identity tensors are respectively denoted by 1 and I. The volumic
and deviatoric projection tensors J and K are defined as J = 1

3
1⊗ 1 and K = I− J.

2. Limit state equations

2.1. Methodology

The aim of this article is to determine the effective strength of a composite made of a matrix reinforced
by rigid inclusions with imperfect matrix-inclusion interfaces. A representative elementary volume (rev) Ω
of this composite is introduced. It comprises a matrix (phase Ωm) and rigid inclusions (phase Ωi) with
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volume fraction ρ. Locally, the unit normal to the interface directed outwards from the inclusion is noted
n. The volume averages of a function a over the rev Ω, the matrix phase Ωm, the inclusionary phase Ωi,
and all the interfaces Γ are respectively denoted aΩ = a, am, ai and aΓ.

A macroscopic stress state Σ applied to Ω is said to be admissible provided that there exists some micro-
scopic stress field σ(z) defined on the rev Ω which meets the following conditions (de Buhan (1986),Suquet
(1983)):

divσ = 0 (∀z ∈ Ω)
σ(z) ∈ G(z) (∀z ∈ Ω)
σ = Σ

(1)

where G(z) denotes the domain of admissible microscopic stress states at point z in the rev Ω. The set of
admissible macroscopic stress states is denoted by Ghom.

The strength properties of the constituents at the microscopic scale therefore need to be characterized.
The domain Gm of admissible stress states in the matrix is defined by a strength criterion fm(σ) such that:

σ ∈ Gm ⇔ fm(σ) 6 0.

In turn, the inclusions are supposed infinitely resistant. The emphasis of this paper is put on the limited
strength of the matrix-inclusions interfaces: The inclusions may be not perfectly bounded to the matrix;
instead, the strength of the interface is described by a criterion on the stress vector T acting on the matrix-
inclusion interface:

T ∈ GΓ ⇔ fΓ(T ) 6 0.

Γ denotes the set of matrix-inclusion interfaces and GΓ defined above is the set of admissible stress vectors.

Equivalently, the domains Gm and GΓ may be characterized by their support functions (Dormieux et al.,
2006; Salencon, 1990). This is the so-called dual formulation. The support function πm(d) of the matrix
strength is defined as

πm(d) = sup{σ : d, fm(σ) 6 0},

where d and πm(d) physically represent a virtual strain rate and the associated dissipation. Likewise, the
support function πΓ(JvK) of the interface criterion is

πΓ(JvK) = sup{T : JvK, fΓ(T ) 6 0},

where JvK and πΓ(JvK) physically represent a virtual velocity jump across the interface and the associated
dissipation.

The direct use of the definition (1) for the determination of Ghom is uneasy. Alternatively, as shown in
Leblond et al. (1994),Barthélémy and Dormieux (2004), the boundary ∂Ghom of the macroscopic strength
criterion can be retrieved by solving the following boundary value problem defined on the rev Ω

divσ = 0 (Ω)

σ =
∂πm
∂d

(Ωm)

T =
∂πΓ
∂JvK

(Γ)

σ = Ci : d (Ωi) with Ci → ∞
v(z) = D · z (∂Ω)

d = grads
v (Ω)

(2)
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This boundary value problem may be interpreted as a fictitious non linear viscous problem where σ is the
local stress field and v the local velocity field. The important feature is that the macroscopic stress state
Σ, related to σ by the stress averaging rule Σ = σ lies on the boundary ∂Ghom of the macroscopic strength
criterion. More precisely it is located at the point of ∂Ghom where the outward normal is oriented along the
macroscopic strain rate D.

Thus, the determination of the boundary ∂Ghom of the macroscopic strength criterion amounts to solving
the above fictitious non linear viscous problem. The non linear viscous state equations in each phase are
defined from the derivatives of their support function. The next parts are dedicated to the characterization
of the strength properties of the matrix and the interfaces and to the derivation of the associated fictitious
state equations.

2.2. Matrix

Using appropriate non linear homogenization techniques, He et al. (2013) recently derived the macro-
scopic strength of a granular medium made of rigid spherical grains interfaced by cohesive frictional inter-
faces. The latter follow a Mohr-Coulomb failure criterion. It will be assumed that the result of this analysis
provides a suitable description for the strength of the matrix at stake. The strength criterion is isotropic
and can be expressed as follows:

fm(σ) =
(σm + c)2

a
+
σ2
d

b
− 1 6 0 (3)

where a, b, c depend on intergranular interfacial strength properties and on the porosity. The stress invariant
appearing in (3) are the mean stress σm and the deviatoric stress σd, which are defined as

σm =
1

3
tr(σ) ; σd = σ − σm1 ; σd =

√
σd : σd.

In the (σm, σd) plane, the boundary of Gm is an ellipse with semi-axes
√
a and

√
b. The support function

of the failure criterion (3) is the function of the tensorial variable d

πm(d) =
√

ad2v + bd2d − cdv (4)

where the strain rate invariants are the volume strain rate dv and the deviatoric strain rate dd, defined as

dv = tr(d) ; dd = d − 1

3
dv1 ; dd =

√

dd : dd.

Differentiating the support function (4), the fictitious state equation in the matrix is written in a secant
formulation involving a prestress

σ =
∂πm
∂d

= Cm : d+ σ
p,

with

Cm = 3kmJ+ 2µmK ; σ
p =− c1,

km =
a

√

ad2v + bd2d
; 2µm=

b
√

ad2v + bd2d
.

(5)

2.3. Tresca interfaces

First, the case where the strength of the interfaces is governed by a Tresca criterion ftr(T ) is considered.
The Tresca criterion is characterized by a threshold k on the tangential component Tt of the stress vector:

ftr(T ) = Tt − k 6 0, (6)
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with

T t = (1− n⊗ n) · T ; Tt =
√

T t · T t ; Tn = T · n.

The support function of the Tresca criterion (Salencon, 1990) is

πtr(JvK) =

{

+∞ if JvnK 6= 0,

kJvtK if JvnK = 0.
(7)

This support function is highly singular, thus not suited for the direct implementation from the definition
of the fictitious state equation. Following Barthélémy (2005); Sanahuja and Dormieux (2005), the Tresca
criterion can be viewed as the limit of a sequence of ellipses in the (Tn, Tt) plan

ftr(T , L) =

(

Tn
L

)2

+

(

Tt
k

)2

− 1 6 0, (8)

when L/k tends to infinity. The support function of the regularized criterion (8) is

πtr(JvK, L) =
√

(LJvnK)2 + (kJvtK)2. (9)

The associated state equation reads

T =
∂πtr(JvK, L)

∂JvK
= K(JvK, L) · JvK = Kn(JvK, L)JvnKn+Kt(JvK, L)JvtK, (10)

where the normal and tangential components of the velocity jump JvK across the interface are defined
similarly to those of the stress vector T . The secant modulii appearing in (10) are:

Kn(JvK, L) =
L2

√

(LJvnK)2 + (kJvtK)2
; Kt(JvK, L) =

k2
√

(LJvnK)2 + (kJvtK)2
. (11)

In the limit L/k → ∞, the normal velocity jump JvnK → 0 while tangential velocity jumps are allowed.
Then, the tangent stiffness modulus Kt → k/JvtK.

2.4. Mohr-Coulomb interfaces

In order to account for the effect of the normal stress on the strength of a frictional interface, let now
assume that the stress vector at the matrix-inclusion interface is bounded by a Mohr-Coulomb criterion:

fmc(T ) = Tt + α(Tn − h) 6 0. (12)

The positive scalars h and α respectively denote the interface tensile strength and the friction coefficient.
The support function of the Mohr-Coulomb criterion (Salencon, 1990) is

πmc(JvK) =

{

+∞ if JvnK < αJvtK

hJvnK if JvnK > αJvtK.
(13)

The support function is highly singular. Again, in view of deriving the fictitious state equation of this
interface, a direct differentiation is not possible. Hence, following He et al. (2013); Maghous et al. (2009),
the support function has to be regularized by a sequence of potentials

ψj(JvK) = fj(Y ) + hJvnK with Y = JvnK − αJvtK. (14)

The positive scalar j will tend to 0 and fj is a convex function of class C2 defined on ]− j,+∞[ by

• fj(Y ) = 0 if Y > 0,

5



• fj decreasing on ]− j, 0],

• limY →−j+ fj(Y ) = +∞.

Thus, when j tends to 0, the sequence of potentials ψj tends to the support function πmc of the interface
criterion. The state equation associated with the regularized potential is

T =
∂ψj

∂JvK
=

∂ψj

∂JvnK
n+

∂ψj

∂JvtK
t. (15)

Introducing the function F(Y ) =
∂ψj

∂Y
which is negative or null, the state equation is

T = F(Y )(n− αt) + hn. (16)

Hence, for T 6= hn, necessarily F(Y ) < 0 and thus Y ∈]− j; 0[. Asymptotically, the flow rule JvnK = αJvtK
is met as j tends to 0. This feature of the described technique is very important in so far as it means that
the normality rule in the interfaces is correctly accounted for.

In order to have positive tangential and normal modulii, the state equation is written in an affine form:

T = K(JvnK, JvtK) · JvK + T
p(JvnK, JvtK). (17)

where

Kn =
F
Y

; Kt = − αF
JvtK

; T
p =

(

h− αF
Y

JvtK

)

n. (18)

Asymptotically, the affine modulii meet

lim
j→0

Kt

Kn

= lim
j→0

−αY
vt

= 0 and lim
j→0

T p

Kn

= −αvt. (19)

3. Linear and non linear homogenization

3.1. Linear homogenization

As stated before, the dual approach for limit analysis developed in the previous section leads to a fictitious
non linear viscous problem. As far as homogenization is concerned, the modified secant modulii method
(see e.g. Suquet (1995, 1997)) provides an efficient technique to deal with non linearity. It relies upon
the solution of a linear homogenization problem together with the derivation of appropriate phase average
quantities. For this reason, this section is devoted to the resolution of the linear viscous problem and to the
derivation of average estimates for the strain rate in the matrix as well as for the velocity jump in interfaces.

3.1.1. Definition of the linear problem

To account for the prestressed formulation of the matrix and interface state equations, the linear problem
must include three loading parameters: the macroscopic strain rate D, the matrix uniform prestress p and
the interface uniform prestress ̟. The linear problem is thus

divσ = 0 (Ω)

σ = Cm : d− p1 (Ωm)

T = K · JvK +̟n (Γ)

σ = Ci : d (Ωi) with Ci → ∞
v(z) = D · z (∂Ω)

d = grads
v (Ω)

(20)

The linear problem (20) is solved by superposition of the following loading modes
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• (P1) : no prestress, macroscopic strain D at the boundary ∂Ω.

• (P2) : prestress −(p+̟)1 in the matrix only, no prestress in the interfaces, macroscopic strain 0 at
the boundary ∂Ω.

• (P3) : prestress ̟1 in the matrix and ̟n in the interfaces, macroscopic strain 0 at the boundary ∂Ω

The local solution of problem (Pi) for i = 1, 2, 3 is denoted (vi,σi), the associated strain rate is di and the
macroscopic stress is Σi. The solution of (P3) is the uniform couple σ3 = ̟1 and v3 = 0. The resolution
of (P1) will yield the homogenized stiffness Chom such that Σ1 = Chom : D.

The macroscopic potential energy density Ψ of the linear problem (20) comprises the terms of elastic
energy and the work of the prestresses

|Ω|Ψ(D, p,̟) =
1

2

∫

Ωm

d : C : ddV +
1

2

∫

Γ

JvK : K : JvKdS

−(p+̟)

∫

Ωm

tr(d) dV +̟

∫

Ω

tr(d) dV.

(21)

Akin to poroelasticity where the change in pore volume fraction is the dual macroscopic state variable
associated to pore pressure, let’s introduce here an additional macroscopic state variable defined as the dual
quantity of the matrix prestress. This dual quantity is the matrix volume change normalized by the initial
volume of the rev:

vim = (1− ρ) tr(di
m
) (i = 1, 2) (22)

and by superposition:

vm = (1− ρ) tr(d
m
) (23)

Using the superposition rules v = v1+v2 and d = d1+d2, the density of potential energy Ψ(D, p,̟) reads

|Ω|Ψ(D, p,̟) =
1

2

∫

Ωm

d1 : C : d1 dV +
1

2

∫

Γ

Jv1K ·K · Jv1KdS

+
1

2

∫

Ωm

d2 : (σ2 + (p+̟)1) d V +
1

2

∫

Γ

Jv2K · (σ2 · n) dS

+

∫

Ωm

d2 : σ1 dV +

∫

Γ

Jv2K · (σ1 · n) dS

+ |Ω| (−(p+̟)vm +̟ trD) .

According to the energy definition of Chom, the sum of the two first integrals of the rhs is equal to

|Ω|
2

D : Chom : D.

The second and the third line can be simplified by application of Hill’s lemma extended to interfaces
(Maalej et al., 2009) to the couples of kinematically (resp. statically) admissible velocity and stress fields
(v2,σ2) and (v2,σ1). Eventually, one obtains:

Ψ(D, p,̟) =
1

2
D : Chom : D − (p+̟)

(

v1m +
1

2
v2m

)

+̟ trD. (24)
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3.1.2. Quadratic effective estimates

In view of the application of the modified secant modulii method to solve the non linear problem, volume
and deviatoric estimates of the strain rate in the matrix are needed. In the modified secant modulii method,
these effective values are defined as the quadratic averages over the matrix phase

deffv =

√

d2v
m

; deffd =

√

d2d
m
.

Following Dormieux et al. (2002); He et al. (2013), adapted from Kreher (1990), the estimates are

1

2
(1 − ρ)

(

deffv
)2

=
∂Ψ(D, p,̟)

∂km
,

1

2
(1 − ρ)

(

deffd
)2

=
∂Ψ(D, p,̟)

∂2µm

.

(25)

Similarly, effective jump of velocity at the interface is defined as

JvnKeff =

√

JvnK2
Γ

; JvtK
eff =

√

JvtK2
Γ
.

The results of Kreher (1990) have been extended to interfaces in Maalej et al. (2009), which yields

1

2

|Γ|
|Ω|
(

JvnKeff
)2

=
∂Ψ(D, p,̟)

∂Kn

.

1

2

|Γ|
|Ω|
(

JvtK
eff
)2

=
∂Ψ(D, p,̟)

∂Kt

.

(26)

3.1.3. Mori Tanaka estimates

The linear problem (20) will be solved using a generalized Mori-Tanaka scheme in order to take into
account the matrix-inclusion morphology. In the case of spherical inclusions, it is well-known that the use
of this scheme can be theoretically justified when the spatial distribution of the inclusions is isotropic. This
assumption is adopted in the sequel. The radius of the spherical inclusions is r0 and the volume fraction of
the inclusionary phase is ρ. Accordingly, the specific surface of the interfaces is

|Γ|
|Ω| =

3ρ

r0
. (27)

Solution of problem (P1). The matrix-inclusion morphology suggests to resort to a Mori-Tanaka homoge-
nization scheme in order to derive an estimate of Chom. However, the morphologically representative pattern
is not a homogeneous inclusion but a composite inclusion made up of a rigid sphere surrounded by an elastic
interface. The modified Eshelby problem of a sphere surrounded by a weak interface as introduced in Hashin
(1991) has thus to be used. Transposing the results of Dormieux et al. (2010) derived for a self consistent
scheme, the Mori-Tanaka estimate of the homogenized stiffness is Chom = 3khomJ + 2µhomK where the
compressibility and shear modulii are

khom =
1

3

(3km + 4ρµm)r0Kn + (1 − ρ)12kmµm

(1− ρ)r0Kn + 4µm + 3ρkm
,

2µhom =µm

(((3 + 2ρ)4µm + (2 + 3ρ)3km)r0Kn + 4µm((2 + ρ)8µm + (1 + ρ)9km))r0Kt + ...

(3(1− ρ)(km + 2µm)r0Kn + ((4 − 3ρ)4µm + (3 − 2ρ)3km)2µm)r0Kt + ...

...(((3 + ρ)8µm + (5 + 3ρ)3km)r0Kn + (1− ρ)(8µm + 9km)8µm)2µm

...(3((5− 2ρ)km + (2− ρ)4µm)r0Kn + ((2 + 3ρ)4µm + (3 + 2ρ)3km)8µm)µm

.

(28)

In the following developments, the limit case Kn/Kt → ∞ will be of particular interest as seen from (11)
and (19). The homogenized modulii then read

khom,l =
3km + 4ρµm

3(1− ρ)
,

2µhom,l = µm

(3km(2 + 3ρ) + 4µm(2ρ+ 3))r0Kt + 2µm(8(ρ+ 3)µm + 3(3ρ+ 5)km)

3 ((1− ρ)(km + 2µm)r0Kt + µm((5 − 2ρ)km + 4(2− ρ)µm))
.

(29)
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In view of the derivation of the potential energy (see (24)), it is useful to determine the matrix volume
change v1m as a function of the macroscopic strain rate D. Solving of (P1) using a Mori-Tanaka scheme
leads to

v1m = bm1 : D (30)

where the coefficient bm is equal to

bm = (1− ρ)
r0Kn + 4µm

(1− ρ)r0Kn + 4µm + 3ρkm
. (31)

Solution of problem (P2). At the microscopic scale, the stress field linearly depends on p+̟. Hence, there

is a second order tensor B2 such that σ2 = −B2(p+̟). The macroscopic stress is then Σ2 = −B2
Ω
(p+̟).

In the line of reasoning of the Maxwell-Betti theorem and its application to poroelasticity (Dormieux et al.,
2002), first note that:

|Ω|d1 : C : d2

Ω
+ |Γ|Jv1K ·K · Jv2K

Γ
= |Ω|d2 : C : d1

Ω
+ |Γ|Jv2K ·K · Jv1K

Γ
.

where the symmetry of C and K was used. Careful application of Hill’s lemma (in its extended form to
interfaces (Maalej et al., 2009)) to the crossed couples (d1,σ2) and (d2,σ1), with account for the prestress
p+̟ then yields:

d1

Ω
: σ2

Ω + (p+̟)1 : (1− ρ)d1

m
= d2

Ω
: σ1

Ω.

Next, recalling the boundary conditions in (P1) and (P2) as well as (30), one obtains:

−(p+̟)B2

Ω
: D + (p+̟)bm1 : D = 0.

The macroscopic stress of (P2) is finally derived as

Σ2 = −(p+̟)bm1.

In turn, let us determine the normalized matrix volume change v2m which is involved in (24). To do so,
the previous expression of the macroscopic stress in (P2) is confronted to the stress average rule (see Eqs.
(35) to (38) for details)

Σ2 = −(p+̟)bm1 = (1− ρ)(Cm : d2
Ωm − (p+̟)1) +

|Γ|
|Ω|r0n⊗K · Jv2K

Γ
,

Applying the trace operator, the above equation simplifies into

−3(p+̟)bm = 3kmv2m − (1 − ρ)3(p+̟) +
|Γ|
|Ω|r0KnJv2nK

Γ
.

Since the macroscopic strain rate is null in problem (P2) and recalling that the inclusions are rigid (no
strain), the strain average rule reduces to:

0 = v2m +
|Γ|
|Ω|Jv2nK

Γ
.

Finally, the matrix volume change depends on the prestress −(p+̟) as

v2m = −3(bm − 1 + ρ)

3km − r0Kn

(p+̟) =
1

Nm

(p+̟),

where the modulus Nm takes the form

Nm =
(1− ρ)r0Kn + 4µm + 3ρkm

3ρ(1− ρ)
. (32)
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Complete linear problem. Adapting from Dormieux et al. (2006), the two macroscopic state equations of
the complete linear problem are obtained by superposition of the three loading modes

Σ =C
hom : D − (p+̟)bm1+̟1,

vm = bm1 : D +
p+̟

Nm

,
(33)

where Chom is defined by (28), bm by (31) and Nm by (32).
The potential energy of the complete linear viscous problem is finally obtained by injection of (33) in

(24)

Ψ(D, p,̟) =
1

2
D : Chom : D − (p+̟)bm trD − (p+̟)2

2Nm

+̟ trD. (34)

For forthcoming use, we also provide an alternative micro-to-macro expression of the macroscopic mean
stress Σm. The starting point is the stress average rule Σm = σm which in turn reads:

Σm = (1− ρ)σm
m + ρσm

i (35)

We now evaluate the average σm
i from the average Tn

Γ
of the normal component. Indeed, considering a

given particle P ⊂ Ωi, one obtains:

1

|P|

∫

P

σ dV =
1

|P|

∫

z ⊗ T dS. (36)

We now consider the case of a spherical particle with radius r0. In this case, we note that z is r0n, where
n is the unit normal vector to ∂P . From the above equation, it is readily seen that:

σm
P = Tn

∂P
, (37)

which eventually yields

σm
i = Tn

Γ
. (38)

Introducing this result into (35) and recalling (20), we eventually obtain the following expression for Σm:

Σm = kmvm − (1− ρ)p+ ρ(KnJvnK
Γ
+̟). (39)

3.2. Non linear homogenization

We now consider the non linear problem (2). It is formally identical to the linear one that has just been
dealt with, up to the fact that the non linear modulii (5) are substituted for Cm and (11) or (18) for K in
(20).

To account for the non linearity of the matrix stiffness tensor in a simplified manner, the idea is to assume
that the non linear stiffness tensors can be viewed as functions of appropriate averages of the strain rate,
referred to as “effective strain” (rate). In the modified secant method (Suquet, 1995, 1997), these effective
estimates of the volume and deviatoric strain rates are quadratic averages over the matrix phase of these
quantities. Namely, the effective values of the secant modulii (5) in the matrix phase are estimated using
(25) as

keffm ≈ km(deffv , d
eff
d ) ; µeff

m ≈ µm(deffv , d
eff
d ). (40)

Similarly, the non linearity of the interface stiffness is taken into account through the estimates of the
jump of velocity components (26) across the interface

Keff
n ≈ Kn(JvnKeff, JvtK

eff) ; Keff
t ≈ Kt(JvnKeff, JvtK

eff). (41)
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4. Macroscopic criteria

4.1. Perfect interfaces

To start with, perfect interfaces are considered. In this case, no jump of velocity is allowed at the
interface, while the tangential and normal stiffnesses of the interface are infinite. Thus, problem (2) is
solved based on the results of the linear problem (20) in the limit case where Kn and Kt are infinite with
no prestress in the interfaces (̟ = 0).

As far as the underlying linear problem is concerned, the previous decomposition in the three sub-
problems becomes trivial.
For (P1), the linear homogenized modulii (28) reduce to the classical Mori-Tanaka estimates for a matrix
composite with perfectly bounded and infinitely stiff inclusions

khom =
3km + 4ρµm

3(1− ρ)
,

2µhom = µm

3km(2 + 3ρ) + 4µm(2ρ+ 3)

3(1− ρ)(km + 2µm)
.

(42)

For (P2), it is readily seen that the solution is (v2 = 0,σ2 = −p1) while the solution to (P3) is (v3 =
0,σ3 = 0) (since ̟ = 0).

Computations are carried out by substituting the homogenized modulii (42) in the potential energy with
p = c (see (5)) and ̟ = 0. Then estimates of the strain rate are derived using (25) and the non linear
equations (40) are solved for deffv and deffd . The solution is reported in µeff

m :

2µeff
m =

(1 − ρ)b

Dd

√

6(a+ b)

2(a+ b)(2ρb+ 3a)β2 + bq
, (43)

where the constant q is defined at (48) and β is the strain triaxiality ratio defined as

β = Dv/Dd. (44)

Then, recalling (5), one obtains keffm = 2µeff
ma/b. Using these expressions of the effective matrix modulii

in (42), the macroscopic stress Σ is eventually obtained from the first equation of (33) which provides
parametric equations for Σm and Σd as functions of β. Eliminating β yields the equation of the boundary
∂Ghom, that is, the macroscopic criterion. As expected, the latter is isotropic. ∂Ghom is an ellipse in the
(Σm,Σd) plane. The domain Ghom is defined as:

(Σm + c)2

A
+

Σ2
d

B
− 1 6 0,

where A = a

(

1 + ρ
2b

3a

)

; B = b

(

1 + ρ
9a+ 4b

6(a+ b)

)

.

(45)

It is readily seen that Ghom contains the matrix criterion (see (3)). This result had already been obtained
by Shen et al. (2012) using the same homogenization techniques.

4.2. Tresca interfaces

Next, the case where the interfaces are governed by a Tresca criterion (6) is considered. First, the
macroscopic criterion is derived under the assumption of interface activation. Then the conditions for
interface activation are derived.
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4.2.1. Derivation of the macroscopic criterion when the interfaces are activated

As one can see from (5) and (10), the considered underlying linear problem has a prestress p = c in the
matrix, no prestress in the interface (̟ = 0), and an infinite normal modulus Kn in the interface.

The effective value of the tangential jump of velocity JvtK
eff across the interface is expressed as a function

of the matrix effective modulii by use of (26) and (34) where Chom is characterized by (29) and Kt by (11).
Doing so, a second order polynomial equation in JvtK

eff appears. By definition, JvtK
eff is positive, and the

equation has only one or no positive root depending on the tangential strength k of the interfaces. Two
cases have to be studied

1. Inactive interfaces: when no real positive solution of the equation is available, the interfaces are not
active, meaning that the yield condition of the interface criterion is not reached. In this case, JvtK

eff = 0
and Kt → ∞ so that the macroscopic criterion for perfect interfaces (45) is retrieved.

2. Active interfaces: the equation has a positive root JvtK
eff > 0, which means that the interfaces are

active.

The mathematical condition for interface activation will be provided later. The tangential velocity jump
JvtK

eff, as well as Keff
t through (11) are now functions of the effective volume and deviatoric strain rates in

the matrix. In turn, these matrix effective strain rates deffv and deffd are expressed by use of (25), (34) and
(29) in which km is substituted for km = 2µma/b using (5). The expressions of deffv and deffd are then injected
in µm, resulting in a second order polynomial equation in µeff

m which has a single positive root. Explicit
effective values of keffm and Keff

t are deduced, and substituted in µhom and khom to find a parametric equation
of the macroscopic stress states lying on the boundary of the macroscopic strength criterion using (33). The
macroscopic stress state obtained from (33) lies on a portion of ellipse of equation

(Σm + c)2

A
+

(Σd − Σd0)
2

B
6 1. (46)

If the interfaces are not active, the ellipses parameters are defined by (45) and Σd0 = 0. Otherwise, when
interfaces mechanisms are active, the parameters of the ellipse are

A = a

(

1 +
2ρb

3a

)

(

1−
(

k

ke

)2
)

B =
(1− ρ)rb2

18ρ(b+ a)k2e

(

1−
(

k

ke

)2
)

Σd0 =

√
5(2b+ 3a)

6(b+ a)

b

k2e
k

(47)

where the following useful notations are introduced:

t = (4− 2ρ)b+ (5− 2ρ)a,

q = (6 + 4ρ)b+ (6 + 9ρ)a,

r = (4ρ+ 12)b+ (9ρ+ 15)a,

(48)

and ke is a specific value of the tangential strength defined in (49).

4.2.2. Conditions for interface activation

At this stage, the condition for the activation of the interfaces has to be explicited. This condition is
shown to depend on the macroscopic strain triaxiality ratio β = Dv/Dd. First, the existence of roots to the
equation on JvtK

eff imposes

k2 6 k2e =
tb

6ρ(b+ a)
. (49)
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Further, one of the roots is positive if

k2 6 k2c (β) =
5

6

(b(2b+ 3a))2

2(b+ a)2(3a+ 2bρ)β2 + (b+ a)bq
, (50)

where the inequality k2c (β) < k2e is met irrespective of the value of β. Also note that kc(β) is an even
decreasing function of β, thus reaching its maximum for β = 0 (limit case of a purely deviatoric macroscopic
strain rate).

To summarize, two cases have to be considered

• If k > kc(0), the interfaces are never active because the interfaces are too strong (Fig. 2a,2b): the
macroscopic criterion is equal to the criterion with perfect interfaces (45).

• If k 6 kc(0), a critical value of the strain triaxiality ratio β = Dv/Dd appears

β2
c =

5

12(3a+ 2bρ)

(

(2b+ 3a)b

(b+ a)k

)2
(

1−
(

k

kc(0)

)2
)

. (51)

The discussion concerning the status of the interfaces is controlled by the strain triaxiality ratio (44):

– if β2 > β2
c , the interfaces are not active.

– if β2 < β2
c , the interfaces are active. The effective matrix shear modulus is

2µeff
m =

(1− ρ)b

Dd

√

√

√

√

3t

(t(3a+ 2bρ)β2 + (1− ρ)br)

(

1−
(

k

ke

)2
)

(52)

and the tangential velocity jump is

JvtK
eff =

√
5

3

(2b+ 3a)r0Dd

t

(

1− k

kc(β)

)

. (53)

Hence, provided that the tangential strength of the interface is sufficiently low (k 6 kc(0)), the boundary
∂Ghom is a combination of two ellipses : for high triaxiality ratios (β2 > β2

c ), the criterion for perfect
interfaces is retrieved while for low triaxiality ratios (β2 6 β2

c ), the criterion is weakened by the activation of
the interfaces and branches into a smaller ellipse (Fig. 2c,2d), which center lies on the vertical axis Σm = −c.
Note that the two ellipses are tangent at their intersections for β2 = β2

c . At fixed matrix strength properties
and inclusions concentration, reduction of the interface tangential strength k results in a lower deviatoric
strength, whereas the hydrostatic strengths, either in compression or traction, are unchanged.

4.3. Mohr-Coulomb interfaces

Finally, the case where the interfaces strength is governed by a Mohr-Coulomb criterion (12) is considered.
The underlying linear problem makes full use of the results derived in section 3.1, with prestress in the matrix
(p = c) and in the interfaces (̟ = Tp).

4.3.1. Derivation of the macroscopic criterion when the interfaces are activated

Proceeding as for the Tresca interfaces case, the effective tangential jump of velocity JvtK
eff across the

interface is expressed as a function of the matrix effective modulii and the interface function F by use of
(26) and (34) where Chom is characterized by (29) and Kt by (18). Recalling from (5), km = 2µma/b, and
the only conditionally positive root is

JvtK
eff =

6(1− ρ)(a+ b)αF + 2
√
5µeff(2b+ 3a)Dd

6tµeff
r0. (54)
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Figure 2: Macroscopic strength criterion for Tresca interfaces (thick blue-red line). The blue line corresponds
to inactive interfaces and the red line to active interfaces, for different values of the interfaces tangential
strength k. The fine solid black line is the matrix criterion for a = 5, b = 2 and c = 1. The inclusion volume
fraction is ρ = 0.5. The dotted blue-red line are the remaining part of the ellipsis which are not part of the
criterion boundary. The critical tangential strength values are ke = 1.57 and kc(0) = 1.12.
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The normal velocity jump can be determined either from the normality rule JvnKeff = αJvtK
eff (see section

2.4) or consistently with the quadratic estimate (26). Moreover, the direct estimate JvnK
Γ
proves to be equal

to the quadratic estimate JvnKeff.
The interface parameter F(Y ) (see (16)) is determined from the comparison of the macroscopic expression

of the mean macroscopic stress derived from (33):

Σm = khomDv − cbm + (1− bm)Tp

and the direct average of the microscopic mean stress derived from (39):

Σm = kmvm − (1− ρ)c+ ρ(KnJvnKeff + Tp).

where we have used the fact that JvnKeff = JvnK
Γ
. The matrix volumic strain rate vm is expressed thanks to

the second macroscopic state equation (33). Then, according to the interface state equation (16), KnJvnKeff+
Tp = h+ F . Furthermore, in the limit case Kn, Tp → ∞, the interface fictitious behavior is such that

bm → 1 ; (1 − bm)Tp → −ρ(3km + 4µm)

(1 − ρ)r0
JvnKeff ;

Tp
Nm

→ −3ρ

r0
JvnKeff.

From the comparison of the two above expressions of the macroscopic mean stress, we get:

F =
3keff + 4µeff

3(1− ρ)
Dv −

3ρkeff + 4µeff

r0(1− ρ)
JvnKeff − c− h. (55)

The last step proceeds as follows: An equation on JvtK
eff is to be determined from substitution of (55)

into (54) with the normality rule JvnKeff = αJvtK
eff and the identity keff = 2µeffa/b. Akin to the Tresca

interfaces, two cases have to be studied while solving this equation to get JvtK
eff as a function of µeff, Dv

and Dd:

1. Inactive interfaces: when this equation has no positive solution, this physically means that the in-
terfaces are not active, so that JvtK

eff = 0, thus Kt → ∞ and the macroscopic criterion for perfect
interfaces (45) is retrieved.

2. Active interfaces: the equation has a positive root JvtK
eff > 0, which means the interfaces are active.

In the case where interfaces are active, the effective matrix modulii have to be determined assuming a strictly
positive value of JvtK

eff exists. For the sake of clarity, the following additional notations are introduced:

u = 2(a+ b)(3ρa+ 2b)α2 + bt,

w = 2(a+ b)qα2 + 5b(3a+ 2bρ).
(56)

Assuming JvtK
eff > 0, the effective value JvnKeff is deduced from the normality rule and Keff

t from (18).
Then, the matrix strain rate effective values are expressed using (25). Since the interfaces normality rule
is asymptotically met, the expression is taken in the limiting case (19) as for the calculation of F . The
effective strain rate estimates are cast in (5) to get a second order equation in µeff

m , which has a positive root
in the case where (h+ c)2 6 h24 with

h24 =
u

6ρ(a+ b)α2
. (57)

The effective matrix shear modulus µeff
m finally is

2µeff
m = (1 − ρ)

√

√

√

√

3bu

A′D2
v +B′D2

d − 2C′DvDd

(

1−
(

h+ c

h4

)2
)

, (58)
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where the following notations have been introduced

A′ = 12a(a+ b)(1− ρ)2α2 + (3a+ 2bρ)t,

B′ = (3ρa+ 2b)qα2 + b(1− ρ)r,

C′ =
√
5ρ(2b+ 3a)2α.

(59)

The tangential velocity jump, whose sign still has to be discussed, is

JvtK
eff =

r0
3u

(

(2b+ 3a)(
√
5bDd + 2α(a+ b)Dv)−

3(1− ρ)b(a+ b)α(h+ c)

µeff
m

)

. (60)

The effective modulus keffm is derived from µeff
m (58) by (5) while Keff

t (see (18)) is obtained from JvtK
eff

(60) and F (55). These quantities are finally introduced into (29) in order to get µhom and khom. The
macroscopic stress states (Σm,Σd) at the boundary of the macroscopic strength criterion are retrieved from
(33). The associated support function for the active interface part of the strength criterion is recognized to
be

πhom
act (D) =

√

√

√

√

3b

u

(

1−
(

h+ c

h4

)2
)

(A′D2
v +B′D2

d − 2C′DvDd) + Σm0Dv +Σd0Dd, (61)

with

Σm0 =
(h+ c)α(2b+ 3a)ρ

u
2(a+ b)α− c ; Σd0 =

(h+ c)α(2b + 3a)ρ

u

√
5b. (62)

The active interface part of the macroscopic strength criterion fhom
act , of which πhom

act (61) is the support
function, has for boundary a slant ellipse in the (Σm,Σp) plane, centered at (Σm0,Σp0) and characterized
by the equation

fhom
act (Σ) =

(Σm − Σm0)
2

A
+

(Σd − Σd0)
2

B
+

2(Σm − Σm0)(Σd − Σd0)

C
− 1, (63)

with the following ellipse parameters defined using (48), (59) and (57) as

A =
s

B′
; B =

s

A′
; C =

s

C′
,

with s =
(1− ρ)b

3

(

6a(1− ρ)qα2 + (3a+ 2bρ)r
)

(

1−
(

h+ c

h4

)2
)

.
(64)

4.3.2. Conditions for interface activation

Let us now fully explicit the condition for interfaces activation: To do so, the sign of JvtK
eff as a function

of h+ c and β = Dv/Dd has now to be studied and the cases of activation of the interfaces discussed.
The discussion is a bit technical and requires to introduce 4 parameters denoted by hi (i = 1, . . . , 4). h24
was defined in (57) while the others parameters are:

h21 =
(2b+ 3a)2

3(3a+ 2bρ)
,

h22 =
5b(2b+ 3a)2

6(a+ b)qα2
,

h23 =
w(2b+ 3a)2

6(b+ a)(3a+ 2ρb)qα2
.

(65)
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It can be shown that:

h1 < h3 < h4 ; h2 < h3. (66)

The sign of h1 − h2 depends on the value of α as compared to

α2
c =

5b(3a+ 2ρb)

2(a+ b)q
. (67)

If α > αc, then h2 < h1, else h2 > h1.

1. Activation of the interfaces is not possible for (h + c)2 > h24 defined in (57), that is if their tensile
strength is too high (Fig. 3a). The criterion for perfect interfaces is retrieved.

2. Activation is possible only under the additional condition (h + c)2 6 h23 which is a more stringent
condition than the first one since h3 < h4. When h23 < (h+ c)2 < h24, a positive root µeff exists but has
no physical relevancy since the equation for JvtK

eff has no positive root. More precisely, the macroscopic
criterion based on (63) mathematically exists: it is strictly included in the ellipse defined by (45) (non
active interfaces) and does not intersect with it. Nevertheless, it is not part of the boundary of the
strength criterion (Fig. 3b) since JvtK

eff < 0.

3. In the intermediate case h1 < h + c < h3, interfaces are active if the strain triaxiality ratio (44)
β ∈ [βc−;βc+] where

βc± =

√
5b(2b+ 3a)± (h+ c)

√

3bw
(

1− ((h+ c)/h3)
2
)

2(a+ b)(2b+ 3a)α
(

((h+ c)/h1)
2 − 1

) . (68)

The intersection of the two parts of the macroscopic strength criterion occurs in the two points corre-
sponding to βc± (Fig. 3c).
The sign of the critical value βc− is physically meaningful: When βc− > 0, the corresponding point
on the macroscopic criterion lies on the right of the top of the ellipse. In this case, the maximum of
the deviatoric stress is reached in a state where the interfaces are not activated. Interface activation
is restricted to high values of the macroscopic mean stress. In contrast, if βc− < 0, the corresponding
point on the macroscopic criterion lies on the left of the top of the ellipse which implies that the
maximum of the deviatoric stress is reached in a state where the interfaces are indeed activated. This
is consistent with the fact that βc− is an increasing function of h. Accordingly, the sign of βc− is
determined as follows: βc− is negative when (h + c)2 < h22 and positive otherwise. Note that βc− is
not singular for h+ c = h1 since it simplifies into

βc− =
5b2(2b+ 3a)

(

((h+ c)/h2)
2 − 1

)

2(a+ b)α

(√
5b(2b+ 3a) + (h+ c)

√

3bw
(

1− ((h+ c)/h3)
2
)

) . (69)

4. If h+ c < h1, βc+ → ∞ and interfaces are always active if β > βc−. The intersection of the two parts
of the macroscopic strength criterion occurs at a single point (Fig. 3d). In this case, interfaces are
active for a purely isotropic traction loading mode (β → ∞).

Thus, when the interfaces tensile strength is low enough (h + c < h3), the criterion (45) corresponding
to perfect interfaces is truncated and symmetry along the plane Σm = −c is broken. The ellipse for the
active interfaces part of the strength criterion boundary (64) is tangent in βc± to the ellipse for non active
interfaces (45), so the criterion has no angular point at the transition. At a given matrix strength and
inclusion concentration, the reinforcement effect is seen to decrease with reduction of the interface tensile
strength h or friction angle α (Fig. 3). Finally, it is worth noting that the Tresca interfaces case is retrieved
from the Mohr-Coulomb case in the limit α→ 0 and h→ ∞ with h = k/α.
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Figure 3: Macroscopic strength criterion for Mohr-Coulomb interfaces (thick blue-red line). The blue line
corresponds to inactive interfaces and the red line to active interfaces, for different values of the interfaces
tensile strength h. The fine solid black line is the matrix criterion for a = 5, b = 2 and c = 1. The inclusion
volume fraction is ρ = 0.5 and the friction angle α = 0.3. The dotted blue-red line are the remaining part
of the ellipsis which do not belong to the criterion boundary. The critical interface strength values are
h1 = 2.66, h2 = 3.73, h3 = 4.58 and h4 = 5.93.
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For the three cases of interface criteria under study - perfect, Tresca and Mohr-Coulomb - the homoge-
nized strength criteria estimated by the modified secant modulii method appear to depend only on the first
and second invariants of the macroscopic stress tensor. However, Tresca and Mohr-Coulomb criteria can
generate a dependence to the third invariant of the macroscopic stress tensor. It would be interesting in
future works to assess this effect by resorting to a numerical strength homogenization method.

5. Conclusion

In this paper, the effective strength of a matrix-inclusion composite has been considered. Specifically,
the reinforcement of the matrix strength by rigid inclusions has been studied in the case where the matrix
strength domain is delimited by an ellipse in the mean-deviatoric stress plane. The main focus of this work
was the matrix-inclusion interface effects.

Three types of interfaces have been considered, characterized by a strength criterion on the stress vector
acting upon the interface : perfect interfaces, Tresca interfaces for which the tangential stress vector is
uniformly bounded and Mohr-Coulomb interfaces which model cohesive and frictional contact.

The effective strength has been derived within the continuum micromechanics framework. The boundary
of the macroscopic strength criterion has been determined by identification of macroscopic stress states
corresponding to a fictitious non linear viscous problem defined on a representative elementary volume. The
non linear state equations for each constituent have been derived from the different kinds of strength criterion
considered, which required a regularization of the interface criteria. The latter involve prestress terms which
depend on the interface type at stake. This non linear problem has been solved by an implementation of
the so-called modified secant method extended to the case of prestressed phases and interfaces. Estimates
for the underlying prestressed linear problem have been provided using a Mori-Tanaka scheme based on a
modified Eshelby problem in order to account for interface effects.

Closed form expressions of the effective strength have been proposed for the three interfaces types
considered. First, in the case of perfect interfaces, a reinforcement is always observed. The effective criterion
is an ellipse in the mean-deviatoric stress plane, concentric to the matrix criterion one, whose size varies
linearly with inclusions concentration.

Second, in the case of Tresca interfaces, two situations have been observed. If the tangential strength of
the interface is above a threshold which depends on microstructural properties, the interface mechanisms are
not active, and the effective criterion is identical to the one for perfect interfaces. In turn, provided that the
tangential strength of the Tresca interfaces is low enough, the effective criterion results from the truncation
of the one for perfect interfaces by a parallel but smaller ellipse at deviatoric loads, for which interfacial
mechanisms are active. The transition between the two parts of the effective criterion is controlled by the
strain triaxiality ratio. This hybrid criterion is regular, without angles at the transition points between the
two parts and symmetric.

Third, in the case of Mohr-Coulomb interfaces as compared to Tresca interfaces, the part of the effective
criterion corresponding to the activation of the interfaces is located on an ellipse with slant axes. The
local non symmetry of the Mohr-Coulomb criterion (which accounts for the sign of the normal stress) is
transmitted to the macroscopic criterion: The latter has lost its symmetry with respect to the center of the
matrix criterion. As expected, interface activation first occurs at higher values of the macroscopic mean
stress.

The homogenization strategy adopted in this work is based on the modified secant modulii method.
Hence, the homogenized criteria which have been derived are only estimates of the actual macroscopic
criteria. To assess the herein presented criteria, numerical simulations should be carried out in future
research on representative patterns such as a composite sphere made up of a rigid core surrounded by
a matrix, with Tresca or Mohr-Coulomb interfaces between the two phases. We also expect that such
simulations could allow to quantify the effect of the third invariant on the homogenized strength.
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