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Abstract 

 

The stable isotopic compositions of over 90 hydrothermal carbonate minerals in the Butte 

porphyry-lode system were analyzed. These samples came from the underground workings as 

well as the active Continental Pit area. Most material came from polymetallic “Main Stage” 

veins which post-date the porphyry Cu-Mo mineralization of Butte. Some samples from late 

calcite-stellerite veins were also included in the study. Rhodochrosite 13C and 18O values range 

from -8.3 to -2.9‰ (average of -6.7±1.0‰) and -1.8 to 12.8‰ (average of 3.6 ±3.4‰) 

respectively, while calcite 13C and 18O values range from -9.0 to -2.6‰ (average of -5.4 ± 

1.5‰) and -4.4 to 12.3‰ (average of 6.2±2.8‰) respectively. These values are in agreement 

with the previous work of Garlick and Epstein (1966). Despite the strong ore-mineral zonation of 

the Main Stage veins of Butte, no systematic changes in stable isotope composition of carbonate 

minerals are seen across the district, or with depth. Late calcite samples have similar isotopic 

composition to carbonate minerals from Main Stage mineralization. Some isotopic re-

equilibration with a lower temperature fluid may have taken place, with calcite more susceptible 

to isotopic resetting compared to less soluble and more abundant rhodochrosite. Based on the 

observed 18O values of rhodochrosite, and an inferred temperature of formation of Main Stage 

veins of 200 to 350°C, the vein forming fluids would have had 18O values in the range of -12.6 

to 4.1, which suggests mixing of magmatic water with an evolved meteoric water. The stable 

isotopic composition of vein carbonates from Butte have similar 13C but different 18O values 

compared to the vein carbonate minerals from the nearby Coeur d’Alene district, Idaho. Whereas 

the two world-class silver-base metal mining districts may have inherited a similar carbon 

source, the much heavier 18O values of Coeur d’Alene carbonate suggest involvement of 

metamorphic fluids, as opposed to the porphyry-meteoric fluids that mineralized the veins of 

Butte. 
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1. Introduction 

1.1. Thesis Objectives  

The focus of this thesis was to collect the carbonate minerals calcite and rhodochrosite 

from around the Butte district and analyze the stable isotopic composition of their carbon and 

oxygen. Similar work had been performed previously and concluded there were no obvious 

correlations between isotopic values. However, the previous study (Garlick and Epstein, 1966) 

only looked at 12 samples of carbonate material. This thesis project collected over 90 samples, 

and it was expected that more stable isotope information might reveal trends that were previously 

missed. 

The stable oxygen and carbon isotopic composition of the carbonate minerals are 

compared to see if any relationships exist between them. The isotopic values are also compared 

to depth within the deposit as well as across the district to determine if any relationships exist 

spatially. Isotopic fractionation factors are applied to the oxygen isotopes of rhodochrosite to 

estimate the isotopic composition of the fluids that formed the carbonate minerals. Overall, this 

work adds more information about the carbonate mineralization in Butte. Finally, the results of 

this study are compared to previous work on carbonate mineral isotopes from the Ag-rich 

polymetallic vein deposits of the Coeur d’Alene mining district, Idaho.  

1.2. Butte Mining History 

Mineral exploitation in Butte has gone through several stages, each overlapping the 

previous. Gold was first noticed in placer gravels in Butte in 1864 and was mined through 1867, 

with a production value estimated at $1,500,000 (Weed, 1912). The presence of silver had been 

noted, but had not been thought especially valuable until the discovery of the rich ore shoot of 

the Travona mine in 1865 (Weed, 1912). Most silver mining ceased around 1892 when the mines 
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were hit hard by the price of silver, though the Lexington produced through 1896 because it also 

carried veins of copper (Weed, 1912). By 1885 Butte had become a copper mining district, and 

has remained so to this day.  

Mining of the Berkeley Pit commenced in 1955 with the extraction of supergene ore, 

although underground copper mining continued until the mid-1970’s. Mining of the Berkeley 

halted in 1982 when the smelters would no longer accept the ore due to the amount of arsenic 

present. Montana Resources commenced mining of the Continental Pit in 1986 by recovering 

concentrates of copper and molybdenum (Czehura, 2006). Mining has been continuous to the 

present day, aside from a 3-year hiatus in 2000-2003 due to low metal prices.  

Total production from the Butte district over the last 130 years is summarized in Table I 

(Steve Czehura, pers. communication). Over 24 billion pounds of copper have been produced 

during operations in Butte. In terms of copper produced and resource remaining, Butte is the 

largest porphyry copper deposit in the United States (Long et al., 1998). 

Table I: Total production in the Butte district through 2014.   

Production 

1880 - 2004 
Butte District 

Montana Resources 

1986 - 12/31/2014 

Copper (lbs.) 22,127,800,000 1,967,700,000 

Zinc (lbs.) 4,909,000,000 - 

Manganese (lbs.) 3,703,000,000 - 

Lead (lbs.) 855,000,000 - 

Molybdenum (lbs.) 195,000,000 240,400,00 

Silver (oz.) 715,000,000 18,000,000 

Gold (oz.) 2,920,000 300 
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1.3. Regional Geology 

The Butte mining district is located in the southern part of the Boulder Batholith, a large 

igneous intrusive complex located in southwestern Montana. The dominant rock type in the 

Boulder Batholith is the Butte Granite. This rock, formerly termed the Butte Quartz Monzonite, 

was renamed by the U.S. Geological Survey (Lund et al., 2002; du Bray et al., 2009) as a granite, 

based on Streckeisen’s (1976) updated classification of igneous rocks which is now accepted by 

the International Union of Geological Scientists (IUGS). The Butte Granite has been dated to 

74.5 ± 0.9 Ma (Lund et al. 2002). Most of the rock is a medium-grained granite containing up to 

20% biotite and hornblende, although large masses of aplite and pegmatite are locally present 

and are believed to be roughly the same age. The Boulder Batholith intruded through the Belt-

Purcell Supergroup, a very thick sequence of mid-Proterozoic sediments (Fig. 1). The batholith is 

overlain by - and in places intrudes into - the Elkhorn Mountains Volcanics, considered to be the 

extrusive equivalent of the various plutonic rocks in the batholith itself (Fig. 2). To the 

immediate west and north of the Butte district lie outcrops of the Eocene Lowland Creek 

Volcanics. These volcanic rocks, mainly rhyolite in composition, post-date and cross-cut the 

important vein mineralization in Butte.  

1.4. Butte Mineralization 

The world-class ore bodies of Butte have been extensively researched for over 100 years, 

and it is beyond the scope of this thesis to review the literature on this topic. Some classic early 

papers include Weed (1912) and Sales (1914). Reno Sales and Chuck Meyer conducted much of  
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Figure 1: Location of the Boulder Batholith and Butte 

relative to the Belt-Purcell Supergroup (Modified from Lydon, 2007) 

 

the research on Butte in the mid-1900s, with many landmark papers (e.g., Sales and Meyer, 

1948; Meyer et al., 1968). More recent papers on Butte incorporating modern concepts of stable 

isotopes, ore fluid geochemistry, and fluid inclusion research include Sheppard and Taylor 

(1974), Brimhall (1977, 1979, 1980), Field et al. (2005), Rusk et al. (2008a, 2008b), Houston and 

Dilles (2013), and Reed et al. (2013). In modern ore deposit nomenclature, Butte is classified as 

a porphyry-lode deposit, with low-grade porphyry Cu-Mo mineralization overprinted by much 

higher-grade, steeply-dipping, “Cordilleran-style” veins and lodes that are strongly zoned with 
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respect to their mineral and metal content. Previous workers refer to the earlier porphyry-style 

mineralization as the pre-Main Stage event, and the later veins and lodes as the Main Stage 

event. 

 

Figure 2:Geologic map showing the extent of the Butte Granite 
and other plutons of the Boulder Batholith in relation to the Elkhorn Mountain and Lowland Creek volcanic 

rocks (du Bray et al., 2009). 
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The pre-Main Stage veinlets are typically composed of quartz-sulfide and are narrow in 

size, ranging from a few millimeters to a few centimeters. These veinlets have potassic to 

sericitic alteration and are similar to porphyry Cu mineralization from other deposits worldwide 

(Rusk et al., 2008a). The intrusion of numerous quartz porphyry dikes may have created the 

fractures necessary for the mineralizing fluids to travel along, which resulted in the formation of 

the pre-Main Stage veinlets (Brimhall, 1977). More importantly, the quartz-porphyry intrusions 

are thought to be the source of the metal-rich magmatic fluids that mineralized the Butte district 

(Brimhall, 1977). These quartz-porphyry dikes have been dated to 66 ± 1Ma which places a 

maximum age for the pre-Main Stage mineralization, and is only 8.5Ma years younger than the 

Butte Granite (Lund et al., 2002). The porphyry style mineralization forms two broad domes, the 

Anaconda and Pittsmont Domes (Fig. 3), which are defined by the presence of low-grade copper 

and molybdenum mineralization and disseminated magnetite (Field et al., 2005). Based on fluid 

inclusion data, Rusk et al. (2008a) concluded that the pre-Main stage mineralization at Butte 

occurred at considerable depth (>6km), making Butte one of the deeper porphyry-copper 

deposits that have been studied extensively. 

The Main Stage veins and lodes cut the pre-Main Stage mineralization, and were the 

result of later hydrothermal fluids that deposited a significant amount of base-metal sulfide. Main 

Stage veins/lodes are typically large, with some being over 25m wide and spanning up to 3.5km 

across the district as well as 1.5km deep (Meyer et al., 1968; Rusk et al. 2008a,b). The Main 

Stage mineralization event displays concentric metal zones, first identified by Sales (1914), 

termed the central, intermediate, and peripheral zones (Figure 3). The central zone contains a 

“high sulfidation” (e.g., Einaudi et al., 2003) mineral assemblage rich in Cu-As, including 
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D  U

 

Figure 3: Simplified geologic map of the Butte district 

The map (after Dilles, 2004) shows approximate boundaries between the peripheral, intermediate, and 

central zones (bold brown), and the relationship between Main Stage veins (thin red lines) and earlier porphyry. 

 

enargite, chalcocite, covellite, bornite, and pyrite. The intermediate zone is also rich in copper, 

but with an “intermediate sulfidation” assemblage (Einaudi et al., 2003) of chalcopyrite, bornite, 

and tennantite (instead of enargite), as well as sphalerite. The peripheral zone contains very little 

copper ore, and instead is rich in sphalerite and galena, with minor but economically important 

quantities of silver-bearing sulfides and sulfosalts. Gangue minerals in the Main Stage veins are 

also zoned, with quartz being dominant in the central and intermediate zones, and carbonate 

minerals (especially rhodochrosite, but including calcite and ankerite) being more abundant 

towards the peripheral zone.  

To the east of the Berkeley Pit lies the Continental Pit (Figure 3), another open pit mining 

complex. The ore of the Continental Pit consists of sulfides (pyrite, chalcopyrite, molybdenite, 
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minor sphalerite) disseminated in weakly altered granite and within vein swarms (Peet, 2010). 

Main Stage veins with higher concentrations of sphalerite, galena, and Cu-sulfide minerals are 

present within the Continental Pit but are typically less than 1 m in thickness and are not a major 

source of ore (Czehura, 2006). Calcite and rhodochrosite are locally present in these Main Stage 

veins, and calcite also occurs as late veinlets with stellerite (Peet 2010, Lamsma 2012). Lying 

between the Berkeley and Continental Pit areas is the Continental Fault, dipping to the west at 75 

degrees with an offset in excess of 3500 vertical feet (Czehura, 2006). The Continental Fault 

makes it possible to examine deeper (Continental Pit) and shallower (Berkeley Pit) expressions 

of porphyry mineralization in close proximity.  

1.5. Background: Isotope Geochemistry 

Isotopes are atoms of a particular element with the same number of protons but a 

different number of neutrons. There are two different types of isotopes, radioactive isotopes and 

stable isotopes. Radioactive isotopes undergo radioactive decay, and have a range of half-lifes, 

from fractions of a second to billions of years. Stable isotopes are unlike radioactive isotopes in 

that they do not experience radioactive decay. Because of their difference in mass, stable 

isotopes of the same element react at different rates in many chemical and physical processes, 

which results in isotopic fractionation (e.g., Clark and Fritz, 1997). Isotopic fractionation can be 

an “equilibrium” process or a “kinetic” process, depending on whether the reaction is easily 

reversible (e.g., exchange of isotopes between dissolved CO2 and HCO3
-), or is irreversible (e.g., 

many redox reactions at low temperature, such as oxidation of methane to CO2).  

The extent of fractionation in stable isotopes is usually very small, with variations in 

isotopic ratios typically seen in the fourth or fifth decimal place (Clark and Fritz, 1997). For this 

reason, isotopic ratios are typically reported in “per mil” (‰) or parts per thousand. These ratios, 
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represented by delta (), represent the ratio of heavy isotopes to light isotopes in the sample over 

the same ratio of a standard material.  

 

There are two standard materials used for comparison of isotopic ratios in the oxygen and 

carbon systems, VSMOW and VPDB. VSMOW stands for Vienna Standard Mean Ocean Water 

and is the isotopic standard used for hydrogen and oxygen in water and in most minerals. VPDB 

stands for Vienna Pee Dee Belemnite and is a common isotopic standard for carbon. In the 

isotopic analysis of carbonate minerals, 13C and 18O are often measured at the same time and 

are reported relative to the mutual VPDB standard. However, it is common practice to convert 

measurements in units of 18O-VPDB to units of 18O-VSMOW when reporting isotopic data for 

carbonate minerals (Clark and Fritz, 1997). 

1.6. Previous Studies of Stable Isotopes of Hydrothermal 
Carbonate Minerals   

Since the early 1960’s, there have been thousands of papers on the application of stable 

isotopes to the study of hydrothermal ore deposits, of which probably several hundred have 

looked at either C- or O-isotopes (or both) of carbonate minerals. Despite the importance of the 

Butte mining district, and in contrast to the large number of papers on S-isotopes of 

hydrothermal sulfides from Butte (Field et al., 2005, and references therein), there has been little 

previous work on C- or O-isotopes of the associated carbonate minerals. Garlick and Epstein 

(1966) conducted the only previous study, and their sample suite was limited to three calcite and 

nine rhodochrosite specimens from the following mines: Travona, Emma, High Ore, Steward, 
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Badger, and Mountain Con. Their samples represented Main Stage mineralization from the 

central to peripheral zone as well as depth coverage from the 300 to 4500 (foot) levels. Garlick 

and Epstein (1966) found no trend in 13C or 18O of carbonate minerals with respect to depth or 

location within the district, other than the observation that hydrothermal calcites were, on 

average, a few per mil heavier than rhodochrosites. Based on this limited data set, few 

conclusions were drawn by Garlick and Epstein with respect to the origin of the hydrothermal 

carbonates of Butte.  

The following is a short list of published stable isotope studies of carbonate minerals 

from other hydrothermal mining districts. In contrast to Butte, there have been quite a few 

detailed studies of stable isotopes of carbonate minerals in the famous Coeur d’Alene district of 

northern Idaho. Eaton et al. (1995) looked at the 18O and 13C compositions of siderite (FeCO3) 

in veins and altered wallrock from the Sunshine Mine. They discovered interesting differences 

between the isotopic composition of wallrock and vein siderites, and also observed systematic 

differences across individual veins, but did not see clear differences with depth along a single 

vein. Rosenberg and Larson (2000) examined variations in the isotopic composition of ankerite 

(CaFe(CO3)2) in veins across the entire Couer d’Alene district. Both studies (Eaton et al., 1995; 

Rosenberg and Larson, 2000) determined that vein carbonates from Couer d’Alene are 

consistently enriched in 18O, possibly due to equilibration of hydrothermal ore fluids with Belt-

aged meta-sedimentary rocks at temperatures in the range of 300-350°C.   

Osaki (1973) and Shikazono (1989) looked at the stable isotopic composition of 

rhodochrosites and calcites from a number of epithermal vein deposits in Japan. Whereas some 

of the vein-carbonate minerals appear to have inherited their isotopic signature by interaction 
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with wallrocks, others show trends within individual mines that were attributed to other 

processes, including fractionation during boiling and loss of CO2 to the vapor phase (Shikazono, 

1989).  

Because carbonate minerals are typically absent or scarce in porphyry Cu-Mo 

mineralization, there have been relatively few studies looking at the isotopic composition of 

carbonates from these deposits. A recent study of Pass et al. (2014) looked at the stable isotopes 

of hydrothermal calcites of the Mount Polley porphyry system, in British Columbia, Canada. The 

Mount Polley complex is a silica-undersaturated, alkalic, breccia-hosted porphyry copper and 

gold deposit. The stable isotope values in the calcites were enriched and not ratios typically 

associated with precipitation from a magmatic fluid. The authors concluded that the Mount 

Polley igneous complex most likely assimilated carbonate material from marine limestones in the 

country rock, and that this isotopically heavy CO2 found its way into the later hydrothermal 

fluids that mineralized the porphyry veins. Interestingly, they were able to correlate areas of the 

deposit with higher grade Cu-Au-Ag mineralization to local reversals in this trend, that is, to 

13C depletion in the associated carbonate minerals.  

Another recent study by Catchpole et al. (2015) examined stable isotopes in hydrothermal 

rhodochrosite, calcite, and ankerite from the porphyry-related base-metal lode deposits of 

Morococha, Peru. This deposit shares many similarities to Butte, including a district-wide 

zonation from central Cu-rich ore with a high sulfidation mineral assemblage to outer Pb-Zn-Ag 

ore and abundant carbonates. Among other things, Catchpole et al. (2015) concluded that 

rhodochrosite from Morococha most likely inherited its CO2 from a magmatic fluid source, 



12 

 

 

whereas the Ca-rich carbonates appear to have formed by later, lower-temperature circulation of 

meteoric fluids.  

Although the previous summary is just a short introduction to how stable isotopes of 

carbonate minerals might be used to study hydrothermal metal deposits, it does show the 

potential of this type of information to lead to new insights into ore-forming processes. This, 

coupled with the low cost of isotopic analysis with modern instrumentation, was the main 

motivating factor to undertake the project that became the present study of the isotopic 

composition of carbonate minerals in Butte.  
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2. Methods 

2.1. Sample Collection 

Samples of the carbonate minerals calcite and rhodochrosite from around the Butte 

district were identified and collected for analysis of their stable isotopic composition. Most of the 

samples were collected from the Anaconda Mineral Company (AMC) collection or from 

archived core and surface samples from Montana Resources´ active Continental Pit mine. In 

addition, a set of 12 samples across a large (50 foot wide) quartz-rhodochrosite-sulfide vein 

exposed in the Orphan Boy/Orphan Girl mine (100 level) was collected by the author with help 

from other graduate students.  

The AMC collection, housed in a separate building on Montana Tech campus, contains 

thousands of samples of ore and altered wallrock from the Butte district. Information about each 

sample, such as the mine name, the depth (level) in the mine, the date and name of the sampler, 

notes on mineralogy, and the lat-long location, have been compiled and digitized into an Access 

database that is available on request from the Montana Bureau of Mines and Geology. In this 

study, it was possible to search for samples in the AMC collection under keywords such as 

“calcite” and “rhodochrosite”, and then sort the samples by mine or depth. The author then made 

a list of accession numbers for samples of interest and acquired the samples from the AMC 

collection warehouse. Most of the samples were photographed and notes were taken as to the ore 

and gangue mineralogy. After separating out a subsample containing the carbonate minerals of 

interest, the specimens were returned to the AMC collection.   
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Figure 4: Example specimens of calcite (left) and rhodochrosite (right).  

Both specimens are about two inches across.  
 

Samples acquired from Montana Resources were obtained by examining diamond drill 

hole core logs for notation of any carbonate minerals and retrieving the core boxes to acquire the 

samples.  

A traverse of a vein rich in rhodochrosite was also performed in the Orphan Girl mine. 

After accessing the underground workings via the Orphan Boy portal, there is a well exposed 

Main-Stage vein of quartz, sulfide, and rhodochrosite dipping roughly 40 degrees to the south. A 

measuring tape was laid down to identify where samples from the vein were obtained. Samples 

were collected along the vein with hammer and chisel and bagged separately to later separate the 

carbonate material. Twelve samples in total were collected across the vein. 
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Figure 5: Location of the Orphan Girl vein 

 

 

Figure 6: Rhodochrosite in the Orphan Girl vein 
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2.2. Sample Preparation 

Mineral samples were ground to a fine, micron-sized powder using a ring and puck 

pulverizer in the laboratory of the Department of Materials and Metallurgical Engineering at 

Montana Tech. Several grams of powder for each sample were produced, which was transferred 

to a small glass vial.  

 

Figure 7: Sample preparation 
 

To confirm the mineralogy and to quantify the existence of impurities (e.g., Si, Al, Mg, 

Fe), all of the samples were scanned with a Niton portable XRF (X-Ray Fluorescence) meter. 

The samples were then sent off to one of three analytical laboratories for isotopic analysis. 

2.3. Stable Isotope Analysis 

A total of 86 unique samples were collected and analyzed for their stable isotopic 

compositions:  54 from the AMC collection, 20 from the Continental Pit area, and 12 from a 

traverse of a rhodochrosite vein in the Orphan Girl mine. All of the samples from the AMC 
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collection and Continental Pit were analyzed for 13C and 18O of mineral carbonate by the 

Stable Isotope Facility (SIF) at the University of Wyoming, Laramie, WY. This lab was selected 

because of the low cost of the analyses, bearing in mind that the thesis project was minimally 

funded. The samples from the Orphan Girl traverse were analyzed for 13C using the new Picarro 

C-isotope analyzer at Montana Tech, which is located in the Montana Bureau of Mines and 

Geology (MBMG) analytical laboratory. As a cross-check on the accuracy of the SIF results, a 

subset of samples submitted and returned from the SIF were also analyzed for 13C on the 

Montana Tech Picarro instrument. Because this cross-check raised some questions (see Results 

section 3.1), the same subset of samples was sent to yet another lab, the stable isotope laboratory 

of Dr. Simon Poulson at the University of Nevada-Reno. Analytical procedures for each of these 

laboratories are outlined below. All of the original mineral-powder samples were returned to 

Montana Tech on request, and are in the possession of Dr. C. Gammons in case further 

petrographic or isotopic work is warranted.  

2.3.1. University of Wyoming 

13C and 18O-stable isotope analyses performed at the SIF at the University of Wyoming 

used a Thermo Gasbench coupled to a Thermo Delta Plus XL Isotope Ratio Mass Spectrometer 

(IRMS). The following text provides additional details, and was taken verbatim from the SIF 

website (http://www.uwyo.edu/sif/):  

“The 13C/12C composition of carbonates is determined by acidification of the 

sample with 99.99% phosphoric acid. The method uses 12 mL headspace vials as the 

vessel for acidification in conjunction with a gas chromatograph, which is coupled to an 

isotope ratio mass spectrometer in continuous flow mode. The head space vials 

containing the samples are flushed with helium. After flushing, 100µL of the phosphoric 

acid is injected into each vial. The samples are placed on the bench top at room 

http://www.uwyo.edu/sif/
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temperature and allowed to react for 24 hours. After the reaction is complete, a sample 

of the headspace air is injected onto the gas chromatograph column for gas separation 

and isotopic analysis. Quality assurance of carbon and oxygen isotope composition of 

carbonates is based on the standard uncertainty of the known value of the secondary 

laboratory reference material calculated on multiple analyses. For carbon isotope 

composition, if the standard uncertainty is greater than 0.15‰, the unknowns are re-

analyzed (until the 2-sigma expanded standard uncertainty of the result is better than 

0.3‰). The carbon isotopic composition is reported in per mil relative to VPDB scale 

such that NBS 18 calcite, NBS19 TS-limestone, and LSVEC lithium carbonate, 

respectively are -5.01‰, +1.95‰, and -46.6‰. For oxygen isotope ratio composition, if 

the standard uncertainty is greater than 0.2‰, the unknowns are re-analyzed (until the 2-

sigma expanded standard uncertainty of the result is better than 0.4‰). The oxygen 

isotopic composition is reported in per mil relative to VPDB  scale such that NBS 18 

calcite, NBS19 TS-limestone, and LSVEC lithium carbonate, respectively are -23.2‰, -

2.2‰, and -26.7‰.”  

 

Figure 8, also taken from the SIF website, gives a schematic of the apparatus used at the 

SIF for the isotopic determinations.  
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Figure 8: Diagram of sampling technique employed by the GC-IRMS facility at the 

University of Wyoming (from http://www.uwyo.edu/sif/).   

 

2.3.2. Montana Tech 

Carbon stable-isotope analyses of solid samples (e.g., calcite, rhodochrosite) at Montana 

Tech were performed by Dr. Stephen Parker, and used a Picarro G2131-i CRDS (cavity ring-

down spectrometer) analyzer with a Costech combustion module (CM-CRDS). 

 

http://www.uwyo.edu/sif/


20 

 

 

 

Figure 9: Carbon isotope analyzer at the MBMG 

 

Between 1 and 4 mg of solid was weighed into a tin (elemental Sn) cup used for the 

combustion analysis and the cup was crimped closed. The autosampler for the CM instrument 

drops the sealed tin cup into a reactor chamber at 980ºC in the presence of a stream of O2. The 

CO2 produced by the combustion or decomposition of the solid is carried by a stream of UHP-N2 

into the CRDS cavity for δ13C determination based on IR absorbance of the CO2. Carbon 

isotopic analysis was calibrated using the standards USGS 40 (glutamic acid, δ13C= -26.39), 

USGS 41 (enriched glutamic acid, δ13C=+37.63), NBS 18 (Calcite, δ13C=-5.014) and CH-6 

(sucrose, δ13C=-10.449). Sample analysis includes a standard bracketing every 10 samples. All 

isotope values were corrected based on a linear relationship between the CRDS reported value 

and the standard. The slopes for these calibrations were generally close to 1 (e.g., 0.98 to 1.01) 
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with small offset correction (See Figure 10). All isotope values are reported in units of per mil 

(‰) in the usual δ-notation versus VPDB for carbon. Replicate analyses indicated a relative error 

of ± 0.05‰ for δ13C of solid samples. 

 

Figure 10: CRDS Standard calibration curve, with samples 
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Figure 11: CRDS Standard calibration curve, with Orphan Girl samples 
 

2.3.3. University of Nevada-Reno 

Stable isotope analyses of selected samples were performed at the University of Nevada–

Reno using a dual inlet Micromass IsoPrime stable isotope ratio mass spectrometer. Sample 

analyses were performed using the phosphoric acid reaction method of McCrea (1950), except 

that the reaction was performed at 90°C. Estimated analytical uncertainties are ±0.2‰ for 13C 

and ±0.2‰ for 18O.  

2.4. Unit Conventions and Conversions   

All stable C-isotope analyses in this study are reported in the same units as those reported 

by the labs, i.e., in ‰ relative to the VPDB standard. For 18O, the data reported in the lab in ‰ 

relative to VPDB were converted to VSMOW in the following manner:  18O (VSMOW) = 18O 

(VPDB) ·1.03091 + 30.91 ‰ (Clark and Fritz 1997).  
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3. Results 

3.1. Results from U-Wyoming SIF lab 

Table I summarizes the results for all stable isotope analyses performed at the University 

of Wyoming Stable Isotope Facility. In Figure 1, the stable isotope results for carbon and oxygen 

are plotted against each other to see if there are any relationships between values. From the 

initial comparison of the values, there does not appear to be any obvious trends, other than the 

observation that calcite is, on average, about 2 ‰ heavier in both 18O and 13C compared to 

rhodochrosite. The average and standard deviation in 18O and 13C for all rhodochrosite 

samples is 3.6 ± 3.4‰ and -6.7 ± 1.2‰, respectively, and the total range in the same parameters 

is -1.8 to 12.8‰ and -8.3 to -2.9‰, respectively (see Table II). This compares to an average and 

standard deviation of 6.2 ± 2.8‰ and -5.4 ± 1.5‰ for 18O and 13C of calcite, and a total range 

of -4.4 to 12.3‰ and -9.0 to -2.6‰, respectively. A calcite standard of known 13C composition 

(-16.26‰ VPDB) was analyzed twice at the U-Wyoming lab and returned a value of 16.6‰ 

VPDB on both occasions. 
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Figure 12: Plot of 13C vs 18O for all carbonate mineral samples 

 

 

Table II: Stable isotope results (U-Wyoming lab) 

Mine 

Anaconda 

Accession 

ID Mineral Mine Level 

δ13C - 

VPDB 

δ18O - 

VPDB 

δ18O - 

VSMOW 

Anselmo 3087 Calcite 2101 -5.0 -22.0 8.2 

 3087 Calcite-dup 2101 -5.0 -22.0 8.2 

 975 Rhodochrosite 1247 -7.1 -21.0 9.2 

 1814 Rhodochrosite 2100 -8.1 -31.4 -1.5 

Badger 990 Calcite not listed -8.0 -26.8 3.3 

 3091 Calcite 2475 -5.1 -19.5 10.8 

 990 Calcite 2802 -7.5 -26.5 3.5 

 2040 Calcite 2891 -4.2 -21.3 9.0 

 840 Calcite 3059 -6.3 -21.8 8.5 

 1601 Calcite 3938 -4.8 -24.5 5.6 

 985 Rhodochrosite 3071 -5.2 -28.2 1.8 

Belmont 3081 Calcite not listed -5.5 -26.1 4.0 

 3076 Calcite 3833 -5.5 -23.0 7.2 
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 868 Rhodochrosite 3559 -7.8 -30.5 -0.6 

 1108 Rhodochrosite 3625 -8.0 -25.6 4.5 

 669 Rhodochrosite 3813 -5.4 -27.4 2.7 

Black Rock 1783 Rhodochrosite not listed -7.0 -28.9 1.2 

Continental Pit  Calcite *407 -6.6 -24.7 5.5 

 Calcite *415 -7.2 -22.4 7.9 

*samples with asterisks 

reflect depth in a diamond 

drill hole 

Calcite *520 -6.4 -24.8 5.4 

Calcite-dup *520 -6.1 -24.8 5.4 

Calcite *597 -6.5 -25.8 4.3 

Calcite *764 -5.2 -23.9 6.3 

Calcite *806 -5.0 -22.3 7.9 

Calcite *812 -6.7 -23.7 6.4 

Calcite *820 -7.2 -25.1 5.0 

Calcite-dup *820 -7.3 -25.1 5.1 

 Calcite *828 -6.1 -29.8 0.2 

 Calcite *840 -9.0 -21.3 8.9 

 Calcite *981 -5.9 -24.3 5.8 

 Calcite *1145 -4.9 -23.6 6.6 

 Calcite *1217 -2.6 -21.9 8.3 

 Calcite *1225 -6.1 -22.3 7.9 

 Calcite 5480 Bench -6.1 -23.0 7.2 

 Calcite 5560 Bench ND ND ND 

 Rhodochrosite *582 -8.3 -21.9 8.3 

 Rhodochrosite *946 -6.3 -28.7 1.3 

 Rhodochrosite 5480 Bench -7.3 -21.2 9.0 

 Rhodochrosite 5520 Bench -6.4 -17.6 12.8 

Emma 1003 Rhodochrosite 501 -2.9 -28.0 2.1 

 865 Rhodochrosite 1099 -5.2 -22.4 7.8 

 702 Rhodochrosite not listed -6.5 -28.4 1.6 

 1205 Rhodochrosite 492 -7.7 -26.4 3.7 

 1003 Rhodochrosite 501 -6.9 -29.5 0.5 

 2657 Rhodochrosite 631 -7.2 -24.8 5.3 

 860 Rhodochrosite 824 -7.1 -27.8 2.3 

 860 Rhodo-dup 824 -7.1 -27.9 2.2 

 1434 Rhodochrosite 1000 -7.4 -27.3 2.7 

 864 Rhodochrosite 1099 -7.5 -30.4 -0.4 

 865 Rhodochrosite 1099 -6.4 -25.1 5.0 

Leonard 1371 Calcite 2292 ND ND ND 

 3176 Calcite 3361 -7.6 -22.0 8.2 

 3696 Calcite 3368 -4.7 -22.7 7.5 

 1871 Calcite 3381 -5.1 -22.4 7.9 
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 3707 Calcite 739 -3.3 -34.2 -4.4 

Lexington 162 Calcite 272 -6.4 -18.1 12.3 

 2473 Calcite 2848 ND ND ND 

 2510 Rhodochrosite 200 -6.0 -24.6 5.5 

Marget Ann 3684 Rhodochrosite 400 -8.3 -31.7 -1.8 

Mtn Con 396 Calcite 3017 -5.2 -22.7 7.5 

 

 

Calcite 3900 -4.5 -25.4 4.8 

 1315 Calcite 4201 -2.7 -25.8 4.3 

 4656 Calcite 4219 -3.9 -23.0 7.2 

 3793 Calcite 4400 -4.3 -21.0 9.2 

 6257 Calcite 4512 -5.4 -25.6 4.6 

 

 

Rhodochrosite 3900 -7.3 -24.4 5.8 

 6257 Rhodochrosite 4512 -8.1 -31.4 -1.5 

Orphan Girl 2245 Calcite 801 -3.3 -24.5 5.6 

 1928 Calcite 2802 -3.8 -25.1 5.0 

 4906 Rhodochrosite 563 -5.3 -25.0 5.1 

 1929 Rhodochrosite 2802 -6.4 -23.9 6.3 

 1929 Rhodo-dup 2802 -6.5 -24.0 6.2 

Steward 5544 Calcite 4203 -3.0 -26.1 4.0 

 5544 Calcite-dup 4203 -3.2 -26.8 3.3 

 7154 Calcite 4410 -4.4 -27.1 3.0 

 7154 Calcite-dup 4410 -4.3 -26.9 3.2 

 3754 Rhodochrosite 3894 -7.2 -28.0 2.1 

 1262 Rhodochrosite 4021 -5.7 -30.2 -0.2 

Travona 1267 Rhodochrosite 550 -4.9 -23.3 6.9 

 1271 Rhodochrosite 550 -5.5 -25.4 4.7 

 2597 Rhodochrosite 849 -6.3 -27.1 3.0 

 

*highlighted samples are duplicate samples; ND represents samples where insufficient CO2 was 

detected for an isotopic analysis. 

 
Table III: Averages, ranges, and standard deviations for the isotopic measurements of all samples 

Mineral 

Average 

13C, 

VPDB  

Average 

18O, 

VSMOW  

Range     

13C, 

VPDB 

Range         

18O, 

VSMOW 

Standard 

Deviation 

13C, 

VPDB 

Standard 

Deviation 

18O, 

VSMOW 

Calcite -5.4 6.2 -9.0 to -2.6 -4.4 to 12.3 1.5 2.8 

Rhodochrosite -6.7 3.6 -8.3 to -2.9 -1.8 to 12.8 1.2 3.4 
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Some samples were split and submitted as separate unknowns. These duplicate samples 

showed good agreement with each other (Table IV), with a small error between them. The 

average error was ±0.2 ‰ for both 18O and 13C.  

Table IV: Average error of field duplicates. Highlighted samples are field duplicates 

Mine Description Mine Level 
δ13C, 

VPDB 

δ18O, 

VPDB 
 δ13C  δ18O 

Anselmo Calcite 2101 -5.0 -22.0 

    Duplicate   -5.0 -22.0 0.0 0.0 

Continental Calcite *520 -6.4 -24.8 

  

 

 Duplicate   -6.1 -24.8 0.3 0.0 

Continental Calcite *820 -6.1 -29.8 

    Duplicate   -6.1 -29.8 0.0 0.0 

Emma Rhodochrosite 824 -7.1 -27.8 

     Duplicate   -7.1 -27.9 0.0 0.1 

Orphan 

Girl Rhodochrosite 2802 -6.4 -23.9 

    Duplicate   -6.5 -24.0 0.1 0.1 

Steward Calcite 4203 -3.0 -26.1 

  

 

 Duplicate   -3.2 -26.8 0.2 0.7 

Steward Calcite 4410 -4.4 -27.1 

     Duplicate   -4.3 -26.9 0.1 0.2 

  

Average 

error   ±0.2 ‰ ±0.2 ‰ 

 

Tables V and VI summarize the average and standard deviation values for 13C and 18O 

of calcite and rhodochrosite, respectively, for each mine shaft from which specimens were 

collected. In some cases only a single specimen was collected from a given mine, in which case 

the standard deviations could not be computed. The same information is displayed on an aerial 

photograph of Butte in Figures 12 and 13. The latter figures also include the samples that were 

collected from the Continental Pit. This gives the reader a better idea of the spatial coverage of 

sampling in this study. The results are discussed at greater depth in the following chapter.  
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Table V: Average isotopic values for calcite, organized by mine 

Mine Mineral Nsamp 

Average 

13C‰, 

VPDB 

Average 

18O‰, 

VSMOW 

StDev 

13C‰, 

VPDB 

StDev 

18O‰, 

VSMOW 

Anselmo Calcite 2 -5.0 8.2 0.0 0.0 

Badger Calcite 6 -6.0 6.8 1.6 3..1 

Belmont Calcite 2 -5.5 5.6 0.0 2.3 

Continental Calcite 17 -6.2 6.1 1.3 2.0 

Emma Calcite 2 -4.1 4.9 1.6 4.0 

Leonard Calcite 4 -5.8 7.9 1.6 0.3 

Lexington Calcite 2 -6.4 12.3 N/A N/A 

Mtn Con Calcite 6 -4.3 6.3 1.0 2.0 

Orphan 

Girl Calcite 2 -3.6 5.3 0.3 0.4 

Steward Calcite 4 -3.7 3.4 0.8 0.4 

 
 
Table VI: Average isotopic values for rhodochrosite, organized by mine 

Mine Mineral Nsamp 

Average 

13C‰, 

VPDB 

Average 

18O‰, 

VSMOW 

StDev 

13C‰, 

VPDB 

StDev 

18O‰, 

VSMOW 

Anselmo Rhodochrosite 2 -7.6 3.9 0.7 7.6 

Badger Rhodochrosite 1 -5.2 1.8 N/A N/A 

Belmont Rhodochrosite 3 -7.1 2.2 1.5 2.6 

Black 

Rock Rhodochrosite 1 -7.0 1.2 N/A N/A 

Continental Rhodochrosite 4 -7.1 7.9 0.9 4.8 

Emma Rhodochrosite 9 -7.1 2.6 0.4 1.9 

Leonard Rhodochrosite 1 -3.3 -4.4 N/A N/A 

Lexington Rhodochrosite 1 -6.0 5.5 N/A N/A 

Marget 

Ann Rhodochrosite 1 -8.3 -1.8 N/A N/A 

Mtn Con Rhodochrosite 2 -7.7 2.1 0.6 5.1 

Orphan 

Girl Rhodochrosite 3 -6.1 5.9 0.7 0.7 

Steward Rhodochrosite 2 -6.5 0.9 1.0 1.6 

Travona Rhodochrosite 3 -5.6 4.9 0.7 2.0 
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Figure 13: Map of calcite samples, with average isotopic ratios shown 
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Figure 14: Map of rhodochrosite samples with average isotopic ratios show
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3.2. Results from Montana Tech lab 

Tables VII and VIII summarize samples run at the Montana Tech lab using the Picarro 

G2131-i CRDS. This device used a different analysis technique than the other two laboratories 

which may have volatilized any trace organic carbon present and could have contributed to some 

of the disagreements between values. 

Table VII: C-isotope analyses performed at Montana Tech 

Mine Level Mineral 
13C corrected ‰ 

VPDB 

Anselmo 1247 Rhodochrosite -7.5 

Badger 2802 Calcite (-10.1)* 

Belmont 3813 Rhodochrosite -5.1 

Emma 824 Rhodochrosite -8.8 

Lexington 2848 Calcite (-28.0)* 

Mountain Con 4201 Calcite -4.0 

Mountain Con 4201 Calcite -3.9 

Mountain Con 4400 Calcite -2.4 

Continental Pit 5480 Bench Calcite (-15.3)* 

Continental Pit 5480 Bench Calcite -7.3 

Continental Pit 5520 Bench Rhodochrosite -6.2 

*Low CO2 yield, results may not be accurate 
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Table VIII: Orphan Girl vein traverse 13C values 

Mine Level 

Distance 

from 

Footwall, 

feet 

13C corrected 

VPDB ‰ 

Orphan 100 1 -6.2 

Girl " 5 -6.7 

Vein " 10 -6.4 

traverse " 17 -6.8 

 
" 20 -6.5 

 
" 25 -6.3 

 
" 27 -6.4 

 
" 30 -6.3 

 
" 32 -6.4 

 
" 35 -6.2 

 
" 38 -6.2 

 
" 40 -6.4 

 

3.3. Comparison of Data from Different Labs 

Several samples were run at three different laboratories, each using different methods, 

with the data summarized in Table IX. For the two samples that were nearly pure carbonate 

separates (Anselmo 1247 and Belmont 3813), the agreement between the labs was very good for 

13C and 18O, within the analytical errors. However, the agreement in 13C between the 

Montana Tech and UW labs was not good for the other 3 samples. The two samples from 

Mountain Con had a low % carbonate in the powdered sample, which caused a “below detect” 

error for the UNR lab, and also a caution from the UW lab. It is likely, then, that the source of 

error for those two samples was a poor purity of the carbonate mineral separate. The source of 

error for the Emma 824 sample is not known.     
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Table IX: Differences between lab 13C values, ND indicates no data 

Mine Level Mineral 

MTech 

13C 

VPDB 

UW 

13C 

VPDB 

UNR 

13C 

VPDB 

UW 

18O 

VPDB 

UNR 

18O 

VPDB 

Anselmo 1247 Rhodochrosite -7.5 -7.1 -7.0 -21.0 -20.9 

Belmont 3813 Rhodochrosite -5.1 -5.4 -5.2 -27.4 -27.1 

Emma 824 Rhodochrosite -8.8 -7.1 not run -27.8 not run 

Mtn Con 4201 Calcite -3.9 -2.7 ND -25.8 ND 

Mtn Con 4400 Calcite -2.4 -4.3 ND -21.0 ND 
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4. DISCUSSION 

4.1. Comparison with Previous Work 

The first study to look at the stable isotopic composition of carbonate minerals in Butte 

was that of Garlick and Epstein (1966). Though their sample size was small, 3 calcites and 9 

rhodochrosites, they came to the conclusion that there were no obvious correlations between the 

13C and 18O ratios. From Figure 15, it can be see that the data of Garlick and Epstein overlap 

with the data from this study, and therefore will be included in all of the following figures. 

 
Figure 15: 13C vs 18O for the Butte district, with data from Garlick and Epstein, shaded Continental Pit 

calcite markers denote association with stellerite. 
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4.2. Stable Isotope Trends 

4.2.1. Calcite vs. Rhodochrosite 

Table X shows that the stable isotope data for the calcite and rhodochrosite has some 

overlap. To test whether the data for the two carbonate minerals are statistically different, a two-

sample t-test was used. This test is based on comparison of the means of the 13C and 18O 

values for calcite and for rhodochrosite. When comparing the two sets of data, a “small” P-value 

indicates a significant difference in the means, where “small” is typically P < 0.05, the smaller 

the P-value the stronger the evidence of a statistical difference. 

 
Table X: Summary of T-test results for calcite vs. rhodochrosite 

Carbon Nsamp Mean 
Standard 

Deviation 
t Stat P-value 

13C-Calcite 45 -5.37 1.5 

4.79 3 x 10-6 

13C-Rhodochrosite 45 -6.64 1.0 

 

Oxygen Nsamp Mean 
Standard 

Deviation 
t Stat P-value 

18O-Calcite 45 6.22 2.4 

4.21 3 x 10-5 

18O-Rhodochrosite 33 3.31 3.7 

 

As shown in the last column of the table above, the P-values based on both carbon and 

oxygen in calcite and rhodochrosite are small enough to be considered significant and confirm 

that they are statistically different. 
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4.2.2. Isotopic Differences Between Mines 

An examination of the data in Tables VIII and IX and Figures 12 and 13 (Results) shows 

no systematic differences between the average C- and O-isotopic compositions between each 

mine, nor with respect to x-y location within the district. This is surprising considering the size 

of the district as well as the large differences in depth at which each sample was collected. The 

Continental Pit area, which is an expression of a deeper area of the porphyry system due to 3500 

feet of offset from the Continental Fault, was expected to show some difference from the rest of 

the Butte complex. However, the isotopic values for calcite samples collected in the Continental 

Pit show no real deviation from the average values in the Butte mine shafts. Rhodochrosite 18O 

values from small Main Stage veins in the Continental Pit are on average heavier than the rest of 

the Butte area, though this could be an artifact of the small number of samples. 

Several calcite samples from the Continental Pit were collected from late veins and 

veinlets that contained stellerite (CaAl2Si7O18·7H2O), a low temperature hydrothermal mineral 

which is considered to be late in the paragenetic sequence (Peet, 2010). The coexistence of 

stellerite with calcite implies that the two minerals formed at similar times and temperatures. 

However, the isotopic compositions of calcite in the stellerite veins were similar to those 

collected elsewhere in the Continental Pit. The average values of 18O and 13C for stellerite-

calcite veins were 6.4 ± 1.7 ‰ and -6.5 ± 1.3 ‰, respectively (errors denote 1 standard 

deviation), which compare with 6.0 ± 2.2 ‰  and -6.0 ± 1.4 ‰, respectively, for the rest of the 

samples from the Continental Pit. The small differences in the isotopic values between the 

different stages of calcite fall well within the standard deviations of each data set.  
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4.2.3. Isotopic Differences With Depth 

To examine isotopic trends with depth, the 13C and 18O values were plotted against the 

elevation above sea level of each sample. To calculate the elevations for samples from the AMC 

collection, the reported mine level for each sample was adjusted to the known surface elevation 

of the top of the shaft, based on a Butte mine database that is available from the MBMG (Ted 

Duaime, pers. communication). Both 13C values for calcite and rhodochrosite appear to have no 

obvious correlation with depth. The same can be said for 18O values as there appears to be no 

trend with depth. 

Boiling that occurs in hydrothermal systems imparts different isotopic signatures based 

on which fluid the carbonate mineral formed from, such as the trends attributed to boiling in 

Shikazono (1989). The lack of any trends in the Butte deposit with depth imply that boiling did 

not occur during the formation of the Main Stage Veins. If boiling were taking place, the values 

for 13C and 18O would be heavier towards the surface. The CO2 that partitions into vapor phase 

during boiling is depleted in 13C and 18O and the remaining DIC in the fluid becomes heavier. 

As the fluid rises, any carbonate minerals precipitated will be heavier in 13C and 18O. If the 

Butte deposit did experience boiling it is likely that a trend would be apparent with depth in 

calcite or rhodochrosite. Since there are no trends with depth, it is unlikely that Butte ever 

experienced boiling. This agrees with the previously published idea that Butte was a deep 

porphyry-lode deposit that did not undergo large-scale liquid-vapor phase separation (Rusk, 

2008a, 2008b). 
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Figure 16: Carbon isotope values vs. elevation 

 

 

 
Figure 17: Oxygen isotope values vs. elevation 
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4.2.4. Isotopic Differences Across a Single Vein 

The Orphan Girl mine is located on the western margin of the Butte deposit and is located 

in the peripheral zone. The 12 samples from the traverse of the Orphan Girl vein (lode) are very 

similar. Samples closer to the hanging-wall of the vein were more similar in composition while 

samples near the foot-wall were less similar in composition. Unlike the study of Eaton et al. 

(1995), which showed systematic differences in 13C of siderite across a large vein in the Coeur 

d’Alene district, Idaho, there are no systematic differences in the 13C composition of 

rhodochrosite across the Orphan Girl vein.  

 
Figure 18: 13C vs. distance across a large vein in the Orphan Girl mine 

 

4.2.5. Relationship Between Isotopes and Cu/Mo Grades 

Continental Pit samples that came from core drilling also had copper and molybdenum 

grades for the five-foot intervals that the samples came from. The study of Pass et al. (2014) had 
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success correlating high grade mineralization with depletion of 13C values, so the Continental 

Pit sample values were plotted against the reported grade for their respective intervals to see if 

any trends emerged. Samples associated with late veins of stellerite are not included as their 

formation was not related to any deposition of economic minerals. Grade values cluster near the 

average value of 13C and 18O of the Continental deposit. There appear to be no trends with 

Cu/Mo grades and the isotopic ratios.  
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Figure 19: 13C vs. wt% Cu 

 

 
Figure 20: 18O vs. wt% Cu 
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Figure 21: 13C vs. wt% Mo 

 

 

Figure 22: 18O vs. wt% Mo 
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4.3. Constraints on Conditions of Ore Formation 

4.3.1. Previous Estimates of the Temperature of Main Stage Mineralization at 
Butte 

Rusk et al. (2008b) measured fluid inclusion homogenization temperatures of 220 to 

340°C for Main Stage veins from Butte, with higher Th values in the central zone (near the 

Berkeley Pit) and lower temperatures in the intermediate and peripheral zones. After applying a 

50°C pressure correction, they concluded that Main Stage vein quartz formed in the 250 to 

350°C temperature range. These results are in line with S-isotope geothermometry performed by 

Lange and Cheney (1971), who obtained a range of 260° to 350°C for co-existing pyrite-

sphalerite pairs from three samples taken from veins in the peripheral zone. The estimated 

temperatures are also in agreement with the study of Sheppard and Taylor (1974), who adopted a 

temperature of 300°C for all Main Stage mineralization, referencing previous work of Meyer et 

al. (1968) and Lange and Cheney (1971).   

4.3.2. Speciation of Dissolved Inorganic Carbon at High Temperature 

Figure 23 (adapted from Barnes, 1979), shows the relationship between temperature and 

pH for several reactions that have relevance to this study. The two dash-dot lines plot the 

boundary between (muscovite + quartz) and K-feldspar, for two different total dissolved K 

concentrations. The ore-forming fluids that precipitated Cu-Ag-Pb-Zn were probably weakly 

acidic (muscovite-stable) to strongly acidic (adv. argillic alteration) (e.g., Meyer et al., 1968). 

The area shaded yellow shows the possible range of pH and temperature for these fluids, 

assuming the temperature range of 250 to 350°C of Rusk et al. (2008b). If the carbonates formed 

at the same time and temperature as the quartz, then this implies a similar pH range, which 

means that CO2(aq) would have been the dominant form of dissolved inorganic carbon. It is also 

possible that some of the carbonates formed at a later time from higher pH fluids. However, the 
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lack of any significant K-spar associated with carbonates suggests that the pH values were still 

below the Kspar/muscovite limits. Given these temperature and pH considerations it is 

concluded that the probable form of dissolved carbon in the system was CO2(aq).  

 

 

Figure 23: Diagram showing the temperature dependence of several hydrothermal reactions (modified after 

Barnes, 1979).    

 

4.3.3. Compilation of High-Temperature Isotope Fractionation Factors 

Fractionation factors are known isotopic separations between various phases and forms of 

compounds which vary by temperature. In this study, isotopic fractionations factors at high 

temperature are used to determine the isotopic composition of the the possible sources of carbon 

in the Butte district as well as the ore forming fluids. Tables XI and XII, along with Figure 24, 

summarize the equilibrium fractionation factors (1000 ln ) for isotopic exchange between 

calcite, rhodochrosite, CO2, and water, at 25° to 350°C. The sources of data are Zheng (1999), 
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Deines (2004), and Ohmoto and Rye (1979). In the following tables, if a value is (+) and is 

written “calcite-CO2”, it means that calcite is isotopically heavier than CO2 and if a value is (-) 

and is written “calcite-CO2”, it means that calcite is isotopically lighter than CO2. 

 

Table XI: Oxygen isotopic exchange values at high temperature   

T,C T,K CO2-calcite 

CO2-

rhodochrosite 

calcite-

rhodochrosite 

calcite-

H2O 

rhodochrosite-

H2O 

10 283.15 10.6 8.1 2.5 35.3 37.8 

25 298.15 10.9 8.6 2.3 31.2 33.5 

50 323.15 11.2 9.2 2.0 25.7 27.6 

100 373.15 11.1 9.6 1.5 18.0 19.5 

150 423.15 10.7 9.5 1.2 13.1 14.3 

200 473.15 10.1 9.1 1.0 9.8 10.7 

250 523.15 9.4 8.6 0.8 7.5 8.3 

300 573.15 8.8 8.1 0.7 5.8 6.5 

350 623.15 8.2 7.6 0.6 4.6 5.1 

Source of data: Zheng (1999) 

 

Table XII: Carbon isotopic exchange values at high temperature 

T,C T,K rhodochrosite-CO2 calcite-rhodochrosite calcite-CO2 

25 298.15 8.6 1.6 10.2 

50 323.15 6.3 1.4 7.8 

100 373.15 2.8 1.2 4 

150 423.15 0.5 1 1.5 

200 473.15 -1 0.9 -0.2 

250 523.15 -2 0.8 -1.3 

300 573.15 -3 0.7 -2 

350 623.15 -3 0.6 -2.4 

ref 
 

b,c b c 

Sources of data: b) Deines 2004   c) Ohmoto and Rye 1979 
 



46 

 

-5

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350

Is
o

to
p

ic
 s

ep
ar

at
io

n
, ‰

Temperature, °C

d13C, CaCO3-MnCO3

d18O, CO2-CaCO3

d13C, Calcite-CO2

d18O, calcite-H2O

d18O, CaCO3-MnCO3

 
Figure 24: Temperature dependence of isotopic fractionation factors for various reactions. 

The data come from Tables XI and XII. 

4.3.4. Geothermometry Based on the Results of this Study 

The consistent 1 to 3‰ isotopic enrichment of 18O and 13C of calcite relative to 

rhodochrosite in the veins and lodes of Butte could theoretically be used to estimate the 

temperature of formation of these minerals. This type of approach is only valid if: 1) the two 

minerals formed at the same time from the same fluid; 2) isotopic equilibrium was attained 

during mineral precipitation; and 3) the isotopic compositions were not affected by low-

temperature water-rock interaction after the vein formed. In this study, only two specimens were 

found that had both calcite and rhodochrosite in the same hand sample, coexisting in a way that 

is consistent with simultaneous precipitation in a vein. These two samples were both from the 

Mountain Con mine and the isotopic data are summarized in the following table:  
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Table XIII: Calculated temperatures based on isotope geothermometry 

 18O, 

calcite 

18O, 

rhodo. 

Calculated 

temperature 

13C, 

calcite 

13C, 

rhodo. 

Calculated 

temperature 

Mtn Con 

3900 
4.8 5.8 

Out of 

range 
-4.5 -7.3 

Out of 

range 

Mtn Con 

4512 
4.6 -1.5 

Out of 

range 
-5.4 -8.1 

Out of 

range 

 

To get the “calculated temperature” values in the above table, the data in Tables XI and 

XII were rearranged to create polynomials that can be solved for temperature, based on the 

isotopic separation between calcite and rhodochrosite (Figure 25, below).  

 
Figure 25: Polynomials used to estimate temperature from the observed isotopic separation values 

 

However, when the polynomial equations in Figure 25 are applied to the actual data from 

the Mountain Con samples, the estimated temperatures are well out of the range of the equations. 

Clearly this approach cannot be used to accurately estimate the temperatures of formation of the 

carbonate minerals. Either the minerals did not form at equilibrium at the same time from the 
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same fluid, or one or both of the minerals were affected by low-temperature isotopic exchange 

during retrograde fluid-rock interaction.  

4.3.5. Isotopic Re-Equilibration at Low Temperature 

Previous workers (e.g., Kerrich, 1990) have suggested that hydrothermal carbonate 

minerals, especially calcite, may have their C- and O- isotopic signatures partly or completely 

reset by interaction with lower temperature (retrograde) fluids. This is because the kinetics of 

equilibrium isotope exchange between calcite-O and water-O, or calcite-C and dissolved 

inorganic carbon, are fairly rapid, even at low temperature (e.g., Clark and Fritz, 1997). The 

question then becomes whether or not ALL of the minerals in this thesis have been isotopically 

reset, and whether or not any inferences can be made as to the sources of C or sources of water 

based on the isotopic data.   

The extent of low-temperature isotopic exchange between water (e.g., groundwater) and a 

given mineral is dependent on temperature, the relative mass of an element (e.g., C, O) in the 

aqueous and solid phase, and also the solubility and kinetics of dissolution of the mineral into the 

aqueous phase. For example, because quartz is so insoluble in water and takes > 1000 years to 

reach equilibrium solubility at low temperature (Brady and Walther, 1990), the O-isotopic 

composition of hydrothermal quartz cannot be reset by interaction with low temperature waters, 

even over millions of years. This is not the case for the carbonate minerals of this study, 

especially for calcite which is much more soluble than rhodochrosite. Based on data in Drever 

(1997), the solubility products of calcite and rhodochrosite (log scale) at 25°C are -8.48 and        

-11.43, respectively. In other words, at the same pH and temperature conditions, calcite is about 

1000 times more soluble than rhodochrosite. Also, the kinetics of dissolution and precipitation of 

calcite are faster than those of most other common carbonate minerals, such as dolomite, siderite, 
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or rhodochrosite (Morse and Arvidson, 2002; Pokrovsky and Schott, 2002). Thus, it is likely that 

any isotopic re-equilibration at low temperature would proceed at a faster rate for calcite vs. 

rhodochrosite.  

Isotopic re-equilibration also depends on the relative masses of C and O in the solids as 

compared to the groundwater that circulates through the rock. The mineralized rock in Butte 

contains a huge mass of carbon in the form of rhodochrosite (as well as lesser amounts of calcite) 

in the Main Stage veins, especially in the Mn-rich veins of the peripheral zone (e.g., Emma, 

Travona, Orphan Girl) where the lodes of rhodochrosite were up to 10 m thick. In contrast, the 

groundwaters of Butte contain relatively low concentrations of DIC, typically less than 100 mg/L 

(< 10 mmol/L) (e.g., Gammons et al., 2009). For this reason, if isotopic exchange occurs 

between groundwater and rock, it is more likely that the groundwater will see its isotopic 

signature of DIC adjust to become closer to equilibrium with the rhodochrosite in the veins, and 

not the other way around. This was one of the conclusions in the study of Gammons et al. 

(2009), who investigated the geochemistry and stable isotopic composition of dissolved 

inorganic carbon in the flooded mine workings of Butte. 

In the case of oxygen, it is no longer true that the concentration (e.g., moles per unit 

volume) of O in the rock is much greater than in the water. This is because water is mostly 

oxygen (by mass). Also, isotopic exchange of O between H2O and CO2 is fairly rapid, even at 

low temperature (Clark and Fritz, 1997). Over 1000’s to millions of years, it is possible that 

water moving through cracks and veins in the mineralized bedrock could partly reset the O-

isotopic composition of the carbonate gangue minerals. Modern day groundwater in Butte has a 

18O composition of around -18‰ (Gammons et al., 2006). If calcite in veins equilibrated with 

water of this composition at a temperature near 10°C (the temperature of many groundwaters in 
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the Butte area), the calcite would have a 18O value that is about 35‰ heavier, or close to +18‰. 

Rhodochrosite would be even heavier, at roughly +20.5‰. None of the carbonate minerals in 

this study had 18O over +13‰, suggesting that none of the minerals had their O-isotopic 

composition completely reset to low temperature values. However, it is possible that the 

carbonates were partly reset by recent groundwater, or by any intermediate-temperature 

paleowater that passed through the veins in the time between when the veins formed and the 

present day.    

In summary, the likelihood of isotopic re-equilibration is higher for calcite vs. 

rhodochrosite, based on the fact that calcite is much more soluble than rhodochrosite, and also 

has faster kinetics of dissolution and precipitation. If either mineral partly re-equilibrated with 

water at low temperature, its 18O value would be shifted to more positive values. This may 

explain the fact that Butte calcite consistently has heavier 18O compared to Butte rhodochrosite. 

On the other hand, because of the much greater mass of solid carbonate in the veins and lodes 

compared to DIC in the water, it is less likely that re-equilibration could have shifted the C-

isotope signature of the minerals. This is especially true for rhodochrosite, which is both 

relatively insoluble and extremely abundant in the veins and lodes of Butte. This helps to explain 

the fact that the total range in 13C of the carbonate minerals is much less than the total range in 

18O, and that the range in 13C-rhodochrosite is less than the range in 13C-calcite (see Figure 

15). 

4.3.6. Sources of Carbon for the Carbonate Minerals 

Since it is less likely that the 13C values have been reset due to re-equilibration, we can 

speculate what the potential sources of carbon may have been. The average 13C values for 

calcite and rhodochrosite in the Butte deposit are -5.4‰ for calcite and -6.6‰ for rhodochrosite. 
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Referring to Figure 26, the carbonate minerals from Butte have 13C values that overlap with 

several possible fields.  

 
Figure 26: Approximate ranges of C-isotopic composition of different carbon reservoirs on Earth (modified 

from Ohmoto and Rye, 1979). 

 

The study of Catchpole et al. (2015) concluded that the rhodochrosites in the Morococha 

district, Peru, inherited their carbon from magmatic CO2, whereas the more isotopically-enriched 

calcites in the district may have formed by later, lower temperature meteoric fluids. The 13C 

values for the rhodochrosites in Butte display a much tighter distribution compared to the calcites 

(Figure 14) which were consistently heavier in 13C. Although the isotopic composition of 

dissolved inorganic carbon (DIC) in meteoric water is sensitive to many variables, most 

groundwaters tend to have 13C-DIC around -12 ± 5‰ (Clark and Fritz, 1997).  

If the fractionation factors from Zheng (1999) are applied to the average values for calcite 

and rhodochrosite, an estimate of the isotopic composition of the fluids is obtained. From Table 
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XII we can see the isotopic ranges for low to high temperature fluids. These values relate to 

many possible sources of carbon; however the most likely source of carbon is from magmatic 

CO2. A fluid leached out of igneous rocks is also plausible since the Butte deposit is completely 

surrounded by igneous rock. The study of Field et al. (2005) concluded that the sulfur in Butte 

was enriched due to magmatic assimilation of isotopically enriched sulfate from Belt 

metasediment evaporites. It is possible that the magmatic CO2 value seen in this study represents 

isotope ratios of carbon that was assimilated from the carbonate units found in the Belt 

Supergroup, this enrichment could have even extended to the huge metal content found in the 

Main Stage veins. Since there are many possible sources of carbon that formed the carbonate 

minerals, including magmatic CO2, groundwater DIC, or perhaps even assimilated sedimentary 

carbon from the Belt Basin group that is a mix of marine limestone (13C near zero) and reduced 

organic matter (graphite, 13C < -10‰), determining a singular source of carbon seems unlikely. 

Table XIV: Isotopic composition of DIC in fluid at various temperatures 

Avg Calc, incl G&E Avg Rhod, incl G&E 

C O C O 

-5.4 6.2 -6.6 3.3 

    CO2 
   C O C O 

-15.6 -4.7 -15.2 -5.3 

-13.2 -5 -12.9 -5.9 

-9.4 -4.9 -9.4 -6.3 

-6.9 -4.5 -7.1 -6.2 

-5.2 -3.9 -5.5 -5.8 

-4.1 -3.2 -4.5 -5.3 

-3.4 -2.6 -3.9 -4.8 

-3 -2 -3.6 -4.3 
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4.3.7. Sources of Hydrothermal Fluid for the Carbonate Minerals 

Since partial re-equilibration is more likely to have happened to the calcites than the 

rhodochrosites, the isotopic values for rhodochrosite seem like a far better indicator of what the 

isotopic composition of the original fluids would have been. Fractionation factors from Zheng 

(1999) have been applied to the minimum and maximum values for rhodochrosite throughout the 

district. When these factors are applied to the stable isotope data for a mineral, an estimate of the 

original fluid O-isotopic composition is made. The result is the range of 18O values that the 

fluid could have been at various temperatures. 

Table XV: 18O composition of fluids 25°C to 350°C using minimum and maximum rhodochrosite 18O 

values 

Rhodochrosite 
(Minimum) 

Rhodochrosite 
(Maximum) 

 O  O 

 -1.8  12.8 

    H2O O 
 

O 

25 -35.3 to -20.7 

50 -29.4 to -14.8 

100 -21.3 to -6.7 

150 -16.1 to -1.5 

200 -12.5 to 2.1 

250 -10.1 to 4.5 

300 -8.3 to 6.3 

350 -6.9 to 7.7 
 

 

 Sheppard and Taylor (1974) estimated the 18O of the hydrothermal fluids of Butte by 

first determining the isotopic composition of the hydrothermal quartz in Main Stage and pre-

Main stage veins. They then assumed equilibrium with a fluid at 300°C for Main Stage veins and 

600°C for pre-Main Stage veins and used equilibrium fractionation factors to determine the 

isotopic composition of the fluids (Table XVI). We can compare these values with those 
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computed for this study and find that the values for Sheppard and Taylor overlap with the values 

of rhodochrosite for their assumed temperature of formation at 300°C of the Main Stage veins.  

 

Table XVI: Results of Sheppard and Taylor 

Mineralization Stage T°C 18O Mineral 18O Water 

Pre Main Stage 600 +3 to +5 +6 to +9 

Main Stage Central 300 -9 to +12 -12 to +8 

Main Stage Intermediate 300 -4 to +7 -7 to +4 

Main Stage Peripheral 300 -2 to +4 -5 to +1 

 

The study of Gammons et al. (2006) determined the local meteoric water line for the Butte area 

and found that the average composition of the water contributing to flooded mine recharge had a 

18O of -18‰. If the carbonate minerals re-equilibrated with a water that had a 18O of -18‰, 

then the computed temperature of re-equilibration lies between 100°C and 150°C (Table XIII). 

Although it is possible that some late-stage calcites and rhodochrosites could have equilibrated 

with warm meteoric water in this temperature range, it seems unlikely that the bulk of the 

carbonate minerals in the veins and lodes could have been reset. 

Figure 27 shows the 18O values of the carbonate minerals compared to the values 

obtained from Sheppard and Taylor (1974) and the common values associated with magmatic 

and meteoric water. Sheppard and Taylor concluded that pre-Main Stage Cu-Mo mineralization 

formed from magmatic fluids, whereas later Main Stage veins formed from a mixture of 

magmatic and meteoric waters. During the formation of the Butte deposit local meteoric water 

probably had a different isotopic composition since Montana was at lower latitude than it is 

currently and 18O values have been shown to differ by latitude (Clark and Fritz 1997). Since 

isotope values for meteoric water can vary by location, the “meteoric water” end-member is not a 
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single value. There is a possible range of values imparted by the uncertainty of the “meteoric 

water” that could have been present and influencing the system. Ultimately, the results of this 

study show very similar results to that of Sheppard and Taylor with the bulk of the 

rhodochrosites overlapping with their results for Main Stage vein quartz.   

 

 
Figure 27: 18O values of different fluids 

 

4.4. Comparison of Butte Carbonates and Couer d’Alene 
Carbonates 

An interesting comparison that can be made is that between the Butte porphyry-lode 

system and the base metal cordilleran-type veins of the Coeur d’Alene district. There are several 

reasons for making this comparison. The Butte and Coeur d’Alene systems both contain large 

Ag-base metal veins and lodes that are persistent along strike and dip for large distances (>1km). 

These deposits are also ranked as the two biggest producers of silver in the United States (Long 

et al., 1998). Though the age of mineralization of the Coeur d’Alene deposit remains contentious, 
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it is possible that they both formed during the late Cretaceous (Eaton et al., 1995). The deposits 

are rich in carbonate minerals, Butte with rhodochrosite and Coeur d’Alene with ankerite and 

siderite (Eaton et al., 1995, Rosenberg and Larson, 2000). Metals in the Coeur d’Alene deposit 

may have even been similarly sourced from the Belt metasediments (Leach et al., 1988) as the 

sulfur (and possibly metals) in the Butte deposit (Field et al., 2005). Due to the nature of these 

similarities it is important to compare the two districts to see if isotopic trends are equally 

similar. 

When the two are plotted with each other (Fig. 28), we see the different trends between 

two deposits. While the Butte deposit shows a wide range in both carbon and oxygen isotopes, 

the Coeur d’Alene district has the same range of carbon isotopes while exhibiting a narrow range 

in oxygen isotopes. This difference in oxygen isotopes can be attributed to the different fluids 

that formed the minerals. The Coeur d’Alene district was formed by metamorphic fluids (Leach 

et al., 1988), where the water has come out of the minerals as the area underwent prograde 

metamorphism. The Butte deposit is associated with magmatic fluids (Rusk et al., 2008a; Reed, 

2013), or a combination of magmatic and meteoric fluids (Sheppard & Taylor, 1974; this study). 

Re-equilibration with lower temperature fluids may also have shifted some of the 18O values in 

this study, resulting in the wider range of values displayed at Butte. Overall, the stable isotope 

data in this thesis do not support the theory that the Main Stage veins had a common origin to the 

veins of the Coeur d’Alene district in Idaho.   
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Figure 28: Carbon and oxygen isotopes of Butte and Coeur d'Alene carbonates 
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5. Conclusions and Recommendations 

5.1. Conclusions 

• 96 samples of hydrothermal rhodochrosite and calcite from Butte have been analyzed for 

their O and C isotopic composition. These samples include most of the major 

underground mines as well as a set of samples from the active Continental Pit. 

• Rhodochrosite has 13C values in the range of -8.3 to -2.9 ‰ (average of -6.7 ± 1.2‰) 

and 18O ranging from -1.8 to 12.8 ‰ (average of 3.6 ± 3.4‰).    

• Calcite has 13C values in the range of -9.0 to -2.6 ‰ (average of -5.4 ± 1.5‰) and18O 

ranging from -4.4 to 12.3‰ (average of 6.2 ± 2.8‰).  

• The above findings are in agreement with the early study of Garlick and Epstein (1966).

• On average, Butte calcite is about 1.3 ‰ heavier in 13C and about 2.6 ‰ heavier in 18O 

compared to Butte rhodochrosite. These differences cannot be explained by 

equilibrium isotopic fractionation between calcite and rhodochrosite, and are 

probably due to partial re-equilibration of calcite with lower temperature fluids.  

• This study found no systematic variations in 13C or 18O of carbonate minerals with 

respect to location or depth within the Butte district. Likewise, a traverse across a 50 

foot wide Main Stage vein in the Orphan Girl mine found no change in isotopic 

composition of rhodochrosite between the center and edges of the vein.  

• For the Continental Pit samples, no relationships could be found between the isotopic 

composition of carbonate minerals and the concentrations of Cu or Mo in the 

associated drill core.    
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• Although there are many possible sources of carbon with similar isotopic signature that 

could have led to the carbonate minerals of Butte, the most likely source is magmatic 

CO2. 

• Based on the measured 18O values of rhodochrosite, and assuming a temperature of 

formation of 200 to 350ºC, the possible range of 18O of the hydrothermal fluids at 

Butte is computed to be –12.6 to +6.3‰. This range lies midway between present-day 

meteoric water in Butte (-17 to -18‰) and primary magmatic water (+5 to +10 ‰), 

and is similar to what was proposed in the earlier study of Sheppard and Taylor 

(1974).   

• Although their C-isotopes overlap, the O-isotopic compositions of rhodochrosite and 

calcite from the Ag-rich base metal veins in Butte are distinct from those of siderite 

and ankerite from the Couer d’Alene district, Idaho. This reflects the difference in ore 

deposit type: whereas Butte is a classic porphyry-lode deposit, the veins of the Couer 

d’Alene district are thought to have formed from metamorphic fluids in a much 

deeper (orogenic) setting.   

 

5.2. Recommendations 

• Better relationships between the isotopic composition of carbonate minerals and 

associated Ag- and base metal mineralization may come to light if a more detailed study 

focusing on the paragenesis of carbonate mineralization in conjunction with economic 

mineralization is conducted. The present study used a very broad approach and looked at the 

entire Butte district, rather than examining a single vein or vein system in detail. A more detailed 

paragenetic study of rhodochrosites might reveal trends with depth, or along strike on a single 
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vein. Such a study could be combined with new information using cathodoluminescence, trace 

metal concentrations in carbonate minerals, and/or fluid inclusions. Calcite would be a lower 

priority in such a study because it is more likely to have re-equilibrated at lower temperature. 

• Although the isotopic results from the three labs used in this study were similar, 

the disagreement for some replicate samples was outside the quoted lab uncertainty. This 

problem was worse for samples that were impure, and had a relatively low carbonate content 

compared to quartz. Any future study needs to pay close attention to how the mineral separate 

samples are collected, processed, and analyzed. Some isotope labs use acid digestion to liberate 

CO2 from carbonates, whereas others use pyrolysis. Rhodochrosite is slower to react with acid 

and this could be one reason for disagreement between the various labs. Sample crushing and 

homogenization is also critical.    
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Appendix A: Sample Identification  
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Appendix B: Photographs of samples from the Anaconda Collection 

The scale is in mm (larger ticks in cm).  Numbers refer to the AMC Accession Numbers, which 
can be used to relocate a given sample.  (All samples were returned after removing a small 
piece of carbonate vein material.) 
 

  
AMC #162      AMC #396 
 

 
AMC #398 
 

  
AMC #593             AMC #669  
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AMC #702     AMC #706 
 

  
AMC #840      AMC #860  
 

   
AMC #864      AMC #865  
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#868 
 

  
AMC #975       AMC #985 
 

  
AMC #990     AMC #1003 
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AMC #1108     AMC #1262 
 

    
AMC #1267    AMC#1271   AMC #1315 
 

   
AMC #1371    AMC #1434   AMC#1518 
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AMC #1526    AMC #1601   AMC#1783 
 

  
AMC #1720        AMC #1814 
 

  
AMC #1871        AMC #1928 
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AMC #1929     AMC #1998   AMC #2040 
 

  
#2245      AMC #2473 
 

  
AMC #2597     AMC #2657 
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AMC #3076       AMC #3081 
 

  
AMC #3087        AMC #3091 

 
AMC #3176    AMC #3510   AMC #3684 
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AMC #3696          AMC #3707  AMC #3754 
 

  
AMC #3720      AMC #3793 
 

  
AMC # 4316        AMC #4596
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AMC #4656      AMC #4906 
 

  
AMC #5060         AMC #5584 
 

  
AMC #6257      AMC #7154 



78 

 

Appendix C: University of Wyoming Stable Isotope Facility Data 
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Isotope(s) requested: δ
13

C, δ
18

O 

Instrument: Thermo Gasbench coupled to a Thermo Delta Plus XL IRMS

Analytical Code: 019 (Carbonates)

Units: δ
13

C values are reported w.r.t. VPDB in parts per thousand (per mil)

δ
18

O values are reported w.r.t. VPDB in parts per thousand (per mil)

Principal Investigator: Chris Gammons

Job submission contact:

Sample Material(s): Carbonate

Date Submited: 2/3/2015

Number of unknown samples analyzed: 29

Number of reference samples analyzed: 53/18

Quality Control Reference Material 1: UWSIF18 (Rock)

Quality Control Reference Material 2: UWSIF06 (CaCO3)

Quality Assessment Reference Material 3: UWSIF17 (GS-1)

Quality Control Quality Assessment Data

Reference Material 1 Reference Material Known Normalized Known Normalized

UWSIF18 (Rock) UWSIF17 (GS-1) δ
13

C VPDB δ
13

C VPDB δ
18

O VPDB δ
18

O VPDB

average  (N=17) average  (N=19) -3.7 -3.7 -6.0 -5.9

standard uncertainty standard uncertainty 0.1 0.1

Reference Material 2 Long-Term δ
13

C VPDB -4.0 δ
18

O VPDB -6.4

UWSIF06 (CaCO3) Acceptable Range 2 σ = 0.3 -3.4 2 σ = 0.4 -5.6δ
13

C VPDB δ
18

O VPDB

2.6 -3.3

0.1 0.3

Known Known 

Final Report
Job 2015-0008

Known Known

δ
13

C VPDB δ
18

O VPDB

Stable Isotope Facility
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average  (N=19)

standard uncertainty

Date Reported: 6/30/2015 Reviewer: Craig Cook

Date Invoiced: 6/30/2015 Title: Facility Director

Initial: cjm Date Reviewed: 7/1/2015

Comments: Comments: Data meet all QAQC criteria in the SOP.

Analytical Comments:

Quality Control Color Legend

Yellow Peak amplitudes too low for reliable results. Use with extreme caution or rerun the sample.

Pink Potential outlier. Use with caution.

Olive Possible sample ID problem.  Check loading documents.

SIF ID δ
13

C δ
18

O Comments

20150008.001 RS-67 -6.7 -23.7

20150008.002 RS-68 -5.2 -23.9

20150008.003 RS-69 -5.0 -22.3

20150008.004 RS-70 -7.2 -25.1

20150008.005 RS-71 -6.1 -29.8

Sample ID

-11.6 -28.9

0.1 0.2

Quality Assurance ApprovalRecord Keeping 

20150008.006 RS-72 -6.3 -28.7

20150008.007 RS-73 -5.9 -24.3

20150008.008 RS-74 -6.1 -22.3

20150008.009 RS-75 -6.5 -25.8

20150008.010 RS-76 -7.3 -25.1

20150008.011 RS-77 -4.9 -23.6

20150008.012 RS-78 -2.6 -21.9

20150008.013 RS-79 -6.6 -24.7

20150008.014 RS-80 -16.6 -20.3

20150008.015 RS-81 -6.4 -24.8

20150008.016 RS-82 -5.3 -22.5 Amplitude below threshold for reliable data

20150008.017 RS-83 -6.1 -24.8

20150008.018 RS-84 -8.3 -21.9

20150008.019 RS-85 -9.0 -21.3

20150008.020 RS-86 -7.6 -22.0

20150008.021 RS-87 -6.4 -17.6

20150008.022 RS-88 -6.1 -23.0

20150008.023 RS-89 -4.9 -24.6 Amplitude below threshold for reliable data

20150008.024 RS-90 -7.3 -21.2

20150008.025 RS-91 -7.2 -22.4

20150008.026 RS-92 -8.0 -26.8

20150008.027 RS-93 -3.8 -17.9 Amplitude below threshold for reliable data

20150008.028 RS-94 -4.8 -24.8 Amplitude below threshold for reliable data

20150008.029 RS-95 -16.6 -20.3

 



83 

 

Appendix D: XRF Analysis  (all data in mg/kg) 

ID
Anaconda 

Accession
Initial Min ID XRF Min ID Ca Ca Error Fe Fe Error Mn Mn Error Sr Sr Error Zn Zn Error Cu Cu Error S S Error Bal Bal Error

RS-1 702 Rhodochrosite rhodo (low Zn) 11110.87 524.22 9494.48 903.68 254720.4 3078.28 < LOD 4.63 35.16 20.97 113.53 36.93 2148.43 898.62 735603.3 2983.45

RS-2 860 Rhodochrosite rhodo 4312.32 290.6 10498.39 300.74 200599.4 1423.08 13.27 2.19 646.83 28.72 197.73 23.44 2335.29 706.48 783744.7 1391.57

RS-3 860 Rhodochrosite rhodo 4598.78 309.83 11090.18 261.11 150815.6 1027.16 8.48 1.67 526.15 22.53 126.92 17.2 2098.66 713.05 834002.8 977.2

RS-4 864 Rhodochrosite rhodo (low Zn) 3590.92 291.61 9932.39 763.92 336044.7 2661.97 < LOD 3.23 128.33 19.51 < LOD 33.84 < LOD 815.87 657289.4 2596.66

RS-5 1205 Rhodochrosite rhodo 5810.57 403.62 5853.83 416.23 231083.5 1532.12 < LOD 1.99 118.52 13.41 < LOD 20.07 < LOD 1080.5 762922.7 1453.56

RS-6 1434 Rhodochrosite rhodo 3059.89 284.26 5695.11 567.97 279757.2 2057.89 < LOD 2.9 740.07 35.66 115.46 24.97 1287.4 702.57 713686.8 1987.58

RS-7 975 Rhodochrosite rhodo 4724.96 319.3 13656.39 428.16 213882.5 1431.04 < LOD 2.32 810.55 30.52 28.95 16.7 2790.77 801.49 772793.5 1389.19

RS-8 1814 Rhodochrosite rhodo 3428.3 196.73 6889.28 150.06 56510.8 470.87 4.78 1.14 192.47 11.79 < LOD 13.37 568.99 342.99 932932.8 370.9

RS-9 1929 Rhodochrosite rhodo 12633.16 1001.83 18876.38 311.86 141726.4 1033.06 8.18 1.76 2922.11 54.01 < LOD 22.18 1279.93 586.1 823114.6 1092.95

RS-10 2510 Rhodochrosite rhodo (hi Zn) 5209.1 299.95 35777.63 469.93 215523.4 1663.48 < LOD 2.7 6290.71 99.99 4170.36 94.18 12452.11 1293.52 735369.9 1892.05

RS-11 1674 Rhodochrosite NOT rhodo NOT calcite 508.18 97.44 18059.66 223.62 < LOD 45.78 146.15 3.66 121.04 9.49 30.37 9.75 12339.43 716.42 966991.6 199.36

RS-12 3684 Rhodochrosite rhodo 5901.33 248.68 10346.72 334.17 163867.1 1134.46 2.27 1.42 394.59 20.61 < LOD 19.41 895.21 376.64 824131.2 1070.1

RS-13 2597 Rhodochrosite rhodo 12816.94 381.31 14671.59 247.02 91724.6 691.85 202.63 5 299.35 15.51 94.23 14.1 2865.89 598.26 876110.1 714.3

RS-14 1929 Rhodochrosite rhodo (hi Zn) 17709.17 1118.99 23175.01 359.54 184841.3 1331.29 13.08 2.16 4377.35 71.78 < LOD 23.87 2978.6 935.6 769141.4 1475.21

RS-15 1262 Rhodochrosite ?? 31924.26 1233.31 12978.94 233.21 86781.7 660.89 9.48 1.47 346.24 16.04 < LOD 15.52 < LOD 663.87 867051.9 746.53

RS-16 3754 Rhodochrosite rhodo (low Zn) 16272.92 1048.88 10840.01 369.24 290928.4 2306.68 5.54 2.25 138.33 23.52 5583.06 114.42 2848.54 874.83 676378.3 2424.36

RS-17 1783 Rhodochrosite rhodo (low Zn) 9007.26 365.47 4113.44 301.54 162158.5 1149.29 3.08 1.49 81.9 12.46 < LOD 21.35 941.93 522.65 828302.1 1067.16

RS-18 396 Calcite calcite 83094.38 1652.74 24048.59 284.54 15748.1 272.55 18.73 1.76 883.3 25.14 98.97 14.06 1537.78 498.35 873934.6 717.84

RS-19 669 Rhodochrosite rhodo 35335.01 1372.1 14907.29 254.14 111018.9 786.91 10.63 1.59 162.94 13.68 1775.6 42.8 2041.23 748.51 835971.8 916.72

RS-20 868 Rhodochrosite rhodo 1999.96 276.11 590.1 351.89 344970.4 2691.93 < LOD 300000 < LOD 300000 1681.03 71.48 < LOD 1176.74 650684.2 2623.72  
RS-21 1108 Rhodochrosite rhodo 1770.83 204.61 14051.82 356.74 168176.6 1110.39 < LOD 2.09 309 21.49 6124.87 88.01 3328.93 780.61 814607.8 1093.07

RS-22 162 Calcite calcite 45093.52 828.71 6396.32 122.11 1231.96 72.97 250.48 5.36 19.87 6.45 < LOD 16.75 931299.4 429.59

RS-22 162 Calcite calcite 47402.96 893.88 16151.07 200.99 676.17 51.3 75.39 2.18 212.71 11.34 < LOD 12.51 921755.4 422.91

RS-23 398 Calcite Ankerite?  8262.89 458.89 19333.5 260.11 1275.65 78.34 11.5 1.64 306.8 16.21 413.76 22.57 938644.3 385.72

RS-24 593 Calcite Ankerite?  5531.39 156.58 17439.15 255.76 369 52.95 78.45 3.23 60.91 9.28 837.78 29.85 3522.32 329.18 943858.6 377.1

RS-25 840 Calcite Sph, galena, calcite?  4497.47 336.54 3374.8 124.34 336.65 85.95 14.36 3.34 48473.81 457.63 84.36 21.88 930080.3 590.44

RS-26 865 Calcite rhodochrosite low Zn 3236.61 215.74 3847.36 414.83 221825.1 1553.06 4.57 1.79 54.13 11.24 42.28 18.02 < LOD 661.93 773951.8 1458.49

RS-27 985 Calcite rhodochrosite hi Zn 6994.62 421.32 1169.71 179.46 82360.22 720.67 12.04 1.88 2465.77 48.57 < LOD 23.73 906414.8 615.72

RS-28 990 Calcite calcite 31708.64 646.55 1985.28 77.18 2910.95 105.61 35.12 2.29 62.59 10.9 1332.52 36.39 1924.05 207.2 955279.3 309.71

RS-29 1003 Rhodochrosite rhodochrosite low Zn 11207.05 763.89 5915.92 459.1 245984.7 1619.94 9.68 2.06 50.39 11.56 94.46 20.38 738837.8 1593.07

RS-30 1267 Calcite rhodochrosite hi Zn 1856.98 258.28 5770.41 319.34 140028.5 1015.17 7.91 1.93 10720.01 112.22 < LOD 27.28 843701.3 983.36

RS-31 1271 Calcite rhodochrosite 2968.25 133.22 5265.93 258.39 125671.2 945.92 8.53 1.73 338.44 18.91 < LOD 20.97 808.18 254.17 865831.4 844.6

RS-32 1315 Calcite calcite 63396.89 2486.1 2176.23 75.22 687.93 59.74 56.38 2.75 32.69 7.43 116.97 14.69 926514.1 2711.49

RS-33 1371 Calcite calcite 8061.5 333.35 5667.22 140.96 261.84 46.3 54.68 2.15 35.66 7.1 < LOD 15.72 968851.6 213.23

RS-34 1518 Calcite ankerite? Siderite? 791.82 49.87 2077.26 72.54 111.05 39.91 15.18 1.69 26.07 6.64 < LOD 16.72 230.62 84.03 986119.4 100.81

RS-35 1526 Calcite calcite 171754.1 5480.63 478.28 42.63 250.79 46.33 7.99 1.45 10.34 5.79 < LOD 16.25 827179.1 5363.07

RS-36 1601 Calcite calcite 161472.3 1589.19 1625.78 78.48 5056.88 140.52 28.87 2.19 41.06 8.07 229.43 18.77 1200.29 362 818477.9 1068.67

RS-37 1720 Calcite ankerite? Siderite? 2141.34 61.24 5615.46 128.2 206.65 50.22 106.15 4.04 35.15 8.28 < LOD 20.07 303.4 79.02 979792.7 167.65

RS-38 1871 Calcite calcite high sulfide 64570.32 1191.66 1350.33 99.48 1959.36 148.19 24.32 3.27 70639.69 740.31 456.18 36.65 18127.95 672.87 860279.3 1225.03

RS-39 1928 Calcite calcite + rhodo 81855.38 1335.95 19413.06 299.21 42672.65 515 50.11 2.96 3142.3 52.67 < LOD 20.8 3720.7 466.55 849565.4 962.65

RS-40 2040 Calcite calcite 214403.5 7485.74 1531.81 74.5 1489.98 87.93 56.7 3.05 45.38 8.78 < LOD 20.18 780919.9 7519.76  
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RS-41 2245 Calcite calcite 210059.5 1845.18 804.67 59.01 2286.47 100.47 113.79 3.97 10.6 6.31 < LOD 17.56 < LOD 554.23 784853.4 1240.25

RS-42 2473 Calcite calcite high sulfide 13776.66 611.58 49447.6 493.63 < LOD 106.05 5.41 1.46 375.52 36.61 40190.73 410.56 27152.38 935.46 890519.3 854.25

RS-43 2657 Rhodochrosite rhodochrosite 791.07 72.71 10133.3 261.21 95159.59 817.55 5.52 1.83 2241.97 49.77 3730.14 72.8 6285.57 493.53 885729.5 760.79

RS-44 3076 Calcite calcite 193148.4 1725.16 2031.61 79.42 1712.69 88.28 50.14 2.75 22.77 7.05 < LOD 18.58 < LOD 481.15 797621.4 1177.83

RS-45 3081 Calcite calcite 22507.2 556.89 2867.75 84.74 167.83 43.35 72.41 3.08 18.79 6.4 < LOD 16.85 175.75 111.86 956227.6 315.19

RS-46 3087 Calcite calcite 90793.8 1220.66 11697.31 232.08 2360.85 107.34 116.81 4.22 80.79 10.29 < LOD 20.74 445.25 180.91 891122.9 748.52

RS-47 3091 Calcite sph, cpy, calcite? 910.61 163.05 4976.19 145.17 128.97 71.59 3 1.4 65677.69 632.1 10678.87 151.27 915019.8 735.48

RS-48 3176 Calcite calcite 8869.35 537.97 3525.76 94.9 240.17 46.51 181.14 4.77 17.39 6.52 < LOD 16.89 973170 1170.16

RS-49 3696 Calcite calcite high S and Zn 91285.69 1378.99 1571.7 104.67 2691.74 146.12 15.24 2.5 53760.64 531.34 1241.4 53.47 15717.09 677.57 848547.1 1168.93

RS-50 3707 Calcite calcite some rhodo 105972.8 1372.17 1826.76 118.24 35356.66 463.69 118.74 4.14 1738.75 37.69 < LOD 19.24 1638.04 354.15 853150.9 912.23

RS-51 3793 Calcite calcite high S and Zn 56135.77 1104.88 8188.28 200.19 3630.26 174.02 5.62 1.83 31779.93 327.24 593.02 35.08 10590.96 494.96 891623.1 858.74

RS-52 4656 Calcite calcite or ankerite, high Cu 45508.6 1071.03 36999.13 394.8 1064.71 109.62 27.66 2.95 553.84 40.35 51557.58 482.04 861296.4 1016.93

RS-53 4906 Rhodochrosite rhodochrosite some calcite 23138.88 658.62 4615.39 188.36 66252.95 676.11 11.13 1.83 112.04 12.16 < LOD 22.02 632.26 151.39 902607.2 687.92

RS-54 5544 Calcite calcite 163082.2 1696.7 5152.34 128.26 3237.5 123.91 39.55 2.69 6530.06 75.25 1481.76 42.97 3435.8 418.44 816783.8 1133.24

RS-55 6257 Calcite calcite 131328.6 1438.36 942.62 76.84 6442.64 171.45 38.51 2.67 16.57 7.52 260.42 21.98 341.87 185.88 856684.9 958.56

RS-56 7154 Calcite calcite 20854.28 644.4 12763.31 244.01 309.56 55.57 39.96 2.68 21.78 8.01 29.58 14.66 2859.33 216.22 947299.2 409.36

RS-57 3087 Dup Calcite calcite 67975.91 1054.47 10664.47 231.39 1961.16 103.09 99.65 4.07 84.44 10.95 < LOD 21.5 243.1 121.22 915663.1 629.54

RS-58 5544 Dup Calcite calcite 138198.5 1578.23 4426.37 132.48 2784.83 128.29 32.88 2.77 5414.49 76.03 1454.66 47.6 2103.47 252.46 844069.2 1103.44

RS-59 865 White Calcite sphalerite?  84.41 20.46 3304.45 110.41 1761.48 101.45 6.76 1.7 23502.21 230.61 288.87 25.26 7949.32 362.01 969675 234.96

RS-60 1003 White Calcite calcite some rhodo 135348.3 1536.46 5129.13 139.25 23137.87 382.51 86.87 3.58 34.33 8.13 127.05 16.65 560.55 317.06 834156.3 1024.64  
RS-61 SS1 Calcite siderite? 1468.42 85.4 45334.37 468.11 110.09 54.15 7.36 1.64 38.25 10.13 1167.23 39.33 17747.26 629.15 931208.1 501.55

RS-62 Mtn Con 3900Calcite calcite some rhodo 124477 1719.53 37118.98 443.18 13479.05 304.8 43.62 3.13 < LOD 32.09 17269.42 213.22 26302.5 994.3 806620.7 1314.64

RS-63 Mtn Con 3900Rhodochrosite rhodochrosite ankerite? 2420.57 109.05 64496.94 613.01 47997.43 574.54 5.14 1.43 < LOD 300000 22035.02 281.14 35499.46 1120.18 859654.3 1036.68

RS-64 398 Dup Calcite ankerite? Siderite? Cc + pyrite? 2244.63 72.05 11720.34 231.45 890.32 73.18 10.52 1.71 209.6 14.82 250.34 21.02 818.71 124.71 964188.8 282.84

RS-65 7154 Dup Calcite calcite 14868.97 592.51 8905.26 228.59 < LOD 300000 20.01 1.88 < LOD 300000 < LOD 300000 1442.29 144.09 962131.9 343.88

RS-66 6257 Rhodochrosite rhodochrosite 6523.89 482.92 938.6 223.23 138637.5 1054.02 4.46 1.23 1710.4 46.44 2066.65 59.42 849145.3 987.61

RS-67 347417 : 812Calcite Calcite 26974.66 715.23 15389.79 228.49 334.06 47.96 134.63 3.92 94.43 9.98 851.4 28.66 1881.05 254.48 918963 513.99

RS-68 357430 : 764Calcite calcite 79446.23 1065.64 15803.7 203.13 1213.64 64.51 47.27 1.79 156.31 10.2 42.4 10.26 887134.1 590.24

RS-69 357430 : 806Calcite calcite 169415.6 1616.74 12012.29 195.57 3852.06 109.72 80.85 2.95 101.72 9 22.94 10.3 1348.9 473.94 809759 975.49

RS-70 357430 : 820Calcite calcite 42350.67 793.7 11013.81 171.21 978.25 59.33 19.03 1.62 72.57 7.94 166.97 14.01 920455.2 412.74

RS-71 357430 : 828Calcite calcite 120362.6 1646.62 14347.01 238.22 11168.91 254.72 75.66 3.21 59.54 9.47 914.1 31.52 3346.93 510.04 835413.1 977.28

RS-72 357430 : 946Rhodochrosite rhodochrosite 5360.17 191.15 6859.11 131.19 24009.73 323.8 9.29 1.34 1481.05 29.55 43.54 10.99 1532.22 320.88 947067.9 321.9

RS-73 357430 : 981Rhodochrosite calcite 14152.82 589.41 18800.42 243.18 490.77 50.31 60.39 2.61 66.72 7.9 129.24 13.63 3356.14 359.72 942352.6 350.83

RS-74 305439 : 1225Calcite calcite 54405.98 965.53 5142.58 97.56 < LOD 46.55 60.12 2.49 72.2 7.92 415.78 19.27 1386.6 281.17 929470.1 418.82

RS-75 305439 : 597Calcite calcite 26428.33 724.97 16022.29 213.02 159.64 37 84.65 2.87 112.73 9.22 512.57 20.68 3543.36 395.71 939689.3 359.54

RS-76 RS - 70 Dup Calcite calcite 36818.06 834.49 13114.52 198.08 842.17 57.42 18.14 1.62 139.27 10.07 135.42 13.22 5859.89 538.44 926921.3 438.05

RS-77 305439 : 1145Calcite calcite 82956.26 1365.2 18382.57 233.94 < LOD 51.14 481.34 6.73 226.91 12.14 < LOD 13.31 6236.07 659.39 892913.4 598.19

RS-78 357430 : 1217Rhodochrosite calcite 60312.43 1338.03 22698.65 298.81 2421.65 102.89 20.69 1.96 1378.81 33.87 4225.38 65.5 10148.55 683.39 894690.9 641.27  
RS-81 347417 : 520Calcite calcite 16670.13 736.44 17796.03 231.09 235.37 41.66 94.84 3.13 158.11 11.3 1191.08 31.06 3593.16 453.87 936897.6 385.64

RS-82 347417 : 784Calcite ankerite?  4159.04 177.24 16220.63 226.65 < LOD 49.54 28.87 1.97 175.96 11.99 1147.82 31.52 4669.64 440.52 936705.3 397.68

RS-83 RS - 81 Dup Calcite calcite 15520.6 668.21 18458.54 248.3 339.19 47.67 111.65 3.55 140.52 11.49 1268.12 33.73 3659.7 394.21 939510.4 378.17

RS-84 325458 : 582Calcite calcite 40524.08 941.54 14199.83 220.74 73.01 37 16.33 1.66 73.51 8.59 135.26 14.64 6165.53 452.35 925512.6 477.99

RS-85 325458 : 840Calcite calcite 38283.72 893.03 10147.88 165.49 < LOD 44.5 60.46 2.37 137.92 9.21 70.77 10.5 1108.73 312.91 941902.3 326.91

RS-87 5480 Bench Rhodochrosite rhodochrosite high Zn 15531.07 1199.9 10582.36 345.06 216953.1 1708.15 4.18 1.71 28373.81 383.8 9847.29 182.07 15597.72 1636.7 711598.8 2210.97

RS-88 5480 Bench Calcite calcite 113557.2 2123.3 78724.42 694.33 514.37 75.67 5.12 1.57 288.82 18.37 307.93 24.14 44894.01 1849.25 805140.4 1233.22

RS-89 5560 Bench Calcite no carbonate? High Zn 714.83 405.1 8998.84 232.28 957.12 120.71 < LOD 2.39 138466 1754.34 2049.19 79.3 < LOD 1.5 828318.5 1976.21

RS-90 5520 Bench Rhodochrosite rhodochrosite + sulfides 14281.39 1479.69 33502.14 634.8 207045.4 2178.4 16.52 4.78 24983.9 523.09 136009 2465.53 < LOD 1.5 533179.3 6292.18

RS-92 990 Calcite calcite 37364.34 913.36 4782.5 101.14 3878.17 108.12 26.16 1.85 165.49 12.9 1501.49 34.59 3723.5 443.17 943186.6 330.53

RS-93 1720 Calcite calcite 7712.53 195.2 19281.71 241.98 155.28 39.12 154.8 3.94 152.15 10.38 < LOD 13.35 483.3 202.51 959959.1 254.35

RS-94 865 Calcite ZnCO3??  No carbonate? < LOD 34.64 6427.1 139.01 1881.74 97.28 2.11 1.34 25405.21 228.66 315.43 24.13 12066.4 607.03 964432.3 243.54

RS-95 Calcite StandardCalcite calcite 200069.4 1878.41 5232.38 91.84 < LOD 33.86 9.09 1.2 241.21 11.33 < LOD 11.18 < LOD 1121.08 792244.9 939.69  
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