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Abstract 

Today, nearly every industry needs a continuous power supply, as data loss can be more 

expensive than the capital expenditure for the backup power equipment. The demand for 

emergency standby power (ESP) generator sets is on the rise because of increasing 

industrialization. With increased industrialization comes a societal concern about the issue of 

natural resource depletion and environmental degradation. In response, manufacturing 

companies are providing more sustainable solutions in their products and processes. In this work, 

the life cycle assessment (LCA) methodology has been applied to quantify the energy demands 

of each life cycle stage of an ESP generator set and identify areas of possible energy reductions 

in order to improve product sustainability. The energy demands were calculated using an Excel 

spreadsheet and data from Ecoinvent and the Inventory of Carbon and Energy (ICE) database. 

The life cycle inventory (LCI) was completed using data obtained from the manufacturing 

company and its suppliers. The results revealed that the use phase had the largest energy demand 

at nearly 95% of the total demand, followed by materials at 4%, transportation at 1%, and then 

manufacturing at less than 1%. Recommendations for potential energy reductions were made to 

the manufacturer. Because the use phase dominates the overall energy demand, increasing fuel 

efficiency will have the largest impact; however, the energy demands of the other stages should 

not be overlooked. In order for the generator set to have the most sustainable life, the goal should 

be to reduce energy demands wherever possible. Such reductions can be made by increasing 

remanufacturing rates and using materials with a higher recycled content.  

 

Keywords: Life cycle assessment, sustainability, standby generator set, embodied energy, end of 

life, recycle, remanufacture 
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Chapter 1 

1. Literature Review 

This section is a literature review on life cycle assessments (LCA) and diesel generator 

sets, which serves to provide background information and set the scene for the case study that 

will be presented in Chapter 2. Key components of LCA and the market demand for diesel 

generator sets are discussed.  

1.1. Introduction to Life Cycle Assessments 

This section presents the motivation behind LCA as well as its definition, life cycle 

stages, and applications. 

1.1.1. Motivation 

As environmental awareness increases, industries and businesses are evaluating how their 

operations affect the environment. Society has become concerned about the issue of natural 

resource depletion and environmental degradation. As a result, many businesses have responded 

by providing “greener”, or more sustainable, solutions (Environmental Protection Agency, 

2006). Sustainability is based on a simple principle: Everything required for human survival and 

well-being depends, either directly or indirectly, on the natural environment. To pursue 

sustainability is to create and maintain the conditions under which humans and nature can exist 

in productive harmony to support present and future generations (National Research Council, 

2011). Businesses are now going above and beyond compliance by incorporating sustainability 

into their company values, which sends a message to the public that its employees are taking 

actions to protect the environment and conduct business in a sustainable manner. In response to 

the drive for sustainability, LCA was developed. 
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1.1.2. Definition 

By definition, LCA is a technique to assess the environmental aspects and potential impacts 

associated with a product, process, or service over its entire life cycle by: 

 compiling an inventory of relevant energy and material inputs and environmental 

releases, 

 evaluating the potential environmental impacts associated with identified inputs and 

releases, and 

 interpreting the results to help decision-makers make a more informed decision (EPA, 

2006).  

1.1.3. Life Cycle Stages 

LCAs evaluate all stages of a product’s life, which provides an estimation of the 

cumulative environmental impact associated with the life cycle of the product (ISO 14040). The 

typical life cycle stages and relevant inputs and outputs are shown in Figure 1. 
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Figure 1: Typical life cycle stages (Adapted from: Environmental Protection Agency, 1993) 

 

1.1.4. LCA Applications 

Today, LCAs are used for research, industry, and policy. LCAs have come a long way 

since Harry E. Teasley, Jr. first developed the concept in order to decide whether or not the 

Coca-Cola Company should manufacture their own beverage cans (Hunt & Franklin, 1996). 

Initially, LCA was used for single products and issues, but is now used as a versatile tool to 

determine the impact of a product or process over several environmental metrics. LCA 

methodology also aids in the process of pollution prevention and even policy development 

(McManus & Taylor, 2015).  

It is important to note that usually a LCA is only one piece of information used in a much 

more comprehensive decision-making process. Also, the results of different LCAs can only be 

compared when the assumptions and context of the studies are identical. 
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1.2. Conducting a LCA 

This section provides general information on conducting a LCA, including LCA 

standards, software, data sources, fundamental methodology, and impact metrics. 

1.2.1. LCA Standards 

Because LCAs are being used in a variety of applications, standards have been developed 

in attempt to standardize the methodology and guide users in the process of conducting a LCA. 

However, the standards do not provide specific details and are therefore left to the interpretation 

of the LCA practitioner. The two standards listed below were developed by the International 

Standards Organization (ISO): 

 ISO 14040: 2006 Environmental management—Life cycle assessment: Principles 

and framework 

 ISO 14044: 2006 Environmental management—Life cycle assessment: 

Requirements and Guidelines. 

1.2.2. LCA Software 

A LCA practitioner may facilitate the process of conducting a LCA by using one of the 

many LCA software options available. The EPA identifies and describes 25 different software 

options. Two common names are GaBi and SimaPro. Each software has its own unique features, 

but the concept behind them is the same. The software uses a database with inventory data in a 

wide range of areas, from energy supply to biofuels, and calculates an environmental impact as a 

result of the model inputs. Most of the software is expensive, so it is important for the LCA 

practitioner to know the level of data analysis required. Software packages are desirable for 

simplifying very complex models but can be unnecessary if the LCA is a streamlined one. In the 

event of a streamlined LCA, an Excel spreadsheet is a simpler option that can be used to save 



5 

time and resources. New users would have to invest time into learning LCA software but can 

quickly pick up the idea using an Excel spreadsheet. Another benefit of using an Excel 

spreadsheet is that the practitioner understands each of the calculations and the assumptions 

behind them. A risk of losing transparency exists when using commercial software because the 

computational methods and assumptions are not always stated (Environmental Protection 

Agency, 2006). 

1.2.3. LCA Data Sources 

A variety of data sources may be used for LCA. In addition to data supplied by the 

manufacturer, the sources of data in this study include the Ecoinvent database, the Inventory of 

Carbon & Energy (ICE), and Materials and the Environment: Eco-informed Material Choice. A 

brief description of each source is provided here: 

 Ecoinvent – This database contains over 11,300 datasets in a variety of areas 

including energy supply, agriculture, transport, biofuels, biomaterials, bulk and 

specialty chemicals, construction materials, wood, and waste treatment. 

“Ecoinvent is the most comprehensive and transparent international life cycle 

inventory database” (About ecoinvent, 2016). A user license must be purchased in 

order to access this database. 

 ICE – This database contains carbon and energy data for nearly 200 different 

materials associated with the construction industry. The data were extracted from 

peer-reviewed literature based on a set of specific criteria. Although mainly 

intended for construction in the UK, the material set included in the database 

applies to a wide variety of industries. The database is publicly available online 
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and has attracted interest from industry, academia, and government agencies 

(Hammond & Jones, 2008). 

 Materials and the Environment – Ashby generated data sheets for embodied 

energy and basic recycling information in addition to other material data for 63 

materials used in the greatest quantities. He also provides methods for calculating 

end of life credits and debits that are used in this study (Ashby, 2013). 

1.2.4. LCA Methodology 

The LCA framework consists of four phases: 

 the goal and scope definition phase, 

 the inventory analysis phase,  

 the impact assessment phase, and  

 the interpretation phase. 

The scope of the study includes the system boundary and level of detail necessary for the 

intended use of the final LCA model. Each LCA has varying levels of detail because each goal is 

different. The life cycle inventory analysis phase (LCI) is an inventory of the input and output 

data relevant to the system being studied. It involves the collection of the data required to meet 

the goal of the LCA. The life cycle impact assessment phase (LCIA) is to provide additional 

information to assess the system’s LCI results. Finally, the results of the LCI or LCIA, or both, 

are summarized and discussed as a basis for conclusions and recommendations (ISO 14040).  

1.2.5. Impact Metrics 

 An agreement has not been made on a single environmental impact metric that is both 

workable and capable of guiding design. The Kyoto Protocol and subsequent treaties and 

protocols have established a degree of international agreement to reduce carbon emissions, 
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usually presented as carbon dioxide (CO2) or carbon dioxide equivalent (CO2,eq), which is a 

value corrected for the global warming potential of gas emissions other than CO2. On a national 

scale, the focus is to reduce energy consumption. Fortunately, energy consumption is closely 

related to CO2 production, and the reduction of one usually results in the reduction of the other. 

Energy is a desirable impact metric because it is easiest to monitor, can be measured with 

relative precision, and can be used as a proxy for CO2 if necessary (Ashby, 2013). Therefore, this 

study uses energy as the impact metric. Examples of other impact metrics include global 

warming, acidification, human toxicity, and ecotoxicity potential. 

 Different types of energy usage can be reported. This study will focus on embodied 

energy (EE), which is the total primary energy consumed from direct and indirect processes 

relevant to a product or service within the cradle-to-gate boundaries. This includes all activities 

from raw material extraction, manufacturing, transportation, and through fabrication until the 

product is ready to leave the factory gate (Hammond & Jones, 2008). Ashby describes this term 

in detail and explains that only part of the energy is “embodied”, meaning that it is in the 

material and could be theoretically be recovered. The remaining energy is lost to process 

inefficiencies (Ashby, 2013). 

1.3. LCA Streamlining 

This section describes the purpose behind LCA streamlining as well as different 

approaches to streamlining.  

1.3.1. Purpose 

LCA is meant to be a comprehensive assessment of the environmental impacts of 

products and processes on a “cradle-to-grave” basis. However, this definition has represented 

more of an ideal rather than a practical guide (Weitz & Sharma, 1998). Efforts to develop LCA 
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methodologies date back to the 1970s. The Society of Environmental Toxicology and Chemistry 

(SETAC) in North America and the U.S. EPA have facilitated workshops to develop a 

framework for conducting LCAs. A major concern of the framework is the cost and time 

required. These concerns have led to LCA “streamlining” to make the assessment more feasible 

and more relevant without losing the key features of the life-cycle approach. A “streamlined” 

LCA (SLCA) and a “full-scale” LCA are said to be two points on a continuum, with the latter 

being at the top of the continuum. Most LCAs fall somewhere along the continuum, and as a 

result, the process of streamlining is considered to be an inherent part of the scope-and-goal 

definition process. The streamlining steps must be consistent with the study goals and anticipated 

uses, therefore, knowledge of what needs to be included to support the anticipated application is 

required (SETAC, 1999). 

1.3.2. Streamlining Approaches 

At an EPA conference on LCA streamlining, Weitz presented seven major techniques for 

on streamlining:  

1) eliminating stages in the total life-cycle,  

2) focusing the study on specific environmental impacts or issues from the outset,  

3) analyzing for a limited list of inventory categories,  

4) eliminating impact assessment,  

5) using qualitative information,  

6) using surrogate data from previous studies, 

7) using “threshold” levels to curtail analysis at specific points.  
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The selection of a SLCA should be based on the inteded use of the results.  Because not 

all data are available, every LCA that has been conducted to date has been streamlined (Curran 

& Young, 1996). A combination of the techniques listed above was used for this study. 

1.4. Diesel Generator Sets 

This section describes diesel generator sets and their applications as well as current 

market demand. 

1.4.1. Product description 

A diesel generator set, hereafter referred to as a genset, is a combination of a diesel 

engine with an alternator to convert mechanical energy to electrical energy. The diesel genset in 

this study is equipped with a heavy-duty 15 liter engine with a 500 kW rating for standby 

applications. It is rated at an EPA NSPS (New Source Performance Standards) Stationary 

Emergency Tier 2 emissions level. When the standby genset is running, it usually operates at 3/4 

load and burns 25.7 gallons of diesel per hour. Its life expectancy is 20 years, and the operation 

limit is 200 hours per year based on warranty; however, a more realistic operation is 50-100 

hours. 

1.4.2. Applications 

An emergency standby power (ESP) genset is used to supply power to a varying 

electrical load for the duration of power interruption of a reliable utility source. ESP is 

mandatory for any application that requires an uninterrupted power supply. Large data centers 

and healthcare facilities are two examples of large markets for ESP gensets. 

1.4.3. Market Demand 

Today, nearly every industry needs a continuous power supply, as data loss can be more 

expensive than the capital expenditure for the backup power equipment (India Diesel Genset 
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Market Outlook, 2014). The genset market is driven by the rapidly expanding global population 

and urbanization of cities throughout the world (Generator Industry Outlook, 2016). Genset 

demand will continue to increase as industries such as oil and gas, electronics, semiconductors, 

textiles, food processing units, automotive, industrial machinery, shopping malls, and high-rise 

buildings such as data centers turn to diesel generators to deal with unexpected power outages 

(Sverdlik, 2013). This demand is especially prevalent in Asia-Pacific, where the data center 

industry is rapidly expanding, especially in Singapore, Malaysia, Philippines, Thailand, and 

Australia. Data centers require gensets with a capacity of up to 20 megawatts (MW) for ESP 

applications, and therefore, the demand for large diesel gensets with a power output capacity 

between 1MW and 3MW is on the rise (Frost & Sullivan, 2013). 

Frost and Sullivan predict that the market for 1-3MW diesel gensets will grow from about 

$590 million to about $800 million (U.S. Dollars) in 2017 (Sverdlik, 2013). Another study found 

that the Indian diesel generator market grew 9.5 % between 2012 and 2013, and it was predicted 

that the market would grow at a compound average growth rate of around 11 % in value terms 

during 2014-2018 (India Diesel Genset Market Outlook, 2014). The global genset market will 

continue to be driven by the lack of grid infrastructure in remote locations and increasing 

industrialization in developing countries. 
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Chapter 2 

2. Case Study: Life Cycle Assessment of a Diesel Generator Set 

This chapter describes a case study in which a life cycle assessment was conducted for a 

standby diesel generator set. This section was written to be read as an independent publishable 

manuscript and therefore includes pertinent information first presented in Chapter 1. 

2.1. Introduction 

As environmental awareness increases, industries and businesses are evaluating how their 

operations affect the environment. Society has become concerned about the issue of natural 

resource depletion and environmental degradation. As a result, many businesses have responded 

by providing “greener”, or more sustainable solutions (Environmental Protection Agency, 2006). 

Businesses are now going above and beyond compliance by incorporating sustainability in the 

list of company values, which sends a message to the public that its employees are taking actions 

to protect the environment and conduct business in a sustainable manner. These actions are 

prompting environmental managers and decision makers to look at their products and services 

from cradle to grave. In response to this approach, the need for Life Cycle Assessment (LCA) 

arose.  

LCA is a method of evaluating the cumulative environmental impacts resulting from all 

stages in the product life cycle (EPA, 2006). What started as a tool to evaluate individual 

products has now developed into a standardized method for providing a scientific basis for 

environmental sustainability in industry and government (Curran, 2013).  

This study describes a LCA performed on a standby diesel generator set in cooperation 

with a large diesel engine manufacturing company, which also produces power generation 

products. A standby diesel generator set, hereafter referred to as a genset, is a combination of a 
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diesel engine with an alternator to convert mechanical energy to electrical energy. Emergency 

standby power (ESP) gensets are used to supply power to a varying electrical load for the 

duration of the power interruption of the utility source. ESP gensets are essential for any 

application that requires an uninterrupted power supply.  

Today, nearly every industry needs a continuous power supply, as data loss can be more 

expensive than the capital expenditure for the backup power equipment (India Diesel Genset 

Market Outlook, 2014). The genset market is driven by the rapidly expanding global population 

and urbanization of cities throughout the world (Generator Industry Outlook, 2016). Genset 

demand will continue to increase as industries such as oil and gas, electronics, semiconductors, 

textiles, food processing units, automotive, industrial machinery, shopping malls, and high-rise 

buildings such as data centers turn to diesel generators to deal with unexpected power outages 

(Sverdlik, 2013). This demand is especially prevalent in Asia-Pacific, where the data center 

industry is rapidly expanding, especially in Singapore, Malaysia, Philippines, Thailand, and 

Australia. Data centers require gensets with a capacity of up to 20 megawatts (MW) for ESP 

applications, and therefore, the demand for large diesel gensets with a power output capacity 

between 1MW and 3MW is on the rise (Frost & Sullivan, 2013). 

Frost and Sullivan predict that the market for 1-3MW diesel gensets will grow from about 

$590 million to about $800 million (U.S. Dollars) in 2017 (Sverdlik, 2013). Another study found 

that the Indian diesel generator market grew 9.5 % between 2012 and 2013, and it was predicted 

that the market would grow at a compound average growth rate of around 11 % in value terms 

during 2014-2018 (India Diesel Genset Market Outlook, 2014). The global genset market will 

continue to be driven by the lack of grid infrastructure in remote locations and increasing 

industrialization in developing countries. 
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With their predicted increase in market demand in the upcoming years, gensets will 

become more prevalent, which makes them a good LCA subject. By performing a LCA, the 

environmental impact of the product can be understood, reported, and interpreted by decision 

makers in a manner that promotes sustainable product and/or process choices in the future.  

2.2. Methodology 

2.2.1. Goal and Scope Definition 

The goal of this study is to perform a LCA on a standby genset in order to quantify the 

energy demand for each life cycle stage and identify which is the most energy intensive. Life 

cycle stages of this analysis include materials, manufacturing, use, transportation, and end of life, 

making the study a “cradle-to-grave” analysis. This LCA has been streamlined in order to align 

the results with the goal of the study, thereby making this study a streamlined LCA (SLCA). A 

combination of techniques mentioned by Keith Weitz at the EPA conference on SLCA was used 

to perform this study (Curran & Young, 1996).  

In 2013, the manufacturer partnered with a master’s student from the Massachusetts 

Institute of Technology (MIT) to perform a SLCA on a 15 L displacement engine used in the on-

highway application (Bolin, 2013). The primary focus of the study was to understand the energy 

demands of the life cycle stages prior to the use stage because it was well understood that the use 

phase was the most energy intensive for the on-highway application. This genset study not only 

includes the MIT engine information but extends the analysis to the full life cycle of the engine 

as a part of the genset. This will allow the energy demands of the use phases of an engine in two 

different applications (i.e. on-highway and standby) to be compared to each other. 
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2.2.1.1. Functional Unit 

The functional unit for this study is one standby diesel genset. This particular model is 

equipped with a heavy-duty 15 L engine with a 455 kW rating. To conduct the LCA, the 

generator was divided into five main components: (1) engine, (2) alternator, (3) radiator, (4) 

electronic controls, and (5) skid. Additional parts, such as the air filter and smaller connecting 

pieces, were not considered because of time and resource restraints.   

2.2.1.2. Process Description and System Boundaries 

Before the system boundaries are defined, the processes that are specific to the 

production of this genset will be described.  The individual parts are made in their respective 

manufacturing facilities and then shipped to the assembly facility. Upon completion of assembly, 

the product is distributed to the customer, where it is used until it has reached its end of life 

(EoL). Then it can be recycled, remanufactured, or sent to a landfill. Most likely, the disposal 

route is a combination of these three options.  

This study assesses the entire life cycle of a genset with varying level of detail for each 

stage. The materials stage includes the raw material extraction and processing required to make 

the raw material into a usable form. Further processing such as casting, milling, and forging is 

not included in the system boundary. This grouping is a result of the impact metric, which will 

be described in a later section. The manufacturing stage for this LCA is defined as the stage in 

which each of the five main parts of the genset is built in its respective manufacturing facility. 

This stage also includes the step in which the individual parts are assembled into a genset 

because of the impact metric and similarity in data type. The use phase is fairly straight-forward 

and will be a category of its own. EoL analysis, however, is more complicated because of the 

variety of disposal routes, which will be explained in detail in a later section. While 
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transportation occurs between each of these stages, the only piece that will be considered is 

between the part manufacturing facilities and final assembly site. Downstream transportation that 

occurs after the product is built will not be considered. 

This LCA considers the processes discussed above and the energy inputs associated with 

them, which can be seen in Figure 2. Each process has outputs such as air and water emissions 

that have an impact on the environment but are not considered in this SLCA because the goal of 

the study is to quantify the energy demand for each stage. The impact metric will be described in 

the next section.  

 
Figure 2: The system boundary of this study 
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2.2.1.3. Impact Metric 

The impact metric used for this study is energy in units of megajoules (MJ). Energy will 

then serve as an indicator of the overall environmental impact. Energy is a simple metric and is 

generally understood by the public and can be used as a proxy for CO2 if necessary (Ashby, 

2013). The relationship between the two impact metrics for diesel engines was further validated 

by Bolin in the MIT study, in which a strong correlation between embodied energy (EE) and 

greenhouse gas emissions was presented. Also, energy is most closely related to production costs 

more than any other environmental metric (Bolin, 2013), so this metric has the benefit of relating 

to not only greenhouse gases, but cost as well.   

The purpose of this method is to quantify the total energy use throughout the life cycle of 

the genset, including the direct and indirect energy usage during the extraction of raw materials, 

manufacturing, use, transportation, and waste disposal. Four different types of energy are 

considered in this study: (1) EE, primary production (2) EE, recycling (3) electricity, (4) fuel.  

The EE is defined as the total primary energy consumed from direct and indirect 

processes relevant to the materials within the cradle-to-gate boundaries. This includes all 

activities from raw material extraction, manufacturing, transportation, and through fabrication 

until the product is ready to leave the factory gate (Hammond & Jones, 2008).   

2.2.1.4. Data Requirements 

The data required to conduct the LCA is presented in this section. The data collection 

methods will be described in a later section. The data requirements for each stage are listed in 

Table I. 
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Table I: Data requirements for each life cycle stage 
 

Life Cycle Stage Data Required Units 

Materials 

Material composition of parts - 

Material mass kg 
Embodied energy, primary 
production values 

MJ/kg 

Manufacturing 
Facility energy usage MJ 

Production volume - 

Transportation 

Travel mode - 

Travel distance km 

Weight of shipment t 

Energy intensity of transportation 
mode 

MJ/t•km 

Use 

Lifetime yr 

Run time hrs/yr 

Fuel type - 

Fuel efficiency gal/hr 

Calorific value of fuel BTU/gal 

End of Life 

Disposal route - 

Material type - 

Material mass kg 
Embodied energy, recycling 
values 

MJ/kg 

2.2.2. Life Cycle Inventory Analysis 

The life cycle inventory analysis (LCI) phase includes the collection of the data and 

calculation procedures necessary to quantify the inputs and outputs, which will be described 

here. 

2.2.2.1. Data Collection  

Engineers and specialists from a variety of departments within the manufacturing 

company provided information for this study. The multi-disciplinary involvement required for 

this study speaks to the complexity and broad nature of LCAs. In addition to the manufacturer, a 

variety of data sources were used to complete this study. Table II summarizes the data type and 
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source used for each life cycle stage. The most challenging stage to collect data for was the 

materials stage because the genset is made of over 15,000 parts. This expansive list consists of 

pieces as small as nuts and bolts. To make the part list manageable and realistic, the list was 

grouped into the five main parts described in the scope of this study. 

 A list of material types and masses for each part is not typically kept on record, so the 

level of accuracy was dependent on the data available. Part drawings, purchasing data, and 

general part knowledge shared by design engineers were all compiled to generate the data. It is 

important to note that these values are an estimate and are not exact.  

The EE values for calculating primary production of materials were acquired from a 

combination of Ecoinvent, Materials and the Environment: Eco-informed Material Choice 

(Chapter 15), and the Inventory of Carbon and Energy (ICE) Version 2.0. 

Manufacturing data was collected from plant records of the manufacturer and suppliers. 

The data included facility energy usage and production data for the year of 2014. Transportation 

data was simply acquired by identifying the manufacturing and assembly location and 

calculating a travel distance between the two locations. The transportation mode was identified 

by the manufacturer, and the transportation energy intensities were acquired from Ecoinvent.  

Product warranty and life time data was collected from the manufacturer for the use 

phase. The EoL disposal route is difficult to identify. The product is in the customer’s hands 

when it has reached its EoL, so they are at liberty of choosing the disposal route, which is not 

usually reported back to the original manufacturer. Therefore, it is difficult to acquire this data. 

In order to explore the energy demands of different disposal routes, four scenarios were used in 

which different combinations of disposal routes were used. The recycling EE used for these 
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scenarios was acquired from Ashby. For the few materials that lacked recycling data, it was 

estimated that the recycling energy was one-fifth of the EE (Ashby, 2013).  

Table II: Data sources 
 

Life Cycle Stage Data Required Data Source 

Materials 

Material composition of parts 
Manufacturer and suppliers 

Material mass 

Embodied energy values Ecoinvent, Ashby, and ICE 

Manufacturing 
Facility energy usage 

Manufacturer and suppliers 
Production volume 

Transportation 

Travel mode 

Manufacturer Travel distance 

Weight of shipment 

Energy intensity of transportation mode Ecoinvent 

Use 

Lifetime 

Manufacturer 

Run time 

Fuel type 

Fuel efficiency 

Calorific value of fuel 

End of Life 

Disposal route   

Material type 
Manufacturer 

Material mass 

Recycling embodied energy Ashby 

2.2.2.2. Data Calculation Procedures 

Because each life cycle stage requires different types of data, the calculation procedures 

vary for each stage. 

 Materials: The calculations for this stage are straightforward: the mass of material is 

multiplied by the EE value. The sum of each material’s energy is then the total energy 

for the material stage, as shown in equation (1).  

∗
∈

 (1)
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where M represents all of the materials in the genset and i∈M represents the 

individual materials. E is energy (MJ), m is mass of material (kg), and H is effective 

EE of material (MJ/kg), which is defined in equation (7).  

 Manufacturing: The energy for this stage was calculated by dividing the facility 

energy consumption by the number of parts produced. The sum of each facility’s 

energy is then the total energy for the manufacturing stage, EF, as shown in equation 

(2).  

∈

 (2) 

 
where F represents all of the manufacturing facilities and j∈F represents the 

individual facilities. f is the energy of the manufacturing facility (MJ), and p is the 

number of parts produced at the facility.  

 Transportation: The transportation stage is calculated by multiplying the 

transportation intensity by the shipment weight and the distance traveled. The energy 

for each part to be transported is then summed to acquire the total energy for the 

transportation stage, ET, as shown in equation (3). 

∗ ∗
∈

 (3)

 
where T is all of the transportation modes and k∈T represents the individual 

transportation modes. Ht is the transportation energy intensity (MJ/t•km), d is the 

distance traveled (km), and s is the shipment weight in metric tonnes (t).  

 Use: The use phase is calculated by multiplying the life expectancy by operation 

time, fuel efficiency, and calorific value of the fuel. BTU units are then converted to 
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MJ, and the energy for the entire lifetime of the genset is calculated, as shown in 

equation (4).  

∗ ∗ ∗  (4)

 
where U represents the use phase, LE is life expectancy (yrs), OT is operation time 

 (hrs/yr), e is fuel efficiency (gal/hr), and CV is calorific value of fuel (BTU/gal). The 

 calorific value used in the calculation was specified by the manufacturer as  

 130,000 BTU/gal. 

 End of Life: The EoL stage is more complex than the others. Ashby describes the 

activities included in each of the three disposal routes considered for this study:  

1. Landfill – Collect and transport to landfill site. 

2. Recycling – Collect, sort by material family and class, recycle. 

3. Remanufacturing – Collect, dismantle, replace or upgrade components, re-

assemble.  

EoL credits can be assigned for recycling and remanufacturing, but the landfill disposal 

route receives an EoL debit. The credits are represented as a negative value because it is 

reducing the total energy demand, whereas the debits are expressed as positive values 

because it is adding to the total energy demand and has a negative impact on the 

environment. This is an effective method to present sustainable disposal routes as a 

benefit to the overall LCA. Ashby provides an equation for each disposal option. 

Equation (5) shows the energy debit of the landfill disposal route.  

0.1 ∗ ∗
∈

 (5)

 
 where L represents EoL debit for the landfill disposal route.  

 Equation (6) shows the energy credit for recycling.  
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∗ ∗
∈

 (6)

 
 where r is fraction recycled, Hrc is recycling EE, and H is defined by  

equation (7).  

H = R•Hrc + (1-R)•Hm (7)
 

where H is effective EE (MJ/kg), R is recycle content of the material at start of life, and 

Hm is the EE (MJ/kg). R varies for each different material depending on the EE data 

source. To remanufacture a product, the potential EoL credit is described by equation (8).  

0.9 ∗ ∗
∈

 (8)

 
 Remanufacturing recovers almost all of the original EE.  

 The total energy for the production of a genset is then given in equation (9).  

	  (9)
 

 Table III shows the four different EoL scenarios analyzed in this study.  

Table III: Four different scenarios analyzed for end of life 
 

Scenario Landfill Recycle Remanufacture 
1 100% 0% 0% 
2 34% 34% 32% 
3 16% 34% 50% 
4 5% 10% 85% 

 
The methodology used to develop each of these scenarios is as follows:  

Scenario 1: This scenario was modeled to show the negative impact of sending the entire 

product to the landfill. This is not realistic but provides a baseline for the other three 

scenarios.  

Scenario 2: This scenario was based on the remanufacturing rates of the engine. The 

manufacturer knows that 85% of an engine can be remanufactured. Given the engine 
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makes up about 38% of the entire genset and assuming that the engine is only part that 

could be remanufactured, that would mean that 32% (85%•38%) of the genset could be 

remanufactured.  

 The recycling rate for Scenario 2 came from an EPA report on waste generation, 

recycling, and disposal in the U.S. for 2012 (EPA, 2012), which listed the average 

recycling rate of metals as 34%. The remainder of the genset was then assumed to be sent 

to the landfill. Scenario 2 then serves as a baseline for Scenario 3 and Scenario 4 because 

realistically, more of the genset can be remanufactured.  

Scenario 3: This scenario was generated with a remanufacturing rate in middle ground 

between scenario 2 and 4. The recycling rate was kept the same as scenario 2.  

Scenario 4: This scenario was created to analyze what the EoL impacts would be if the 

remanufacturing rate of the entire genset was equal to that of the engine. The remaining 

15% of the genset was divided into a recycling and landfill rate of 10% and 5%, 

respectively. 

2.3. Results and Discussion 

2.3.1. Life Cycle Impact Assessment 

The life cycle impact assessment (LCIA) evaluates the magnitude and significance of the 

potential environmental impacts of the life cycle of the product (ISO 14040). A variety of results 

were calculated based on the LCI. First, the overall results will be presented, and then the results 

for each stage will be presented. In order to protect propriety information, several results are 

presented in a scaled format. The energy demands of each process or material will remain 

proportional, so the relationship can be described as a relative energy demand. 
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2.3.1.1. Overall Results 

The energy for each stage is shown in Figure 3. The EoL impact is not represented here 

since there are four different scenarios for this stage; rather, it will be explained in its designated 

results section. The use phase dominates the energy demand at nearly 95% of the total demand, 

which is consistent with other studies (Adalberth, Almgren, & Petersen, 2001; Asbhy, 2013; Li, 

Liu, Zhang, & Jiang, 2013). The next most energy intensive is the materials stage at 4% of the 

total energy demand, then transportation at 1%, and then manufacturing at less than 1% of the 

total energy demand.  

 
Figure 3: Energy demand per life cycle stage 

2.3.1.2. Material Results 

The original list of materials was simplified by grouping similar material types into 

categories defined by Ecoinvent, Ashby, and ICE. Eighteen material categories comprise the 

final list of materials. 

Materials
4.1%

Manufacturing
0.3%

Transportation
1.0%

Use
94.6%
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 Aluminum Alloy 

 Cast Aluminum 

 Cast Iron 

 Copper  

 Epoxies 

 Ferromanganese (Fe-Mn) 

 Ferrosilicon (Fe-Si) 

 Lead 

 Low Alloy Steel 

 Low Carbon Steel 

 Molybdenum 

 Nickel 

 PCB 

 Stainless Steel  

 Steel, Bar, & Rod 

 Tin 

 Titanium Alloys 

 Zinc 

The primary production EE values and sources used to calculate the material energy can 

be found in Table A1 in the Appendix. For materials with a range of EE values, an average was 

used. This will be explained in more detail in the uncertainty analysis. Figure 4 shows the 

percentages of total mass and energy demand contributed by each material. 

 
 

Figure 4: Mass and energy percentages of materials 
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It is clear that energy does not always have a proportional relationship to mass, which is 

further illustrated in Figure 5. 

 

  
 

Figure 5: Relationship between mass and embodied energy (scaled) 
 

The data point on the far right represents PCB (Printed Circuit Board) materials in the 

electronic control system. A PCB typically has a composition of over 70% non metals (i.e. 

plastic, resins, glass fibers, etc.), and about 16% copper, 4% solder, 3% iron, ferrite, 2% nickel, 

0.05% silver, 0.03% gold, and 0.01% palladium (Zhou & Qui, 2010). The materials in a PCB are 

very energy intensive, which can be seen from Figure 6 and Figure 7, where the PCBs make up 

less than 1% of the mass, but make up 36% of the total EE of the genset.  

In analyzing the results, it is helpful to understand the mass and energy breakdown of the 

individual parts of the genset as well. Figure 6 and Figure 7 show the allocation of mass and 

energy by parts. The heaviest components of the genset are the alternator and the engine, at a 

respective 44.7% and 37.8% of the total mass, and the most energy demanding part is the control 

system because of the energy intensive materials described earlier.  
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Figure 6: Mass allocation by part 
 

 
 

Figure 7: Energy allocation by part 

2.3.1.3. Manufacturing Results 

Figure 8 presents the relative energy requirements for each manufacturing facility. The 

51% energy demand of the assembly & controls facility is representative of the large number of 

activities that occur at this site. In addition to the production of the controls and the assembly of 

the genset, other activities such as painting, testing, and validation also occur in the facility and 
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contribute to the production of the genset. The skid production energy demand is higher than 

anticipated, most likely because of differences in data reporting methods. Suppliers’ energy 

consumption reporting methods differ from those of the manufacturer. The skid and the radiator 

are produced by suppliers, whereas the engine, alternator, and controls are produced by the 

manufacturer. Manufacturing plant records contain information on the consumption of 

electricity, diesel, natural gas, and other fuels, namely propane, gasoline, ethanol, and biodiesel. 

Electricity usage reported by the manufacturer is electricity purchased from the grid. The United 

States Department of Energy (DOE) requires the manufacturer to include the source energy for 

electricity. To do this, the energy usage in kWh is multiplied by a factor of 3 to account for the 

generation and transmission losses from the utility.  Since this level of detail is unknown for the 

supplier facilities, the most uncertainty lies in the skid and radiator facility energy usage. 

 
Figure 8: Manufacturing energy allocation 
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2.3.1.4. Transportation Results 

Table IV contains the energy intensities for different transportation modes. 

Transportation by truck has the highest range of values and highest average energy intensity. 

Therefore, the products transported by truck have higher energy demands than other 

transportation methods. Except for the controls, each part is made at a manufacturing facility 

other than the genset assembly facility, which is located in the United States.  

Table V shows the country of origin, transportation mode, transportation energy, and the 

percentage of overall energy contributed by the transportation for each part.  

Table IV: Transportation energy intensities  
 

Mode 
 

Lower 
(MJ/t•km) 

Upper 
(MJ/t•km) 

Average 
(MJ/t•km) 

Truck 1.70 7.30 4.50 

Rail 0.49 0.70 0.56 

Ship 0.15 0.61 0.38 
 

Table V: Transportation information by part 
 

Part 
Country of  

Origin 
Transportation 

Mode 
Average Energy

(MJ) 
Energy  

(%) 
Skid United States Truck 287 1 

Controls1 United States n/a  0 

Radiator 
China Ship 877 2 

 Truck 2,546 7 

Engine United States Truck 10,291 28 

Alternator Mexico Truck 23,172 62 
1The controls are built at the genset assembly facility. 

2.3.1.5. Use Results 

As discussed in the overall results, the use phase has the highest energy demand of all of 

the life cycle stages. The energy demand for the use phase is a direct result of the hours of use. A 

graph showing the linear relationship between operation time and energy use is shown in Figure 

A1. The operation limit is 200 hours per year, which is based on the warranty. However, a more 
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realistic option is in the range of 50-100 hours. This figure shows that even based on the lowest 

operation time of 50 hrs/yr, the use phase demands 3,500 GJ, which is 95% of the energy 

demand for all of the life cycle stages combined (see Figure 3). If the standby generator is 

operated at its maximum of 200 hrs/yr, the energy demand is 14,099 GJ, which is 99% of the 

total energy demand.  

While it is common for the use phase to dominate the life cycle energy demand when the 

product uses fuel, it is surprising that this is still the case for a product that operates as an 

emergency power supply. In order to justify these results, a comparison of the use phase of an 

engine in an on-highway application was made, and the energy demand was calculated to 

account for 99.76% of the total energy demand, as shown in Table VI. While the use phase 

energy demand of the genset is large, it is not as large as that of an engine used in on-highway 

trucks. An on-highway engine has nearly 160,000 lifetime gallons, whereas a genset uses 28,000 

gallons in a lifetime. Therefore, the energy demand is a result of the gallons of fuel burned.  

Table VI: Comparison of engine and genset use phase 
 

Life Cycle Stage Genset Engine 

Materials 4.15% 0.19% 

Manufacturing 0.29% 0.00% 

Transportation 1.00% 0.05% 

Use 94.57% 99.76% 

2.3.1.6. End of Life Results 

As previously mentioned, four different EoL disposal route scenarios were analyzed. 

Potential EoL credit and debit was calculated for each scenario and then added to the energy 

demand of the material stage in order to represent a potential increase or decrease in material 

energy demand as a result of the disposal route. The results are reported as positive and negative 

percent changes in the materials stage energy in order to communicate the positive effect 

recycling and remanufacturing has on the gensets as well as the negative effects of sending the 
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product to a landfill. By remanufacturing the product, it is possible to reduce the initial energy 

consumption by nearly 83% (see Table VII), based on the assumptions mentioned in the 

calculation section. These results are similar to those of a study in which it was found that a 

remanufactured engine could be produced with 26% to 90% less raw material consumption than 

a brand new engine (Smith & Keoleian, 2004). Again, the specific disposal route of the genset 

was not determined, but these scenarios provide a good estimate of possible energy reductions 

that can be achieved by choosing sustainable disposal routes. 

Table VII: Percent change in materials energy for each EoL scenario 
 

Scenario Percent Change in Materials Energy 
1: Landfill 100% +0.24% 
2: Landfill 34%,  Recycle 34%,  Remanufacture 32% -52.20% 
3: Landfill 16%,  Recycle 34%,  Remanufacture 50% -68.30% 
4: Landfill 5%,  Recycle 10%,  Remanufacture 85% -82.79% 

2.3.1.7. Limitations 

All LCAs contain inherent limitations but still provide valuable information. Estimates 

and assumptions have to be created for each life cycle stage. The assumptions used to perform 

this study were approved by the manufacturer and based on background information, previous 

studies, and logical thought. Regardless of the limitations of the study, the relative energy 

demands of each life cycle stage will remain about the same. Limitations specific to this study 

are described here: 

 This LCA only addresses energy demand. Other impact metrics such as greenhouse gas 

emissions, eutrophication potential, and acidification potential are not presented in this 

study.  

 Material inventory data gaps limit the accuracy of the results. However, 87% of the total 

genset mass was accounted for by using the data collection methods described earlier.  
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 The system boundary described in Figure 2 also limits the impact assessment because the 

transportation stage is more expansive than what is considered in this study. Also, the 

material processing stage only includes the initial material processing and not specific 

processing (e.g. machining, milling, forging) related to each part.  

 The uncertainty of the EoL disposal route is also a limitation.  

2.3.2. Sensitivity Analysis 

A sensitivity analysis was conducted in order to test the extent to which overall energy 

demand is sensitive to a ±10% change in input parameters. Use, materials, transportation, and 

facility energy were the input parameters tested. Figure 9 presents the results in a tornado plot, 

where the centerline represents the baseline case, and the values to the left and right represent a 

10% decrease and increase, respectively. The overall energy demand is most sensitive to the life 

cycle stages that account for the largest portion of overall energy. Since the use phase is most 

sensitive to change, this means that changes in the use parameters, such as fuel efficiency, will 

have a significant impact on the overall energy demand. 
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Figure 9: Tornado plot showing the sensitivity of overall energy demand to use, materials, transportation, 
and facility energy 

 

An additional tornado plot was created for the materials energy in order to demonstrate 

the effect of changing the primary production EE values by ±10% for each. The top ten most 

sensitive EE values are shown in Figure 10. A combination of material mass and primary 

production EE values produce these results.  
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Figure 10: Tornado plot showing the sensitivity of material energy demand to primary production 
embodied energy values 

2.3.3. Uncertainty Analysis 

A Monte Carlo simulation was used for the uncertainty analysis. Twenty-one parameters 

used to calculate the overall energy demand were tested for uncertainty. To perform the 

simulation, transportation and material energy intensities were replaced with random numbers 

generated by Excel based on the specified distribution type. A lognormal distribution was used 

for material energy intensities with standard deviation and average data. In the case where a 

lower and upper energy intensity was provided, a triangular distribution was used. A complete 
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list of the parameters varied and the corresponding distribution can be seen in Table A3 in 

Appendix A. The overall energy demand was calculated with a fixed manufacturing and usage 

energy value because there are no statistical data for these stages. For each parameter that was 

replaced with a random value, 1000 iterations were used, producing a total of 21,000 iterations.  

Each iteration produces an overall energy demand value. After all of the iterations are 

complete, the results are represented by a histogram shown in Figure 11 with overall energy 

demand on the x-axis, and the corresponding frequency of occurrence on the y-axis.  Also shown 

in Figure 11 is the actual overall energy demand of 3,727,318MJ, which lies within the bin 

frequency of 2581 and has a probability of 13.58%. The bin with the largest frequency is 

3,708,000 MJ, which only has a percent difference of 1.0% from the calculated value. An 

additional materials energy demand uncertainty analysis was also performed. The histogram 

shown in Figure A2 in Appendix A reveals if the energy demand with the highest frequency was 

used for this study, the materials stage energy would account for 3.67% of the overall energy 

demand rather than the current 4.1%, which is a minor difference for this study. 
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Figure 11: Monte Carlo simulation results for overall energy demand 

 

2.4. Conclusion for Genset SLCA Case Study 

A SLCA was conducted for a standby diesel genset. The use stage accounts for 94.6% of 

the overall energy demand using an operation time of 50 hrs/yr, which is on the lower range of 

operation time. These results were unexpected for an ESP genset but were put into perspective 

when the use phase of an on-highway application engine was calculated and found to account for 

99.76% of the overall energy demand of engine production. While the use phase of the ESP 

genset is high, it is still lower than an engine in an on-highway application, which is expected. 

The sensitivity analysis shows that a 10% reduction in the use phase energy demand has the 

potential to reduce the overall energy demand by 3.56 x 105 MJ, or 9.5%.  

The next most energy intensive stage is materials at 4.1%, transportation at 1.0%, and 

then manufacturing at 0.3%. A material energy analysis shows PCB has the highest energy 

demand at about 36% of the total because it is made of materials, like gold and palladium, that 
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demand a significant amount of energy to be extracted from the earth. As a result, the controls 

consisting of several PCBs accounted for the largest energy demand out of all of the parts but 

only made up 0.5% of the overall mass of the genset. A more detailed analysis of the controls 

would most likely reveal that the controls account for more than 36% of the total material energy 

demand because of capacitors and resistors that could not be specifically accounted for in this 

analysis. The results may also be influenced by the 13% of the genset mass that was not included 

in the study.  

The transportation that was considered only accounts for a portion of the transportation 

involved with the production of a genset. Therefore, this stage would most likely account for a 

larger percentage of the overall energy demand if a full analysis was conducted for 

transportation. The transportation of the alternator from Mexico to the United States accounts for 

62% of the overall transportation energy because of the long distance traveled by truck.  

The EoL results showed that if 85% of the genset is remanufactured, 10% is recycled and 

only 5% sent to a landfill, the materials energy could be reduced by 82%. In addition, the EoL 

analysis emphasizes the importance of recycling and remanufacturing in order to reduce energy 

intensive material extraction and processing.  
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Chapter 3 

3. Overall Conclusion 

This section concludes this study and provides a summary of this LCA case study, 

recommendations to the manufacturer, and suggestions for future work. 

3.1. Summary 

LCA is an effective technique to analyze the potential environmental impacts over the 

entire life cycle of a product. This SLCA of a genset was conducted in accordance with ISO 

standards. The goal of the study was to determine the overall energy demand for the life cycle of 

an ESP genset. Life cycle stages included in the analysis were materials, manufacturing, 

transportation, and EoL. Overall results showed that the use phase accounts for 94.6% of the 

overall energy demand. The materials, transportation, and manufacturing stages account 4.1%, 

1.0%, and 0.3%, respectively. It is important to note that the use phase occurs over the entire life 

of the product and the other stages only occur once. As a result, the use phase has such a large 

energy demand that the other stages appear to be insignificant, but they are not. The other stages 

demand a significant amount of energy, but that may not be apparent by only looking at Figure 3, 

which shows the energy percentages of each life cycle stage relative to the overall energy 

demand.  

The material results revealed that the control system is the most energy intensive part of 

the genset, accounting for 35.9% of the total genset energy but less than 1% of the genset mass. 

This is a result of the energy intensive materials within the controls. A more massive material 

does not necessarily correspond to a higher energy demand, as shown in Figure 5. The 

manufacturing results showed the facility in which the genset is assembled and the controls are 

built account for 51% of the total manufacturing energy. Next was the skid, at 39% and then the 
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alternator, engine, and radiator at 8%, 1%, and 1%, respectively. This stage has the most 

uncertainty because some of the data comes from a supplier, and the level of detail and accuracy 

is unknown.  

Transportation results showed that the alternator requires the most energy because it 

shipped from Mexico by truck. The radiator is shipped from China, but has a lower energy 

demand because a portion of the travel distance is by ship, which has a much lower energy 

intensity than a truck.  

The use phase results showed that even at the lowest range of operation time, it accounted 

for 94.6% of the overall energy demand. If the upper range of operation time is used, the use 

phase accounts for 99% of the overall energy demand. Therefore, the use phase will always 

account for the largest portion of energy, but this also means that small changes in use 

parameters will have the largest impact on overall energy demand, as shown in the sensitivity 

results in Figure 9.  

 Simply because the use phase is the most energy intensive stage does not mean that the 

energy demands of the other stages are not important. In order for the genset to have the most 

sustainable life, the goal should be to reduce energy demands wherever possible. One such 

reduction can be achieved in the EoL stage. The results showed that varying remanufacturing 

rates have the potential to reduce the materials stage energy demand by nearly 83% (see Table 

VII).  

 Finally, to measure the uncertainty associated with the SLCA, a Monte Carlo simulation 

was performed in which twenty-one parameters were replaced with random numbers assigned by 

Excel according to the specified distribution shown in Appendix A. The results of the 21,000 
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iterations revealed that the uncertainties in the data have little effect on the overall energy 

demand and relative energy demands of each life cycle stage. 

3.2. Recommendations  

This section provides recommendations to the manufacturer based on the results of the 

SLCA that will improve the sustainability of the genset by making energy reductions where 

possible.  

 In order to achieve the largest reduction in overall energy demand of the life of 

the genset, the focus should be on the use phase. Assuming that the life 

expectancy, operation time, and calorific value of diesel remain constant, the only 

influential parameter that remains is fuel efficiency. By improving fuel efficiency 

by 10%, the overall energy demand can be reduced by 9.5%, which may sound 

small but is actually 3.56 x 105 MJ. 

 Energy reductions can also be achieved by increasing remanufacturing rates of 

gensets. A cost analysis should be performed if the manufacturer decides to 

implement a remanufacturing operation themselves. However, when thinking in 

broad terms of LCA, the goal is to improve sustainability on a global level; so, if 

the gensets are not being remanufactured by the original manufacturer but by a 

different company, the positive impact on the environment is still the same. 

Regardless of which company is remanufacturing the product, the raw material 

extraction phase is bypassed. The manufacturer’s role in environmental 

stewardship should then be to ensure that gensets are being disposed in a 

sustainable manner by contacting the customers and identifying EoL disposal 

routes. If results show that remanufacturing rates are lower than what is possible, 
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the manufacturer should encourage the customer to dispose of the product 

sustainably. By following these steps, the manufacturer will have committed to 

product sustainability from cradle-to-grave. 

 Another possible method to reduce energy is to consider using materials with 

higher recycled content when possible. As the recycled content of a material 

increases, the EE value decreases.  

 The transportation stage considered in this study accounts for 1% of the overall 

energy demand, but only considers one part of the transportation network. In 

order to ensure that goods are being transported in the most efficient method, 

more transportation data should be collected in order to get an idea of the overall 

transportation network. Focusing efforts on transportation for common parts that 

can be purchased from a variety of suppliers may be more productive than 

looking at specialty parts that are only available from one supplier at one location. 

3.3. Future Suggestions 

If future work on genset LCAs is performed by the genset manufacturing industry, the 

following suggestions may improve accuracy and facilitate the study:  

 If multiple LCAs are going to be conducted, training personnel to be LCA subject 

matter experts would be a valuable use of time and resources so that the 

methodology remains consistent across all LCAs. This would facilitate the work 

and allow results to be compared across multiple studies. 

 Future work should consider studying additional impact metrics such as water use 

or air emissions in order to ensure that environmental impacts are not trading off 

from one medium to another.  
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 Time should be invested into acquiring data from suppliers and learning about 

their reporting methods. This would allow manufacturing and supplier data to be 

more comparable and would improve data accuracy. 

 Any industry that plans to conduct a LCA should keep product material inventory 

data easily on hand. This would speed up the data collection process, improve 

material data accuracy, and reduce uncertainties. 
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Appendix A: Supporting Material 

Table A1: Material primary production embodied energy values and corresponding sources 
Material Embodied Energy 

Value 
(MJ/kg) 

Source 

Aluminum Alloy 72 Ecoinvent, index #1045, aluminium alloy, AlMg3, at plant 

Cast Aluminum 51 
Ecoinvent, index #1057, aluminium, production mix, cast 
alloy, at plant 

Cast Iron 25 ICE, Iron, General 

Copper 34 Ecoinvent, index #1074, copper, at regional storage 

Epoxies 133.5 Ashby, mean value, 127 and 140 

Ferromanganese 
(Fe-Mn) 

23 
Ecoinvent, index #1097, ferromanganese, high-coal, 74.5% 
Mn, at regional storage 

Ferrosilicon 
(Fe-Si) 

15.88 
Composite. 45% - Ecoinvent, index #321, silicon carbide, at 
plant. 55% - Ecoinvent, index #1132, pig iron, at plant. 

Lead 16 Ecoinvent, index #1103 lead, at regional storage 

Low Alloy Steel 28.0 Ecoinvent, index #1154, steel, low-alloyed, at plant 

Low Carbon Steel 25 ICE,  General Steel, World typical-world 39% recycled 

Molybdenum 151 Ecoinvent, index #1116 molybdenum, at regional storage 

Nickel 142 

Recycled production mix. 74% Ecoinvent, index #1121 
nickel, 99.5%, at plant. 26% Ecoinvent, index #8149 nickel, 
secondary, from electronic and electric scrap recycling, at 
refinery.  

PCB, General 12,101 Ecoinvent (Bolin, 2013) 

Stainless Steel 68 
Ecoinvent, index #1152 steel, electric, chromium steel 18/8, at 
plant 

Steel, 4140 33.5 
Composite. 99% Ecoinvent, index #1154, steel, low-alloyed, 
at plant. 1% Ecoinvent, index #1073, chromium, at regional 
storage. 

Steel, Bar & Rod 22 ICE, Bar & Rod - World typical 39% 

Tin 321 Ecoinvent, index #1155 tin, at regional storage 

Titanium 471 ICE, Titanium, general 

Zinc 52 Ecoinvent, index #1156 zinc, primary, at regional storage 
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Table A2: Material recycling embodied energy values 

Material 
Recycling EE Value 

 (MJ/kg) 

Aluminum Alloy 26 Ɨ 

Cast Aluminum 10.2 ƗƗ 

Cast Iron 10.5 Ɨ 

Copper 13.5 Ɨ 

Epoxies n/a 

Ferromanganese (Fe-Mn) 7.95 ƗƗƗ 

Ferrosilicon (Fe-Si) 7.95 ƗƗƗ 

Lead 3.2 ƗƗ 

Low Alloy Steel 8.6 Ɨ 

Low Carbon Steel 7.3 Ɨ 

Molybdenum 30.2 ƗƗ 

Nickel 33 Ɨ 

PCB, General 2,420.2 ƗƗ 

Stainless Steel 12 Ɨ 

Steel, 4140 7.95 ƗƗƗ 

Steel, Bar & Rod 7.95 ƗƗƗ 

Tin 64.2 ƗƗ 

Titanium 87 Ɨ 

Zinc 11 Ɨ 
Ɨ Ashby mean recycling value for specific material 
ƗƗ EE value was calculated as one-fifth of primary 
production EE  
ƗƗƗ Average of Ashby’s low alloy and low carbon steel 
recycling EE value 
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Table A3: Parameter distributions used in uncertainty analysis 
Energy Intensity 

Parameter 
Distribution 

Aluminum Alloy Log normal 
Cast Aluminum Log normal 
Cast Iron Log normal 
Copper Log normal 
Epoxies Triangular 
Ferromanganese (Fe-Mn) Log normal 
Ferrosilicon (Fe-Si) Log normal 
Lead Log normal 
Low alloy steel Log normal 
Low Carbon Steel Log normal 
Molybdenum Fixed Value 
Nickel Log normal 
PCB, General Triangular 
Stainless Steel Log normal 
Steel, 4140 Log normal 
Steel, Bar & Rod Log normal 
Tin Log normal 
Titanium alloys Log normal 
Zinc Log normal 
Transportation by Truck Triangular 
Transportation by Ship Triangular 
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Table A4: Statistical data used for lognormal distributions in Monte Carlo simulation 

Material 
Average Energy 

Intensity 
(MJ/kg) 

Standard Deviation 
(MJ/kg) 

σ μ 

Aluminum Alloy 157.1 104.7 0.606242 4.467335

Cast Aluminum 157.1 104.7 0.606242 4.467335

Cast Iron 24.62 7.5 0.297897 1.970532

Copper 69.02 37.52 0.508828 3.495421

Ferromanganese (Fe-Mn) 31.25 16.5 0.495893 2.680406

Ferrosilicon (Fe-Si) 31.25 16.5 0.495893 2.680406

Lead 45.17 43.72 0.813051 3.44728

Low Alloy Steel 31.25 16.5 0.495893 2.680406

Low Carbon Steel 31.25 16.5 0.495893 2.680406

Nickel 164 43.59 0.26127 3.740697

Stainless Steel 45.68 28.84 0.5792 3.194027

Steel, 4140 31.25 16.5 0.495893 2.680406

Steel, Bar & Rod 31.25 16.5 0.495893 2.680406

Tin 84.44 87.83 0.85632 4.108761

Titanium Alloys 470.67 188.43 0.385561 5.164398

Zinc 59.8 25.16 0.403714 3.143763
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Figure A1: Energy demand per hours of operation 

 

 
Figure A2: Monte Carlo material energy demand simulation results 
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