
Montana Tech Library
Digital Commons @ Montana Tech

Graduate Theses & Non-Theses Student Scholarship

Spring 2015

Impact of a Changing Climate on Fine Particulate
Concentrations in Butte, MT
Christopher Atherly
Montana Tech of the University of Montana

Follow this and additional works at: http://digitalcommons.mtech.edu/grad_rsch

Part of the Other Environmental Sciences Commons

This Thesis is brought to you for free and open access by the Student Scholarship at Digital Commons @ Montana Tech. It has been accepted for
inclusion in Graduate Theses & Non-Theses by an authorized administrator of Digital Commons @ Montana Tech. For more information, please
contact sjuskiewicz@mtech.edu.

Recommended Citation
Atherly, Christopher, "Impact of a Changing Climate on Fine Particulate Concentrations in Butte, MT" (2015). Graduate Theses &
Non-Theses. 16.
http://digitalcommons.mtech.edu/grad_rsch/16

http://digitalcommons.mtech.edu?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/grad_rsch?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/stdt_schr?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/grad_rsch?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/grad_rsch/16?utm_source=digitalcommons.mtech.edu%2Fgrad_rsch%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sjuskiewicz@mtech.edu


 

 

 

 

 

 

 

IMPACT OF A CHANGING CLIMATE ON FINE PARTICULATE 

CONCENTRATIONS IN BUTTE, MT 

 

by 

Chris Atherly 

 

A thesis submitted in partial fulfillment of the  

requirements for the degree of  

 

Master of Science in Environmental Engineering 

 

 

 

 

Montana Tech 

2015 

 



i 

 

Abstract 

A model was developed to assess the potential change in PM2.5 concentrations in Butte, Montana 

over the course of the 21st century as the result of climate change and changes in emissions.  The 

EPA AERMOD regulatory model was run using NARCCAP climate data for the years of 2040, 

2050, 2060 and 2070, and the results were compared to the NAAQS to determine if there is the 

potential for future impacts to human health.  This model predicted an average annual 

concentration of 15.84 µg/m3 in the year 2050, which would exceed the primary NAAQS of 12 

µg/m3 and is a large increase over the average concentration from 2010 – 2012 of 10.52 µg/m3.  

The effectiveness of a wood stove change out program was also evaluated to determine its 

efficacy, and modeled results predicted that by changing out 100% of inefficient stoves with an 

EPA approved model, concentrations could be reduced below the NAAQS. 
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1.0 Introduction 

It is widely accepted that the emission of greenhouse gases such as CO2 from human 

activities is leading to changes in the earth’s climate at an accelerated rate. Air quality is directly 

related to meteorological conditions, since the diffusion and transport of airborne contaminants is 

influenced by weather patterns. Therefore, climate change will have an impact on air quality in 

the future, since it affects many aspects of regional and global meteorological trends. In the 

western United States specifically, recent climate models have predicted not only an increase in 

temperature, but also a decrease in precipitation and a reduction in atmospheric mixing, all of 

which could lead to increased frequency of days with elevated air pollutant concentration (Littell, 

Elsner, & Mauger, 2011). 

Fine particulate matter, also known as PM2.5, is one such pollutant that would be affected 

by changes in meteorological conditions.  Historical air monitoring data in Butte, Montana has 

shown elevated levels of PM2.5, especially during the winter months.  These elevated 

concentrations could pose a potential health risk to sensitive groups, such as the young, the 

elderly, and those with respiratory conditions.  The increased levels of PM2.5 in residential areas 

can be largely attributed to emissions from wood combustion sources, the most common of 

which being wood burning stoves used as a heat source for personal residences (Ganesan, PM2.5 

Emissions from Wood Combustion in Butte, Montana, 2013). 

This thesis research examines the interactions between changing future meteorological 

trends and ground level PM2.5 concentrations in the Butte area.  This is accomplished by 

processing a combination of predicted climatic values calculated by the North American 

Regional Climate Change Assessment Program (NARCCAP) and historical and projected 

emissions data using the AERMOD atmospheric dispersion modeling system.  The results of this 
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research will provide insight into future trends in ground level particulate concentrations, and 

also provide insight as to whether actions need to be taken to reduce PM2.5 concentrations. 

1.1. Fine Particulates in Butte, Montana 

This section provides background information on the airborne pollutant PM2.5 and its 

sources in Butte, Montana. 

1.1.1. Definition of Fine Particulates 

Fine particulates, more commonly referred to as PM2.5, are classified by the 

Environmental Protection Agency (EPA) as being any airborne particle with a diameter of 2.5 

microns (2.5 millionths of a meter) or smaller.  These particles can be composed of any number 

of materials, including organic chemicals, metals, or dust, and are commonly found in smoke and 

haze.   

Fine particulates pose a risk to human health, because they are small enough that once 

inhaled, they can lodge deep within the lungs.  Exposure can affect both the respiratory and 

cardiovascular systems, decreasing lung function, aggravating asthma symptoms and increasing 

the risk of heart attack or irregular heartbeat.  PM2.5 poses the highest risk to children, the 

elderly, and those with respiratory or cardiovascular diseases, but also poses health risks to 

healthy individuals.  In addition to posing a health risk, PM2.5 also has several detrimental 

environmental effects, such as reduction in atmospheric visibility and altering the chemistry of 

surface water and soil chemistry after settling (EPA, 2013). 

1.1.2. National PM2.5 Standards 

Under the Clean Air Act of 1970, EPA was required to maintain standards for ambient 

concentrations for six criteria pollutants, including PM2.5.  These standards, called the National 
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Ambient Air Quality Standards (NAAQS), were designed to define the maximum allowable 

ambient concentrations of a contaminant that allowed for adequate protection of human health 

and the environment.   

PM2.5 standards were recently updated in December of 2012.  The annual standards for 

PM2.5 include a primary standard of 12 µg/m3 (annual mean of the three year average), and a 

secondary standard of 15 µg/m3 (annual mean of the three year average).  A primary 24-hour 

standard of 35 µg/m3 (98th percentile, three year average), is also enforced (EPA, 2014). 

1.1.3. PM2.5 Concentrations in Butte 

It has been observed that Butte, Montana experiences elevated levels of PM2.5, especially 

during the winter months.  A report titled “An Assessment of Ambient Particulates in Butte, 

Montana,” published by Dr. Kumar Ganesan with Energy and Environmental Research and 

Technology LLC, describes the trends in PM2.5 concentrations in the Butte area for the years of 

2010 through 2012  (Ganesan, An Assessment of Ambient Particulates in Butte, Montana).  The 

most detailed values for PM2.5 provided in this report were recorded at the Greeley School 

monitoring site, operated by the Montana Department of Environmental Quality (DEQ).  Figure 

1 shows the Greeley School monitoring site.  At this site, the observed 98th percentile values for 

PM2.5 for 2010, 2011 and 2012 were 38 µg/m3, 38 µg/m3, and 34 µg/m3, respectively.  These 

values are directly comparable to the 24-hour NAAQS primary standard of 35 µg/m3, and 

indicate that the standard was exceeded in 2010 and 2011.  The annual average values for these 

years were 9.8 µg/m3, 9.6 µg/m3 and 8.9 µg/m3, meaning that the NAAQS annual standard of 12 

µg/m3 was met (Ganesan, An Assessment of Ambient Particulates in Butte, Montana, 2014). 
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Figure 1: Greeley School Monitoring Station 

 

Monthly values for PM2.5 concentrations at the Greeley School monitoring station were 

provided by Ganesan’s 2014 report.  These values, shown in Figure 2, illustrate that 

concentrations tend to vary across the year.  Concentrations during the winter months (November 

through February) are notably higher than the warmer months of the year.  This is the result of 

increased wood burning due to colder outdoor temperatures, leading to a greater release of PM2.5 

from residential wood burning sources.  The largest short term spike occurred during August and 

September of 2012, and was the result of long range transport of PM2.5 from forest fires in the 

western United States.  This illustrates the impact that long range sources can have on local 

concentrations over a short time period (Ganesan, An Assessment of Ambient Particulates in 

Butte, Montana, 2014). 
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Figure 2: Average Monthly PM2.5 Concentration at the Greeley School Site 

 

(Ganesan, An Assessment of Ambient Particulates in Butte, Montana) 

 

1.1.4. Sources of PM2.5 in Butte 

Observed PM2.5 concentrations in Butte can be attributed to three major source types: 

residential wood combustion, industrial sources, and background concentrations. 

1.1.4.1. Residential Wood Combustion 

In 2013, a survey of Butte residents was conducted to determine how many households 

currently use wood burning devices as a source of energy and what type of devices they were 

using to burn wood.  Conducted by Dr. Kumar Ganesan, this study determined that 

approximately 13% of Butte households burn wood, leading to an annual consumption of 5,659 
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tons of wood and 907 tons of pellets.  Wood burning in Butte contributed to an annual release of 

72.9 tons of PM2.5.  Residential wood burning is the largest source of PM2.5 emissions in the 

Butte area (Ganesan, An Assessment of Ambient Particulates in Butte, Montana, 2014). 

1.1.4.2. Industrial Sources 

Three industrial sources in the Butte area are of sufficient size and close enough to 

contribute to PM2.5 concentrations in Butte, according to emissions data provided by Dan Walsh 

of the Montana DEQ.  Montana Resources is a mining operation located in northern Butte, REC 

Silicon is a manufacturing facility located west of Butte and Basin Creek Power is a natural gas-

fired power plant located south of Butte.   

1.1.4.3. Background PM2.5 

In addition to being emitted by local sources, a portion of observed PM2.5 concentrations 

are attributable to background levels.  The study “Use of Satellite Observations for Long-Term 

Exposure Assessment of Global Concentrations of Fine Particulate Matter” contains data on 

ambient PM2.5 concentrations for all of the United States.  This study re-evaluated data captured 

from NASA satellites to determine PM2.5 concentrations across the globe.  A resulting map 

presented in Figure 3 shows the average concentrations of PM2.5 from 2001-2006 across the US.  

These results show that the background concentration of PM2.5 in western Montana are 

approximately 3 µg/m3 (Donkelaar, Martin, Brauer, & Boys, 2015). 
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Figure 3: Satellite Derived Map of PM2.5 Concentrations Across the US 

(Donkelaar, Martin and Brauer) 

1.2. AERMOD Atmospheric Dispersion Model 

AERMOD is an atmospheric dispersion modeling suite that is capable of predicting 

ground level concentrations of airborne pollutants released from stationary sources (EPA).  It 

includes: 

 The AERMOD steady-state dispersion model, which is capable of predicting the 

dispersion of airborne pollutants released from stationary sources.  It is a short range 

model, with a range of 50 km. 

 The AERMET meteorological preprocessor, which calculates necessary 

meteorological variables from surface meteorological data, upper air meteorological 

data and land use characteristics. 
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 The AERMAP terrain preprocessor, which accepts and formats topographical data, 

allowing AERMOD to account for the effects of terrain features on air pollution 

plumes. 

AERMOD was developed by the American Meteorological Society (AMS), United States 

Environmental Protection Agency (EPA), Regulatory Model Improvement Committee, also 

known as AERMIC.  It is an improvement over the EPA’s ISCST model that was used until 

2000, when AERMOD was adopted as the official US EPA regulatory model.  It is a Gaussian 

model with the following features (Turner & Shulze, 2007): 

 Accepts multiple point, area or volume sources 

 Accounts for buoyancy of released source gases 

 Accounts for wet or dry deposition of particulates and gases 

 Incorporates terrain effects on plume dispersion 

 Accounts for building downwash effects 

 Incorporates meteorological data at both the surface and multiple heights 

1.3. Predicted Climate Data 

Various efforts have been undertaken to predict the impact that climate change will have 

on the climate of the future.  This section describes the predicted climate data that was used for 

this project, and how it was generated. 

1.3.1. NARCCAP Predicted Meteorological Data 

Predicted climate change data was obtained through the North American Regional 

Climate Change Assessment Program (NARCCAP).  This program is designed to produce high 

resolution climate data for various climate change scenarios over the bulk of North America.  
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According to the NARCCAP website, models are run by combining a regional climate model 

(RCM) with an atmosphere-ocean general circulation model (AOGCM).  Data was generated for 

both a historical period of 1971-2000, and a future period of 2041-2070.  Results were produced 

with a spatial resolution of 50 km, and a temporal resolution of three hours (NARCCAP, 2007).   

1.3.1.1. Greenhouse Gas Emission Scenario 

Changes in atmospheric greenhouse gas (GHG) concentrations are the largest driving 

factor of climate change.  In order to conduct future climate modeling, future emissions of GHGs 

must be assumed.  The International Panel on Climate Change (IPCC) has released various 

emission scenarios that predict future global releases of GHGs.  The emission scenario used for 

NARCCAP modeling is the A2 Emissions Scenario, which was described by the IPCC in the 

Special Report on Emissions Scenarios (Nakicenovic, 2000).  The A2 is the highest emissions 

scenario described in the report, leading to a conservative prediction of future climate conditions.  

This scenario assumes continual population growth, relatively slow development and adaptation 

of new technologies and steady economic growth.  Figure 4 shows the predicted increase in 

global temperature in degrees Celsius for various emission scenarios through the end of the 

century, developed by NARCCAP.  The A2 emission scenario is shown in red, and it predicts the 

largest increase in temperature by 2100 of the various scenarios shown. 
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Figure 4: Predicted Increase in Surface Temperature from Various Emission Scenarios 

(Mearns et al) 

1.3.1.2. CCSM Atmosphere-Ocean General Circulation Model  

A general circulation model (GCM), is a climate model that predicts the circulation of the 

earth’s atmosphere and ocean currents on a global scale.  These results are computed using the 

Navier-Stokes equations for a rotating sphere while accounting for energy transfer from radiation 

or latent heat.  The AOGCM used to generate the selected dataset was the Community Climate 

System Model (CCSM) (Mearns et al).  This model was originally developed by the National 

Center for Atmospheric Research (NCAR) in 1983, was significantly updated in 1996 and has 

been improved incrementally since then (University Corporation for Atmospheric Research, 

2015).   
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1.3.1.3. The WRF Regional Climate Model 

While GCMs are capable of predicting the effects of climate change on large scale 

meteorological trends, they provide results with coarse resolutions (around 300 km), which is 

often unsuitable when working on a regional scale.  A regional climate model (RCM) can 

improve the results generated by a GCM to resolutions as fine as 50 km.  This is done by re-

analyzing GCM data while accounting for small scale topographical and land use data, 

generating much more accurate local data (NARCCAP, 2007).  The RCM used to produce the 

selected dataset was the Weather Research and Forecasting Model (WRF).  This model was 

designed in the late 1990s to conduct atmospheric research as well as forecast local weather 

(Weather Research and Forecasting Model ).   

1.4. Project Scope 

The purpose of this research project is to develop a methodology for predicting future 

PM2.5 concentrations in Butte, Montana.  Through the use of climate data obtained from 

NARCCAP and predictions in future emissions trends, and by using the AERMOD air diffusion 

modeling program, PM2.5 concentrations were estimated for Butte.  These results were compared 

to current levels and air quality standards to understand the potential for future human health 

risks, if any, and provide insight as to whether actions need to be taken to reduce future 

emissions. 
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2. Methodology 

This section describes the methods and techniques used to predict future PM2.5 

concentrations in the Butte area, including the model development process, assumptions made 

and sources of input data. 

2.1. Sources of Meteorological Data 

2.1.1. Current Meteorological Data 

Data for the current time period (2010-2012) was obtained through the Weather 

Underground website.  This site maintains a database of a wide range of recorded weather values 

for a large number of sites across the world.  The selected data was measured at Bert Mooney 

Airport weather station (Station ID KBTM), located at a latitude of 45.9549º N and a longitude 

of 112.5025º W.  Data was downloaded using the Historical Data tool in a Comma Separated 

Value (.CSV) format (Weather Underground, 2015). 

2.1.2. Predicted Future Meteorological Data 

Predicted Future Meteorological Data was obtained through the NARCCAP National 

Center for Atmospheric Research Earth System Grid data portal.  The data retrieved for the 

purposes of this study was obtained from a location centered on a point at a latitude of 45.9824º 

N and a longitude of 112.5719º W.  The selected dataset was modeled using the WRF Regional 

Climate Model, and the CCSM Atmosphere-Ocean General Circulation Model (Mearns, et al. 

2007). 

2.2. Model Setup and Verification 

Before future values of PM2.5 could be predicted, an instance of AERMOD was 

constructed to incorporate all sources of data.  Once the model was constructed, it was run with 



13 

 

historical data over the time period of 2010-2012.  The results of this effort were compared to 

measured values from the Greeley School monitoring site in order to verify that the model was 

constructed properly and that assumptions made during this process were valid. 

2.2.1.  Software Used 

As previously mentioned, the model used to predict future concentrations was the 

AERMOD atmospheric dispersion modeling suite.  A more user friendly version of AERMOD, 

Breeze AERMOD, was used.  Produced by Trinity Consultants, this program offers a graphical 

user interface, streamlining data inputs and allowing for more direct control over modeling 

options.  This software incorporates all three modules of the AERMOD software (AERMOD, 

AERMET and AERMAP) and provides several additional options for analysis of data outputs.  

The versions of the software used for this study were Breeze AERMOD Version 7.9.1 and 

Breeze AERMET Version 7.5.2 (Trinity Consultants, 2014).  The most recent release of the 

AERMOD executable, Version 14134, available at the time of writing was used. 

2.2.2. AERMET Setup 

AERMET is the meteorological preprocessor for AERMOD that formats input 

meteorological data and calculates key parameters necessary for the dispersion modeling 

process.  This program incorporates surface data measured near ground level, upper air data 

measured at incremental heights above ground level, and land use data to calculate variables for 

albedo, Bowen ratio and surface roughness. 

2.2.2.1. Surface Data 

Surface weather data was downloaded from the Weather Underground website, and 

formatted into the SCRAM format.  This format is a simplified format of the NOAA CD-144 
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data format that was created by the US EPA to reduce the size of stored meteorological files, and 

only contains variables necessary for the air dispersion modeling process.  This format is unique 

to the EPA Support Center for Regulatory Air Models (SCRAM) website, but can be directly 

input into the AERMET pre-processor.  The general format of a SCRAM file as described by the 

EPA is provided in Table I (EPA, 2011). 

Table I: SCRAM Data Format 

Field 

Position Parameter Name Units 

1-5 

National Weather 

Service Station Number 

 6-7 Year 

 8-9 Month 

 10-11 Day 

 12-13 Hour 

 14-16 Ceiling Height Hundreds of Feet 

17-18 Wind Direction Tens of Degrees 

19-21 Wind Speed Knots 

22-24 Dry Bulb Temperature Degrees Fahrenheit 

25-26 Total Cloud Cover Tens of Percent 

27-28 Opaque Cloud Cover Tens of Percent 

 

2.2.2.2. Upper Air Data 

Upper air data incorporates meteorological data measured at height intervals from ground 

level in order to account for wind direction and speed, temperature and pressure within the upper 

atmosphere.  Values are generally presented from ground level to heights around 1,000 feet.  

Since EPA’s SCRAM database only contains data through the year 1992, data for the time period 

of 1990 – 1992 was used in place of current data.  These values were measured at Great Falls 

International Airport.  While these values are not a perfect representation of upper air conditions 

during the time period in question, they should still represent seasonal trends in Montana’s 
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weather patterns.  Upper air data was obtained from WebMet.com, a site operated by Lakes 

Environmental Consulting (Lakes Environmental, 2002). 

The upper air data obtained was provided in the TD-6201 format, another AERMOD 

specific format created by SCRAM. The general format of TD-6201 upper air data files as 

described by the EPA is shown in Table II (EPA, 2011). 

Table II: TD-6201 Data Format 

Field Character Description 

1 001-008 Station Id 

2 009-012 Latitude 

3 13 Latitude Code N/S 

4 014-018 Longitude 

5 19 Longitude Code E/W 

6 020-029 Date And Time (Yr/Mo/Dy/Hr) 

7 030-032 Number Of Data Portion Groups 

8 33 Level Quality Indicator 

9 034-037 Time (Elapsed Time Since Release) 

10 038-042 Pressure 

11 043-048 Height 

12 049-052 Temperature 

13 053-055 Relative Humidity 

14 056-058 Wind Direction 

15 059-061 Wind Speed 

16 062-067 Quality Flags 

17 68 Type Of Level 

 

2.2.2.3. Land Use Data 

AERMET takes land use around the area being modeled into account in order to calculate 

the variables of surface roughness, albedo and Bowen ratio.   

 Surface roughness is a measure of the average height of objects on the ground’s 

surface which can cause turbulence in air flowing over the ground.  Land such as 
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coniferous forest may have a high roughness value due to the height of tall trees, 

whereas water has a surface roughness very near zero. 

 Albedo is a function of how much incoming radiation is reflected by a surface.  A 

surface such as snow will have a high albedo (near 1), indicating that nearly all 

incoming radiation is reflected, while a surface such as asphalt will have a very low 

albedo (near zero) indicating that nearly all incoming radiation is absorbed, and can 

be released as convective heat.  This convective heat leads to increased atmospheric 

mixing as energy is transferred from the ground’s surface to the air, especially close 

to the surface. 

 Bowen ratio is a measure of a material’s heat transfer properties.  A surface with a 

high Bowen ratio will readily transfer heat, leading to increased convective mixing. 

There are eight different land use classifications available for selection in AERMET: 

water, deciduous forest, coniferous forest, swamp, cultivated land, grassland, desert shrubland, 

and urban. In order to calculate surface roughness, AERMET requires inputs of land use in 

discrete sectors in a one kilometer circle around the modeled area.  For the purposes of this 

project, the Greeley School monitoring site was selected as the center point.  Eight sectors were 

selected, and are shown in Figure 5.  The land use assignment of each sector is provided in Table 

III.  Albedo and Bowen ratio are calculated based on weighted averages for each land use type 

within a 10 km by 10 km square.  This area is shown in Figure 6, and the resulting land use 

assignments are provided in Table 4.  Surface roughness, albedo and Bowen ratio values were 

calculated seasonally, with dry soil conditions assumed.  These values are provided as a table in 

Appendix A. 
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Figure 5: Land Use Sectors for Surface Roughness Calculation 

 

Table III: Land Use Values for Surface Roughness Calculation 

Sector 

Starting 

Degree 

Ending 

Degree Category 

1 0 45 Desert Shrubland 

2 45 90 Desert Shrubland 

3 90 135 Urban 

4 135 180 Urban 

5 180 225 Urban 

6 225 270 Urban 

7 270 315 Urban 

8 315 360 Desert Shrubland 
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Figure 6: Land Use Area for Albedo and Bowen Ratio Calculation 

 

Table IV: Land Use Coverage for Albedo and Bowen Ratio Calculation 

Category Coverage (%) 

Water 5 

Deciduous Forest 0 

Coniferous Forest 10 

Swamp 0 

Cultivated Land 0 

Grass Land 10 

Urban 45 

Desert Shrubland 30 
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2.2.2.4. AERMET Outputs 

After inputting all variables, AERMET was run in order to create the meteorological 

input files used by AERMOD.  Two files were produced after running AERMET, a surface 

meteorology file with the extension “*.SFC,” and an upper air profile file with the extension 

“*.PFL.”   

2.2.3. AERMAP Setup 

AERMAP, the terrain data preprocessor for AERMOD, was run in order to account for 

terrain effects on local meteorology, particle deposition and plume dispersion, as well as 

calculate the base heights of receptors and sources in the area.  Terrain data in the form of four 

7.5 min DEM files was obtained from the US Geological Survey (USGS) EarthExplorer data 

management tool.   

2.2.4. AERMOD Setup 

This section describes the data inputs, options selected and assumptions made to create 

the AERMOD model instance. 

2.2.4.1.  Model Options 

An input summary file, listing all selected model options is provided in Appendix B.  The 

following control options were selected: 

 A projection of Universal Transverse Mercator (UTM) in units of meters, and the 

World Geodetic System 1984 datum 

 AERMOD Version 14134 

 Pollutant PM2.5 with units of µg/m3 

 Calculation of particulate deposition  
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 Output tables including average annual concentrations, average monthly 

concentrations and 98th percentile 24 hour concentrations 

 No building downwash was accounted for 

2.2.4.2. Emission Source Parameters 

This section describes the source parameters for releases from residential wood burning 

and industrial sources.  A background concentration of 3 µg/m3 was added to modeled results 

afterwards. 

2.2.4.2.1. Residential Wood Burning 

It was found in Dr. Ganesan’s 2013 study that releases of PM2.5 from wood burning 

sources in Butte was 72.9 tons per year.  However, the amount emitted varies greatly from month 

to month throughout the year, with much higher emissions during the winter months.  This 

variation was accounted for by correlating wood smoke emissions with heating degree days in 

Butte.  Heating degree days (HDD) is a metric of how much energy is required to heat a 

building, and is a function of the difference between the outdoor temperature and the indoor 

temperature maintained within a building (Bailes, 2014).  This relationship is described in 

equation 1: 

(1) 

 

where HDD is the number of heating degree days for the month in units of degrees Fahrenheit 

multiplied by days, Ti is the average monthly indoor temperature, To is the average monthly 

outdoor temperature and Δt is the number of days in the month.   
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 By assuming a linear relationship between the heating degree days for a month, the 

amount of wood used for heating during that month, and therefore the emission of PM2.5 during 

that month, we can assign each month a portion of the total annual emissions with equation 2: 

(2) 

 

where E is the emission for a given month in tons, ETOT is the total annual emission in tons, 

HDDMon is the heating degree days for a month, and HDDTOT is the total number of heating 

degree days in a year.  These equations were used to calculate the monthly emission of PM2.5 

sources for each month in 2010 – 2012, and a full table of these results is provided in Appendix 

C. 

 In order to input these results into AERMOD, variations in emission rates were converted 

to a fraction of a baseline emission rate.  Table V shows the calculated emission factor for each 

month, as well as the emission rate for that month in grams per second. 

Table V: Monthly Emissions from Wood Burning Sources 

Month 

Emission 

Factor 

Monthly Emission 

(g/s) 

January 1.76 2.810E-07 

February 1.56 2.554E-07 

March 1.29 2.810E-07 

April 1.02 7.663E-08 

May 0.73 2.554E-08 

June 0.43 2.554E-08 

July 0.18 2.299E-07 

August 0.27 2.554E-07 

September 0.52 2.427E-07 

October 1.01 2.171E-07 

November 1.45 2.299E-07 

December 1.79 4.343E-07 
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 Wood burning emissions were treated as a polygon area source over the residential areas 

of Butte, with user defined points.  This area source is shown in Figure 7, along with all other 

model objects input to the model run.  Within AERMOD, concentrations at a receptor resulting 

from an area source are calculated by integrating across the source in the upwind and crosswind 

directions from the receptor.  This is used to generate an initial plume dispersion, which acts as a 

modifier for the Gaussian plume equation.  The overall effect is that the plume resulting from an 

area source starts as a plume with characteristics in the X and Y directions, and those 

characteristics become modified as the plume travels downwind.  Since AERMOD only 

incorporates values upwind of a receptor, it is possible to place receptors within an area source 

and receive an accurate prediction of concentrations (EPA 1995). 

 For the purpose of this study, emissions from wood burning sources were assumed to be 

constant across residential areas in Butte near the Greeley School receptor.  However, in order to 

better estimate emissions, it would be possible to correlate emissions to population density based 

on US census data.  By dividing the area into many smaller areas (for example, city blocks), and 

treating each area as its own source, each section could be allotted a portion of the total annual 

emissions by assuming a linear relationship between population density and wood smoke 

emissions.   

2.2.4.2.2. Industrial Sources 

In order to estimate emissions from industrial sources in the Butte area, emission 

inventories were obtained through Dan Walsh with the Montana DEQ.  These inventories 

provide a detailed listing of releases for all major emitting facilities in the Butte area.  Based on 

the data provided, there are three facilities in the Butte area with large enough emissions and a 

close enough proximity to contribute meaningfully to PM2.5 concentrations.  These sources are 
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shown in Table VI.  Industrial sources were modeled as point sources with an emission rate 

averaged over the years of 2010 – 2012. 

Table VI: Industrial Source Locations and Emission Rates 

 
PM2.5 Emissions (tpy) 

Facility 

UTM 

X UTM Y Zone 2010 2011 2012 Avg 

Basin Creek Power 381780 5087373 12 0.97 0 1 0.66 

Montana Resources 383568 5095907 12 44.77 45.09 46.47 45.44 

REC Advanced Silicon 369020 5091951 12 6.29 7.41 8.81 7.50 

 

While emission inventories provide details on the quantity of pollutant released from a 

source, they do not include the conditions under which those pollutants were released.  Many 

source parameters required by AERMOD were missing, including stack height, stack gas 

temperature, stack flow velocity and stack diameter.  Therefore, the following assumptions were 

made according to the AERMOD User’s Guide (EPA, 2004): 

 Stack height of 65 m  

 Stack velocity of 0.001 m/s 

 Stack gas temperature of 0 K (model will assume ambient air temperature) 

 Stack diameter of 1 m 

 A full listing of all point sources, their emission rates in grams per second, their locations 

in UTM coordinates and their source parameters is provided in Table VII.  A diagram showing 

the geographical relation of all sources is provided in Figure 7 in the next section (Section 

2.3.3.3). 
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Table VII: Industrial Source Locations and Parameters 

Source ID UTM X UTM Y Elevation 

Emission 

Rate 

Stack 

Height 

Stack 

Temp 

Stack 

Velocity 

Stack 

Diameter 

 

(m) (m) (m) (g/s) (m) (K) (m/s) (m) 

REC_SILI 369020 5091951 1669 0.2159 65 0 0.001 1 

BASINCRE 381780 5087373 1723 0.0189 65 0 0.001 1 

MTRESOUR 383568 5095907 1680 1.3074 65 0 0.001 1 

 

2.2.4.2.3. Background PM2.5 Concentrations 

Based on the reanalysis of NASA satellite data conducted by Donkelaar, Martin, Brauer, 

and Boys, the background concentration of PM2.5 from long range sources was assumed to be a 

constant 3 µg/m3, and was added to the results of all model runs (Donkelaar, Martin and Brauer). 

2.2.4.2.4. Secondary Sources of PM2.5  

PM2.5 released directly from a source is known as Primary PM2.5.  However, particulate 

matter can also be generated in the atmosphere through the photochemical reaction of several 

precursor compounds, producing what is known as Secondary PM2.5.  These chemical precursors 

can include SO2, NO2 and various volatile organic compounds (VOCs), which react when 

exposed to sunlight to form particulate matter (Weber, Sullivan and Peltier).  While it is entirely 

possible to estimate PM2.5 formation through these processes, the process requires 

concentrations of precursor compounds present.  Since no source of data for SO2, NO2 nor VOCs 

in the Butte area is maintained, it is impossible to accurately predict the effects of these 

processes without further monitoring of air quality in Butte, and as such this study does not 

account for the effects of secondary PM2.5 formation. 
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2.2.4.3. Selected Receptor 

Since detailed PM2.5 concentration data was available for the Greeley School monitoring 

site, it was selected as the receptor at which AERMOD would calculate modeled concentrations.  

This will provide a direct comparison between historical PM2.5 concentrations at this location 

and concentrations calculated through modeling, giving a means of verifying that the 

assumptions and data used in the model are accurate.  Located at a latitude of 46.0026º N and a 

longitude 112.5013º W, this source is shown in Figure 7 as a yellow plus sign.  All previously 

described sources are also included in this figure, giving a complete picture of the geographical 

relation between all model objects. 
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Figure 7: Location of Sources and Receptor 

 

2.2.5. Model Verification Results 

After completing the model setup process, AERMOD was run for the years of 2010 – 

2012.  The results of this analysis were then compared to measured values recorded at the 

Greeley School monitoring site to verify that all assumptions and data inputs were acceptable.  In 

order to fine tune modeled results, the size and location of area source emissions was adjusted to 
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better match measured values.  A full log of the changes made to the wood emission sources is 

provided in Appendix D. 

After several iterations, agreement between modeled results and historical measured 

results was generally acceptable.  The results of the model optimization process are plotted for 

the years of 2010 – 2012 in Figures 8 - 10, versus the actual measured values taken from the 

Greeley School monitoring station.  Input, output and report files generated by AERMOD for the 

verified model are provided in Appendix E. 

 
 

Figure 8: Modeled Versus Measured PM2.5 Concentrations for 2010 
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Figure 9: Modeled Versus Measured PM2.5 Concentrations for 2011 

 

 
 

Figure 10: Modeled Versus Measured PM2.5 Concentrations for 2012 
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As is shown in the above figures, there was a general agreement between the modeled 

concentrations and measured values, with a few obvious exceptions.  During September of 2012, 

an extremely high average monthly concentration of 36 µg/m3 was observed.  This concentration 

was not the result of emissions occurring within the Butte area, but primarily the result of the 

long range transport of pollutants released by several large fires in the western United States.  A 

similar (but less pronounced) peak can be seen in September of 2011, also the result of forest 

fires.  While these events contributed significantly to PM2.5 concentrations during this time 

period, this is not something that can be quantified through modeling efforts, and as such the 

contribution of forest fire events to local PM2.5 concentrations was not taken into account during 

the model verification process, or any other modeled scenarios. 

The general practice when constructing a model involves the construction of the model 

based on one time period, and the verification of that model over another time period.  However, 

due to only having three years of measured PM2.5 data available, model verification and 

construction was conducted in one step.  While this does weaken the results generated by this 

model, since this study is more concerned with comparing future PM2.5 concentrations with 

current day concentrations than actually predicting future values, modeled results will still 

provide useful information.  These results should not be taken as absolute predictions of future 

concentrations, but compared to current day trends to examine whether conditions will worsen or 

improve in future years. 
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2.3. Examined Scenarios 

After model verification was completed, three different scenarios were created and 

examined to assess potential for future PM2.5 concentrations for the years 2040, 2050, 2060, and 

2070: 

 A Baseline Scenario, in which predicted future climate values were paired with 

current emissions values. 

 A No Control Scenario, in which predicted future climate values were paired with 

projected trends in emissions from wood burning sources and industrial sources. 

 A Control Scenario, in which predicted future climate values were paired with 

projected trends in emissions after some method of reduction of PM2.5 emissions had 

been implemented. 

These scenarios and the assumptions that were made during their development are 

described in greater detail in the following sections. 

2.3.1. Baseline Scenario 

The first future scenario replaced historical meteorological values with predicted 

NARCCAP data.  All source emissions, terrain data and land use values were kept constant with 

the 2010 – 2012 time period.  This was done purely to determine the effect of future 

meteorological conditions on the dispersion of PM2.5.  Trends in changing meteorological 

variables will greatly affect the dispersion of airborne pollutants, and may increase or decrease 

observed ground level concentrations drastically. 
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2.3.2. No Control Scenario 

This scenario combines future NARCCAP climate values with projected emission trends 

in order to predict future concentrations of PM2.5 if no control measures are enacted to reduce 

emissions in the Butte area.  Terrain and land use data remained the same.  This scenario adjusts 

emissions from both residential wood burning and industrial sources. 

The amount of wood burned in order to maintain a certain temperature in a house is 

largely a function of the outdoor temperature.  By using the methodology described in Section 

2.3.4.2.1 of this report, future PM2.5 emission rates were correlated with outdoor temperature 

through the monthly heating degree days for each month.  The monthly emissions from wood 

burning sources for each year modeled are provided in Appendix C. 

In order to account for increases in productivity at Montana Resources, emissions from 

this source were assumed to increase at a rate of 30% per ten years.  However, due to the finite 

amount of resources available at the Montana Resources mining operation, emissions were 

assumed to halt after 2050.  

2.3.3. Control Scenario 

The Control Scenario was designed to determine the effectiveness of a control method to 

reduce PM2.5 emissions in the Butte area to lower ground level concentrations of the pollutant.  It 

was determined in Dr. Ganesan’s 2014 study that wood smoke emissions are the largest 

contributor to PM2.5 concentrations at the Greeley School receptor.  Therefore, the most effective 

means of pollution control would be to target this source through a wood stove change out 

program.  This type of program incentivizes homeowners to replace inefficient wood burning 

stoves with EPA certified stoves. 
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In order to adjust emissions from wood stoves after the implementation of a stove change 

out program, data on the number and type of stove used in Butte was gathered from Dr. 

Ganesan’s 2013 report on wood smoke emissions in Butte.  Data included the annual wood usage 

by wood burning device type, an emission factor for PM2.5 emitted and total annual emissions of 

PM2.5 from each device type.  This summary is provided in Table VIII (Ganesan, PM2.5 

Emissions from Wood Combustion in Butte, Montana, 2013). 

Table VIII: Current Types of Wood Burning Devices and Amount of Wood Burned  

Type of Device 

% of 

Devices 

% of Wood 

Burned by 

Device 

Total 

Annual 

Tons of 

Wood 

PM2.5 EF 

(lb/ton) 

PM2.5 Emissions 

(lb) 

Fireplace 23.20 11.44 751 35 25,984 

Pre-Certified 39.29 33.9 2,226 31 68,120 

Phase II Catalytic 8.93 19.6 1,287 16 20,856 

Phase II Non-Catalytic 7.14 16.34 1,073 14 15,020 

Cord Wood Furnace 1.80 4.91 322 31 9,849 

Pellet Stoves 19.64 13.81 907 7 5,989 

Total 100 100 6,566 

 

145,818 (72.9 tons) 

 

When examining a stove change out program, two different scenarios were created.  One 

in which 50% of all devices such as fireplaces, pre-certified and cord wood furnace devices were 

replaced with a Phase II Non-Catalytic stove (emission factor of 14 lb PM2.5 per ton of wood 

burned), and another scenario in which 100% of such devices were replaced with Phase II Non 

Catalytic stoves.  The same amount of total wood usage was assumed to remain constant.  Table 

IX provides the updated emissions after the implementation of a change out program.   
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Table IX: Amount of Wood Burned After Change Out Program 

50% Change Out 

Type of Device 

% of 

Devices 

% of Wood 

Burned by 

Device 

Total 

Annual 

Tons of 

Wood 

PM2.5 

EF 

(lb/ton) 

PM2.5 Emissions 

(lb) 

Fireplace 11.60 5.72 376 35 13,143 

Pre-Certified 19.65 16.95 1113 31 34,503 

Phase II Catalytic 8.93 19.60 1287 16 20,592 

Phase II Non-Catalytic 39.29 41.47 2723 14 38,115 

Cord Wood Furnace 0.90 2.46 161 31 4,991 

Pellet Stoves 19.64 13.81 907 7 6,349 

Total 

  

6,566 

 

117,693 (58.8 tons) 

      100% Change Out 

Type of Device 

% of 

Devices 

% of Wood 

Burned by 

Device 

Total 

Annual 

Tons of 

Wood 

PM2.5 

EF 

(lb/ton) 

PM2.5 Emissions 

(lb) 

Fireplace 0.00 0.00 0 35 0 

Pre-Certified 0.00 0.00 0 31 0 

Phase II Catalytic 8.93 19.60 1287 16 20,592 

Phase II Non-Catalytic 71.43 66.59 4372 14 61,208 

Cord Wood Furnace 0.00 0.00 0 31 0 

Pellet Stoves 19.64 13.81 907 7 6,349 

Total 

  

6,566 

 

88,149 (44.1 tons) 

 

Using the values in Table IX, the baseline emission rate for PM2.5 emission from wood 

burning sources was adjusted.  The results of this adjustment are provided in Table X. 

 

Table X: PM2.5 Emission Rates After Change Out 

% of Stoves 

Replaced 

Annual PM2.5 

Emissions (tons) 

PM2.5 Emission 

Rate (g/s) 

0 72.9 6.67E-08 

50 58.8 5.38E-08 

100 44.1 4.03E-08 
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These emission rates were then adjusted on a monthly basis according to the monthly 

heating degree days as in the No Control Scenario.  All other assumptions made in the No 

Control Scenario remained constant, including increases in industrial emissions, replacement of 

meteorological data with future predicted values, and current terrain and land use data. 
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3. Results 

This section describes the results of the various scenarios examined through the 

AERMOD modeling software suite. 

3.1. Baseline Scenario 

The results of the AERMOD analysis of the Baseline Scenario as described in Section 

2.3.1 are provided in this section.  Results for the years 2040, 2050, 2060 and 2070 are provided 

below in Table XI.  These results are also displayed graphically in Figures 11 - 13 with the 

predicted concentration plotted versus the average modeled concentration over the 2010 – 2012 

time period for the sake of comparison.  The x-axis is the month of the year, and the y-axis is 

PM2.5 concentration in µg/m3. 

 

Table XI: Results of Baseline Modeling Scenario 

 

Month 

Monthly PM2.5 Concentration (µg/m^3) 

2010 - 2012 

Avg 2040 2050 2060 2070 

Jan 15.9 16.7 14.1 19.0 20.7 

Feb 12.7 15.3 13.9 14.3 13.6 

Mar 7.2 9.0 6.7 8.1 9.4 

Apr 4.6 5.5 4.4 4.4 4.7 

May 3.7 3.2 3.5 4.0 3.5 

Jun 3.8 3.3 4.1 4.4 3.4 

Jul 5.6 4.0 4.4 6.2 3.7 

Aug 6.4 5.5 6.2 6.1 5.3 

Sep 7.2 5.2 6.8 6.6 5.6 

Oct 7.7 6.4 6.7 6.9 6.8 

Nov 11.2 8.8 14.0 12.3 8.4 

Dec 17.9 20.9 18.8 20.7 23.4 
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Figure 11: Modeled PM2.5 Concentrations for the 2040 Baseline Scenario 

 
 

Figure 12: Modeled PM2.5 Concentrations for the 2050 Baseline Scenario 
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Figure 13: Modeled PM2.5 Concentrations for the 2060 Baseline Scenario 

 

 
 

Figure 14: Modeled PM2.5 Concentrations for the 2070 Baseline Scenario 
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3.2. No Control Scenario 

The results of the AERMOD analysis of the No Control Scenario as described in Section 

2.3.2 of this report are provided in this section.  Results for the years 2040, 2050, 2060 and 2070 

are provided below in Table XII.  These results are also displayed graphically in 15 - 18 with the 

predicted concentration plotted versus the average modeled concentration over the 2010 – 2012 

time period for the sake of comparison.  The x-axis is the month of the year, and the y-axis is 

PM2.5 concentration in µg/m3. 

 

Table XII: Results of Baseline Modeling Scenario 

Month Monthly PM2.5 Concentration (µg/m^3) 

2010 - 2012 Avg 2040 2050 2060 2070 

Jan 15.9 22.2 20.0 15.6 17.8 

Feb 12.7 19.7 10.7 12.0 15.5 

Mar 7.2 8.9 6.6 8.0 7.5 

Apr 4.6 4.4 4.6 4.3 4.0 

May 3.7 3.6 3.6 4.0 3.6 

Jun 3.8 3.8 4.0 3.6 3.8 

Jul 5.6 4.2 4.3 4.9 5.6 

Aug 6.4 5.6 5.9 5.4 6.1 

Sep 7.2 4.9 6.3 5.0 7.4 

Oct 7.7 6.6 6.6 5.1 9.0 

Nov 11.2 13.7 10.0 8.7 12.3 

Dec 17.9 22.5 22.2 15.7 20.1 
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Figure 15: Modeled PM2.5 Concentrations for the 2050 No Control Scenario 

  

 
 

Figure 16: Modeled PM2.5 Concentrations for the 2050 No Control Scenario 
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Figure 17: Modeled PM2.5 Concentrations for the 2060 No Control Scenario 

 

 
 

Figure 18: Modeled PM2.5 Concentrations for the 2070 No Control Scenario 
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3.3. Control Scenario 

The results of the AERMOD analysis of the Control Scenario as described in Section 

2.3.3 of this report are provided in this section.  Due to the large amount of data, results for the 

years 2040, 2050, 2060 and 2070 are provided in Appendix F.  The three scenarios (no change 

out, 50% change out and 100% change out) are displayed in Figures 19 - 22 with the predicted 

concentration plotted versus the average modeled concentration over the 2010 – 2012 time 

period for the sake of comparison.  The x-axis is the month of the year, and the y-axis is PM2.5 

concentration in µg/m3. 

 
 

Figure 19: Modeled PM2.5 Concentrations for the Year 2040 Control Scenario 
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Figure 20: Modeled PM2.5 Concentrations for the 2050 Control Scenario 

  

 
 

Figure 21: Modeled PM2.5 Concentrations for the 2060 Control Scenario 
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Figure 22: Modeled PM2.5 Concentrations for the 2070 Control Scenario 

 

3.4. Comparison to NAAQS Standards 

In order to determine the potential risk to human health as a result of modeled 

concentrations, the annual average and 98th percentile 24-hour concentrations for each modeled 

year and stove change out percentage were calculated.  0% represents the results of the No 

Control Scenario.  These results are provided in Table XIII, along with the calculated values for 

the 2010 – 2012 time period and the NAAQS Primary and Secondary standards.  All values have 

units of µg/m3. 
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Table XIII: Comparison of Modeled Concentrations to the NAAQS 

 

Primary  

Standard 

 

Secondary 

Standard 

2010 - 

2012 Avg 

2040 2050 

0% 50% 100% 0% 50% 100% 

Annual 12 15 10.52 14.12 10.04 8.51 15.84 11.13 9.36 

24-hr 35 - 34.68 48.61 35.85 27.69 52.26 38.48 29.67 

 

 

Primary 

Standard 

 

Secondary 

Standard 

2010 - 

2012 Avg 

2060 2070 

0% 50% 100% 0% 50% 100% 

Annual 12 15 10.52 10.22 7.57 5.26 10.04 7.46 5.21 

24-hr 35 - 34.68 36.04 26.80 15.88 34.25 25.51 15.18 
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4. Discussion 

This section discusses the results generated by the model, and compares them to 

regulatory standards to determine whether these results would pose a human health risk. 

4.1. Effects of Changing Meteorology 

Based on the results calculated for the Baseline Scenario, it appears as though changing 

meteorological conditions will have a slight impact on PM2.5 concentrations at the Greeley 

School receptor.  Across all four years that calculations were conducted for, there was a slight 

increase in wintertime concentrations, but the effect is more pronounced during the later years 

(2060 and 2070), with concentrations increasing over the average by as much as 5 µg/m3 in 

January and December of 2070. 

These effects can be attributed to a reduction in atmospheric mixing, which is the result 

of several variables.  The strongest trends in the NARCCAP data actually show that during the 

wintertime there is predicted to be a decrease in surface temperature, increase in cloud cover and 

higher elevation cloud ceiling height.  Decreased surface temperature leads to less convective 

mixing due to thermal activity, while increased cloud cover will block more incoming radiation, 

leading to the same effect.  All of these trends point towards an overall decrease in atmospheric 

mixing, and therefore a decrease in pollutant dispersion and increase in ground level 

concentrations during the wintertime.   

Conversely, during the summer months, calculated concentrations are decreased.  

NARCCAP data indicates the opposite trends during the summer months, with an increase in 

surface temperature and reduced cloud cover (with little change in ceiling height).  These trends 
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lead to an increase in convective mixing, encouraging the dispersion of pollutants released in the 

area. 

4.2. Effect of Changes in Temperature Trends 

 One of the most important predictions made by the NARCCAP data that frames many of 

the results found during this project is illustrated in Figure 23.  This graph has the day of the year 

plotted along the x-axis with the outdoor surface temperature in degrees Fahrenheit plotted along 

the y-axis for the years of 2010, 2040, 2050, 2060 and 2070.  The most obvious trend is that 

there is a large increase in temperature during the summer months of approximately 10 degrees 

in 2040 and 2050, and as large as 25 degrees by 2060 and 2070.  However, temperatures during 

the winter months are actually lower in the years of 2040 and 2050, and do not increase 

appreciably in 2060 and 2070.  When averaged over a yearly time period, there is an overall 

increase in temperature.  However, this does not mean that temperature is increased for every 

month of the year.  In fact, summers are predicted to get hotter while winters are predicted to get 

colder, meaning that temperature extremes will be exacerbated due to future conditions. 
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Figure 23: Average Daily Surface Temperature Values for 2010, 2040, 2050, 2060 and 2070 

 

 In terms of wood smoke emissions, colder temperatures lead to more energy usage to 

heat homes, leading to increased emission of PM2.5.  This is the cause of the increased wintertime 

concentrations for the years of 2040 and 2050.  In 2060, overall warming trends increase 

wintertime temperatures enough that calculated concentrations are actually below current day 

levels.  While wintertime concentrations in 2070 are actually higher than current concentrations, 

this effect is mostly due to changes in other meteorological conditions aside from temperature. 

4.3. Comparison to NAAQS Standards 

The results in Table XIII, located in Section 3.4 show that the model predicts several 

concentrations exceeding the NAAQS when no control measures are taken.  In 2040, the average 
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annual concentration of 14.12 µg/m3 exceeded the primary annual standard of 12 µg/m3 and the 

98th percentile of 24-hour concentrations of 48.61 µg/m3 exceeded the primary 24-hour standard 

of 35 µg/m3 by a large margin.  In 2050, concentrations were even higher, with both the primary 

annual and primary 24-hour standards being exceeded with values of 15.84 and 52.26 µg/m3 

respectively.  An additional exceedance of the 24-hour NAAQS was predicted in 2060, with a 

concentration of 36.04 µg/m3.  The modeled result of 2070 was barely below the 24-hour 

standard with a value of 34.25 µg/m3.   

These values are sufficiently high to warrant remedial action, as these concentrations 

would likely pose a risk to sensitive populations.  To further complicate the issue, these values 

do not account for additional contributions resulting from the long range transport of particulate 

pollution from events like forest fires.  And, with increasingly strict standards being promulgated 

by the EPA, standards in the future will almost certainly be stricter than those currently enforced.  

These results indicate that action will need to be taken in order to reduce PM2.5 concentrations in 

Butte. 

While a change out program would alleviate these issues by a significant margin, 

modeled results indicate that there would still be cause for concern.  While the primary and 

secondary annual standards were predicted to be met for all years with a 50% change out 

program, the 24-hour standard would still be exceeded in 2040 and 2050 with values of 35.85 

µg/m3 and 38.48 µg/m3, respectively.  Modeled results for the 100% change out scenario indicate 

that standards would be met for all years.  However, as previously mentioned, these results do 

not account for the activity of forest fires, so future concentrations have the potential to be much 

higher, especially during the summer months.  Other factors, such as increased industrial activity 

higher than assumed in this model or increased incoming background concentrations could 



49 

 

increase concentrations further.  It seems unlikely that standards stricter than those enforced 

currently would be met in future years. 
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5. Recommendations 

It is important to bear in mind that many assumptions were made during the construction 

and analysis of this model.  Every factor used to predict future concentrations, including 

meteorological data, source parameters, land use data and other factors is a predicted value.  

These assumptions are not representative of future conditions, and actual measured 

concentrations will likely vary significantly from modeled results.   

However, these results are valuable as a screening tool to develop strategies to maintain 

compliance with PM2.5 standards.  The results of this study imply that actions do need to be taken 

to reduce future emissions of PM2.5 in the area, as changing meteorological conditions will likely 

exacerbate a problem that already requires a solution.   

A stove change out plan is a necessary first step towards reducing PM2.5 emissions.  After 

replacing 50% of inefficient stoves with an EPA certified model, this exercise still predicted 

concentrations above the NAAQS.  After 100% change out, PM2.5 standards were met, but only 

by a small margin without the added burden of forest fire smoke being accounted for.  However, 

these results were obtained assuming that stoves were being replaced with the least efficient EPA 

approved model available.  By requiring stricter standards for replacement stoves, it is likely that 

much lower concentrations than those predicted by this model are attainable. 

Additionally, this model did not account for large scale industrial growth in the area.  It is 

likely that as the population and economy of Butte continue to grow, new facilities will be 

constructed in the area, many of which will emit PM2.5.  Any new potential emitters should be 

required to implement state of the art pollution control devices.  Additionally, facility placement 

will play a major factor in the impact of any new facility.  Since the prevailing wind direction in 

Butte is from the southwest, a facility’s impact on concentrations could be greatly reduced by 



51 

 

constructing the facility far south of town, to avoid impacting the areas that already experience 

high concentrations such as the Greeley School. 

While this study developed a methodology for predicting future PM2.5 concentrations, 

many of the assumptions made could be refined to better improve these results as more 

information is made available.  By incorporating actual industrial source parameters, emissions 

from such sources could be more accurately modeled.  Similarly, by adjusting emissions from 

wood smoke spatially according to population density, more accurate results could be obtained.  

As better projections for industrial growth in the Butte area are made available, more accurate 

predictions of future emissions would be available, and as the details of a wood stove change out 

program are refined, these results can also be incorporated to determine their benefits. 

Since results generated by this study were created using the A2 GHG emissions scenario, 

which is considered to be the “worst case” for future emissions, it is worth noting that future 

meteorological conditions may vary by a large margin from those values predicted by the 

NARCCAP data used (Nakicenovic).  By conducting modeling with climate data based on 

different emission scenarios, a more general idea of potential future concentrations could be 

created. 
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6. Conclusion 

The model constructed for the purpose of this study was designed to predict future PM2.5 

concentrations in Butte Montana.  Various assumptions went into its construction, including 

predicted NARCCAP climate values, projected emissions trends and various other variables.  

After verifying that the model was accurately predicting concentrations based on existing 

measured concentration values, for the years of 2040, 2050, 2060 and 2070, the model was used 

to predict PM2.5 concentrations. 

Based on the results of this study, it appears that there is cause for concern in regards to 

future PM2.5 concentrations in Butte, Montana.  Future concentrations did not meet the NAAQS 

in several years, due to changes in meteorology and increased wintertime emissions from wood 

burning sources.  The year 2050 showed the highest concentrations, with an annual average 

concentration of 15.84 µg/m3 and a 98th percentile 24-hour value of 52.26 µg/m3.  Even after 

accounting for reduced emissions as the result of a wood stove change out program, 

concentrations were sufficiently high that additional control measures are recommended. 
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Appendix A: Variables Calculated from Land Use Data 

Season Sector Albedo 

Surface 

Roughness 

Bowen 

Ratio 

Winter 1 0.4275 2.8 0.01 

Spring 1 0.167 1.905 0.03 

Summer 1 0.175 3.405 0.2 

Autumn 1 0.194 3.805 0.05 

Winter 2 0.4275 2.8 0.01 

Spring 2 0.167 1.905 0.03 

Summer 2 0.175 3.405 0.2 

Autumn 2 0.194 3.805 0.05 

Winter 3 0.4275 2.8 0.15 

Spring 3 0.167 1.905 0.3 

Summer 3 0.175 3.405 0.3 

Autumn 3 0.194 3.805 0.3 

Winter 4 0.4275 2.8 1 

Spring 4 0.167 1.905 1 

Summer 4 0.175 3.405 1 

Autumn 4 0.194 3.805 1 

Winter 5 0.4275 2.8 1 

Spring 5 0.167 1.905 1 

Summer 5 0.175 3.405 1 

Autumn 5 0.194 3.805 1 

Winter 6 0.4275 2.8 1 

Spring 6 0.167 1.905 1 

Summer 6 0.175 3.405 1 

Autumn 6 0.194 3.805 1 

Winter 7 0.4275 2.8 1 

Spring 7 0.167 1.905 1 

Summer 7 0.175 3.405 1 

Autumn 7 0.194 3.805 1 

Winter 8 0.4275 2.8 0.0001 

Spring 8 0.167 1.905 0.0001 

Summer 8 0.175 3.405 0.0001 

Autumn 8 0.194 3.805 0.0001 
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Appendix B: AERMOD Input Summary File 

AERMOD Model Options  

Model Options 

Pathway Keyword Description Value 

CO TITLEONE Project title 1 Butte Montana PM2.5 Concentrations, 2010 - 2012 

CO TITLETWO Project title 2   

CO MODELOPT Model options DFAULT,CONC 

CO AVERTIME Averaging times 24,MONTH,ANNUAL 

CO URBANOPT Urban options   

CO POLLUTID Pollutant ID PM25 H1H 

CO HALFLIFE Half life   

CO DCAYCOEF Decay coefficient   

CO FLAGPOLE Flagpole receptor heights   

CO RUNORNOT Run or Not RUN 

CO EVENTFIL Event file F 

CO SAVEFILE Save file T 

CO INITFILE Initialization file   

CO MULTYEAR Multiple year option N/A 

CO DEBUGOPT Debug options N/A 

CO ERRORFIL Error file T 

SO ELEVUNIT Elevation units METERS 

SO EMISUNIT Emission units N/A 

RE ELEVUNIT Elevation units METERS 

ME SURFFILE Surface met file F:\METDAT~1\BERTMO~1\OUTPUTS\2010-2012.SFC 

ME PROFFILE Profile met file F:\METDAT~1\BERTMO~1\OUTPUTS\2010-2012.PFL 

ME SURFDATA Surf met data info. 24144 2010 

ME UAIRDATA U-Air met data info. 24143 2010 

ME SITEDATA On-site met data info.   
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ME PROFBASE Elev. above MSL  1692 

ME STARTEND Start-end met dates   

ME WDROTATE Wind dir. rot. adjust.   

ME WINDCATS Wind speed cat. max. 10,12.5,15,17.5,20 

ME SCIMBYHR SCIM sample params   

EV DAYTABLE Print summary opt. N/A 

OU EVENTOUT Output info. level N/A 

OU DAYTABLE Print summary opt. Table(2,2) / /item /value /MONTH 

 Source Parameter Tables 

All Sources 

Source ID / 

Pollutant ID Source Type Description 
UTM Elev. 

Emiss. Rate Emiss. 

Units 

Release 

Height 
East (m) North (m) (m) (m) 

REC_SILI POINT   369020 5091951 1669 0.2159 (g/s) 65 

BASINCRE POINT   381780 5087373 1723 0.0189 (g/s) 65 

MTRESOUR POINT   383568 5095907 1680 1.3074 (g/s) 20 

WOODSMOK AREAPOLY Smoke from residential wood 

combustion 379507 5097053 1852.85 6.6694E-08 (g/s-m**2) 0 

FUGIDUST AREAPOLY Fugitive Dust 382439 5099915 1923.85 2.94295E-07 (g/s-m**2) 0 

Point Sources 

Source ID / 

Pollutant ID Description 
UTM Elev. Emiss. 

Rate 
Stack 

Height 
Stack 

Temp 
Stack 

Velocity 
Stack 

Diameter 
East (m) North (m) (m) (g/s) (m) (K) (m/s) (m) 

REC_SILI   369020 5091951 1669 0.2159 65 0 0.001 1 

BASINCRE   381780 5087373 1723 0.0189 65 0 0.001 1 

MTRESOUR   383568 5095907 1680 1.3074 20 0 0.001 1 

Polygon Area Sources 

Source ID / 

Pollutant ID Description 
UTM Elev. Emiss. Rate Release 

Height Vertices Init. Vert. 

Dim. 
East (m) North (m) (m) (g/s-m**2) (m) # (m) 

WOODSMOK Smoke from residential wood 

combustion 379507 5097053 1852.85 6.6694E-08 0 8 0 

FUGIDUST Fugitive Dust 382439 5099915 1923.85 2.94295E-07 0 12 0 
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Appendix C: Table of Heating Degree Days and PM2.5 Emission Rates 
due to Wood Burning 

2010 - 2012 Heating Degree Days and Emission Rates 

 

HDD 

 

Month Days 2010 2011 2012 Average 

Emission 

Factor 

Emission 

Rate (g/s) 

Jan 31 1504 1264 1262 1343 1.76 1.17E-07 

Feb 28 1176 1400 993 1190 1.56 1.04E-07 

Mar 31 1036 1062 872 990 1.29 8.63E-08 

Apr 30 862 786 689 779 1.02 6.79E-08 

May 31 523 537 607 556 0.73 4.85E-08 

Jun 30 313 360 317 330 0.43 2.88E-08 

Jul 31 136 137 138 137 0.18 1.19E-08 

Aug 31 185 228 200 204 0.27 1.78E-08 

Sep 30 381 426 375 394 0.52 3.44E-08 

Oct 31 913 630 781 775 1.01 6.76E-08 

Nov 30 1050 1207 1066 1108 1.45 9.66E-08 

Dec 31 1436 1305 1373 1371 1.79 1.20E-07 

 

2040, 2050, 2060 and 2070 Heating Degree Days and Emission Rates 

 
HDD Emission Rate (g/s) 

Month Days 2040 2050 2060 2070 2040 2050 2060 2070 

Jan 31 1826 1687 1656 1386 1.59E-07 1.47E-07 1.44E-07 1.21E-07 

Feb 28 1532 1249 1254 1132 1.34E-07 1.09E-07 1.09E-07 9.87E-08 

Mar 31 1241 991 1232 923 1.08E-07 8.64E-08 1.07E-07 8.05E-08 

Apr 30 706 570 624 535 6.16E-08 4.97E-08 5.44E-08 4.67E-08 

May 31 498 485 442 465 4.34E-08 4.23E-08 3.85E-08 4.06E-08 

Jun 30 254 241 212 214 2.22E-08 2.10E-08 1.85E-08 1.87E-08 

Jul 31 125 122 109 107 1.09E-08 1.06E-08 9.51E-09 9.33E-09 

Aug 31 170 173 143 139 1.48E-08 1.51E-08 1.25E-08 1.21E-08 

Sep 30 386 402 374 364 3.37E-08 3.51E-08 3.26E-08 3.17E-08 

Oct 31 812 844 742 756 7.08E-08 7.36E-08 6.47E-08 6.59E-08 

Nov 30 1239 1067 774 1196 1.08E-07 9.31E-08 6.75E-08 1.04E-07 

Dec 31 1783 1594 1376 1302 1.55E-07 1.39E-07 1.20E-07 1.14E-07 
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Appendix D: Change Log of Area Source Adjustment 

Trial 1 

 

Trial 2 

Point # Latitude (°N) Longitude (°W) Point # Latitude (°N) Longitude (°W) 

1 46.0253 112.5504 1 46.0253 112.5504 

2 46.004 112.5582 2 46.004 112.5582 

3 45.9734 112.5234 3 45.9807 112.5501 

4 45.956 112.5117 4 45.9825 112.4862 

5 45.9632 112.4756 5 46.0032 112.4905 

6 46.0032 112.4905 6 46.012 112.5238 

7 46.012 112.5238 7 46.025 112.548 

8 46.0259 112.548       

 Trial 3 

  

Trial 4 

Point # Latitude (°N) Longitude (°W) Point # Latitude (°N) Longitude (°W) 

1 46.0156 112.5377 1 46.0164 112.5566 

2 45.996 112.5386 2 46.0042 112.5577 

3 45.9878 112.4872 3 45.9803 112.4998 

4 46.0042 112.4952 4 45.9816 112.4879 

5 46.0152 112.5321 5 45.9962 112.4486 

  

6 46.0037 112.4962 

7 46.0055 112.5209 

8 46.0165 112.5326 
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 Appendix E: AERMOD Files 
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AERMOD Input File 

 
** BREEZE AERMOD 

** Trinity Consultants 

** VERSION  7.9 

 

CO STARTING 

CO TITLEONE  Butte Montana PM2.5 Concentrations, 2010 - 2012 

CO MODELOPT  DFAULT  CONC 

CO RUNORNOT  RUN 

CO AVERTIME  24  MONTH  ANNUAL 

CO POLLUTID  PM25 H1H 

CO SAVEFILE  TMP.FIL 

CO ERRORFIL  ERRORS.LST 

CO FINISHED 

 

SO STARTING 

SO ELEVUNIT  METERS 

SO LOCATION  WOODSMOK  AREAPOLY  379507  5097053  1852.85 

** SRCDESCR  Smoke from residential wood combustion 

SO LOCATION  FUGIDUST  AREAPOLY  382439  5099915  1923.85 

** SRCDESCR  Fugitive Dust 

SO LOCATION  REC_SILI  POINT     369020  5091951  1669 

SO LOCATION  BASINCRE  POINT     381780  5087373  1723 

SO LOCATION  MTRESOUR  POINT     383568  5095907  1680 

SO SRCPARAM  WOODSMOK  6.6694E-08  0  8  0 

SO SRCPARAM  FUGIDUST  2.94295E-07  0  12  0 

SO SRCPARAM  REC_SILI  0.2159  65  0  0.001  1 

SO SRCPARAM  BASINCRE  0.0189  65  0  0.001  1 

SO SRCPARAM  MTRESOUR  1.3074  20  0  0.001  1 

SO AREAVERT  WOODSMOK  379507.0 5097053.0  379396.0 5095689.0 

SO AREAVERT  WOODSMOK  383822.0 5092947.0  384750.0 5093078.0 

SO AREAVERT  WOODSMOK  384728.0 5094707.0  384151.0 5095547.0 

SO AREAVERT  WOODSMOK  382248.0 5095787.0  381360.0 5097027.0 

SO AREAVERT  FUGIDUST  382439.0 5099915.0  382034.0 5097199.0 

SO AREAVERT  FUGIDUST  383335.0 5097856.0  384138.0 5096884.0 

SO AREAVERT  FUGIDUST  383917.0 5096327.0  385571.0 5094741.0 

SO AREAVERT  FUGIDUST  386366.0 5095470.0  386314.0 5097172.0 

SO AREAVERT  FUGIDUST  385090.0 5098602.0  384769.0 5100281.0 

SO AREAVERT  FUGIDUST  383956.0 5099008.0  383421.0 5098944.0 

SO EMISFACT  WOODSMOK  MONTH  1.76 1.56 1.29 1.02 .73 .43 .18 .27 .52 1.01 1.45 1.79 

SO EMISFACT  FUGIDUST  WSPEED  0  0.085635401  0.251648983  0.493849322 

SO EMISFACT  FUGIDUST  WSPEED  0.812236418  1 

SO PARTDIAM  WOODSMOK  2.5 

SO MASSFRAX  WOODSMOK  1 

SO PARTDENS  WOODSMOK  1.3 

SO PARTDIAM  FUGIDUST  2.5 

SO MASSFRAX  FUGIDUST  1 

SO PARTDENS  FUGIDUST  1.3 

SO PARTDIAM  REC_SILI  2.5 

SO MASSFRAX  REC_SILI  1 

SO PARTDENS  REC_SILI  1.3 

SO PARTDIAM  BASINCRE  2.5 

SO MASSFRAX  BASINCRE  1 

SO PARTDENS  BASINCRE  1.3 

SO PARTDIAM  MTRESOUR  2.5 

SO MASSFRAX  MTRESOUR  1 

SO PARTDENS  MTRESOUR  1.3 

SO SRCGROUP  ALL 

SO FINISHED 

 

RE STARTING 



62 

 

RE ELEVUNIT  METERS 

RE DISCCART  383760  5095433  1678  2507.6 

** RCPDESCR  Greeley 

RE FINISHED 

 

ME STARTING 

ME SURFFILE  "F:\METDAT~1\BERTMO~1\OUTPUTS\2010-2012.SFC" 

** SURFFILE  "F:\METDAT~1\BERTMO~1\OUTPUTS\2010-2012.SFC" 

ME PROFFILE  "F:\METDAT~1\BERTMO~1\OUTPUTS\2010-2012.PFL" 

** PROFFILE  "F:\METDAT~1\BERTMO~1\OUTPUTS\2010-2012.PFL" 

ME SURFDATA  24144 2010 

ME UAIRDATA  24143 2010 

ME PROFBASE  1692  METERS 

ME WINDCATS  10  12.5  15  17.5  20 

ME FINISHED 

 

OU STARTING 

OU RECTABLE  MONTH  FIRST 

OU FILEFORM  FIX 

OU SUMMFILE  SUMMARYFILE.SUM 

OU MAXTABLE  MONTH  1 

OU DAYTABLE   MONTH 

OU PLOTFILE  MONTH  ALL  FIRST  ALL`MONTH`FIRST.plt  10000 

OU POSTFILE  24  ALL  UNFORM  ALL`24.bin  10001 

OU FINISHED 

 

** ***************************************************************************** 

** It is recommended that the user not edit any data below this line 

** ***************************************************************************** 

 

 

** TERRFILE  F:\AERMAP\DEMFIL~1\1676463\9797_75M.DEM  0  2  NAD27  12  30  383848.5  

5094923.3  384110.4  5108811.6  393767.7  5108636.9  393527.7  5094748.6 

** TERRFILE  F:\AERMAP\DEMFIL~1\1676473\9797_75M.DEM  0  2  NAD27  12  30  373886.1  

5081225.3  374169.3  5095113.3  383848.5  5094923.3  383587.1  5081035.4 

** TERRFILE  F:\AERMAP\DEMFIL~1\1676474\9797_75M.DEM  0  2  NAD27  12  30  383587.1  

5081035.4  383848.5  5094923.3  393527.7  5094748.6  393288.2  5080860.6 

** TERRFILE  F:\AERMAP\DEMFIL~1\1630595\7644_75M.DEM  0  2  NAD27  12  30  374169.3  

5095113.3  374453.0  5109001.5  384110.4  5108811.6  383848.5  5094923.3 

** AMPTYPE  DEM 

** AMPDATUM  0 

** AMPZONE  12 

** AMPHEMISPHERE  N 

** HILLBOUN  375220.1 5084019.3 392162.1 5108427.2 

 

** PROJECTION  UTM 

** DATUM  NAS-C 

** UNITS  METER 

** ZONE  12 

** HEMISPHERE  N 

** ORIGINLON  0 

** ORIGINLAT  0 

** PARALLEL1  0 

** PARALLEL2  0 

** AZIMUTH  0 

** SCALEFACT  0 

** FALSEEAST  0 

** FALSENORTH  0 

 

** PRCNTFIL  1  0  98 

** POSTFMT  UNFORM 

** TEMPLATE USERDEFINED 

** AERMODEXE  AERMOD_BREEZE_14134.EXE 

** AERMAPEXE  AERMAP_EPA_11103.EXE 
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AERMOD Summary File 

 *** AERMOD - VERSION  14134 ***   ***  Butte Montana PM2.5 Concentrations, 2010 - 2012                     

***        04/16/15 

 *** AERMET - VERSION  14134 ***   ***                                                                      

***        17:58:06 

                                                                                                                       

PAGE   1 

 **MODELOPTs:   RegDFAULT CONC      ELEV      DRYDPLT   WETDPLT 

 

                                            ***     MODEL SETUP OPTIONS SUMMARY       *** 

 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- - - - - - - - - - - - - - - - - - 

 

 **Model Is Setup For Calculation of Average CONCentration Values. 

   

   --  DEPOSITION LOGIC  -- 

 **NO GAS DEPOSITION Data Provided. 

 **PARTICLE DEPOSITION Data Provided. 

 **Model Uses DRY DEPLETION.     DDPLETE  =  T 

 **Model Uses WET DEPLETION.     WETDPLT  =  T 

   

 **Model Uses RURAL Dispersion Only. 

   

 **Model Uses Regulatory DEFAULT Options: 

         1. Stack-tip Downwash. 

         2. Model Accounts for ELEVated Terrain Effects. 

         3. Use Calms Processing Routine. 

         4. Use Missing Data Processing Routine. 

         5. No Exponential Decay. 

   

 **Other Options Specified: 

         CCVR_Sub - Meteorological data includes CCVR substitutions 

         TEMP_Sub - Meteorological data includes TEMP substitutions 

   

 **Model Assumes No FLAGPOLE Receptor Heights. 

   

 **The User Specified a Pollutant Type of:  PM25     

 

 **NOTE: Special processing requirements applicable for the 24-hour PM2.5 NAAQS have been 

disabled!!! 

         High ranked 24-hour values are NOT averaged across the number of years modeled, 

and 

         complete years of data are NOT required. 

   

 **Model Calculates  2 Short Term Average(s) of:  24-HR  MONTH 

     and Calculates ANNUAL Averages 

   

 **This Run Includes:      5 Source(s);       1 Source Group(s); and       1 Receptor(s) 

   

 **Model Set To Continue RUNning After the Setup Testing. 

 

 **The AERMET Input Meteorological Data Version Date:  14134 

   

 **Output Options Selected: 

          Model Outputs Tables of ANNUAL Averages by Receptor 

          Model Outputs Tables of Highest Short Term Values by Receptor (RECTABLE Keyword) 

          Model Outputs Tables of Overall Maximum Short Term Values (MAXTABLE Keyword) 

          Model Outputs Tables of Concurrent Short Term Values by Receptor for Each Day 

Processed (DAYTABLE Keyword) 

          Model Outputs External File(s) of Concurrent Values for Postprocessing (POSTFILE 

Keyword) 
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          Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword) 

          Model Outputs Separate Summary File of High Ranked Values (SUMMFILE Keyword) 

   

 **NOTE:  The Following Flags May Appear Following CONC Values:  c for Calm Hours 

                                                                 m for Missing Hours 

                                                                 b for Both Calm and 

Missing Hours 

   

 **Misc. Inputs:  Base Elev. for Pot. Temp. Profile (m MSL) =  1692.00 ;  Decay Coef. =    

0.000     ;  Rot. Angle =     0.0 

                  Emission Units = GRAMS/SEC                                ;  Emission 

Rate Unit Factor =   0.10000E+07 

                  Output Units   = MICROGRAMS/M**3                          

   

 **Approximate Storage Requirements of Model =      3.5 MB of RAM. 

   

 **Input Runstream File:          AERMOD.INP                                                                                       

 **Output Print File:             AERMOD.OUT                                                                                       

 

 **File for Saving Result Arrays: TMP.FIL                                                                                          

 **Detailed Error/Message File:   ERRORS.LST                                                                                       

 **File for Summary of Results:   SUMMARYFILE.SUM                                                                                  

 

 *** AERMOD - VERSION  14134 ***   ***  Butte Montana PM2.5 Concentrations, 2010 - 2012                     

***        04/16/15 

 *** AERMET - VERSION  14134 ***   ***                                                                      

***        17:58:06 

                                                                                                                       

PAGE   2 

 **MODELOPTs:   RegDFAULT CONC      ELEV      DRYDPLT   WETDPLT 

 

                                            *** METEOROLOGICAL DAYS SELECTED FOR PROCESSING 

*** 

                                                               (1=YES; 0=NO) 

 

            1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 

1 1 1   1 1 1 1 1 1 1 1 1 1 

            1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 

1 1 1   1 1 1 1 1 1 1 1 1 1 

            1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 

1 1 1   1 1 1 1 1 1 1 1 1 1 

            1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 

1 1 1   1 1 1 1 1 1 1 1 1 1 

            1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 

1 1 1   1 1 1 1 1 1 1 1 1 1 

            1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 

1 1 1   1 1 1 1 1 1 1 1 1 1 

            1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 

1 1 1   1 1 1 1 1 1 1 1 1 1 

            1 1 1 1 1 1 1 1 1 1   1 1 1 1 1 1 

 

                NOTE:  METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS 

INCLUDED IN THE DATA FILE. 

 

 

 

                                  *** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED 

CATEGORIES *** 

                                                            (METERS/SEC) 

 

                                                10.00,  12.50,  15.00,  17.50,  20.00, 

 

 *** AERMOD - VERSION  14134 ***   ***  Butte Montana PM2.5 Concentrations, 2010 - 2012                     

***        04/16/15 
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 *** AERMET - VERSION  14134 ***   ***                                                                      

***        17:58:06 

                                                                                                                       

PAGE   3 

 **MODELOPTs:   RegDFAULT CONC      ELEV      DRYDPLT   WETDPLT 

 

                                    *** UP TO THE FIRST 24 HOURS OF METEOROLOGICAL DATA *** 

 

   Surface file:   F:\METDAT~1\BERTMO~1\OUTPUTS\2010-2012.SFC                                         

Met Version:  14134 

   Profile file:   F:\METDAT~1\BERTMO~1\OUTPUTS\2010-2012.PFL                                       

   Surface format: FREE                                                                                                      

   Profile format: FREE                                                                                                      

   Surface station no.:    24144                  Upper air station no.:    24143 

                  Name: UNKNOWN                                    Name: UNKNOWN                                  

                  Year:   2010                                     Year:   2010 

 

 First 24 hours of scalar data 

 YR MO DY HR     H0     U*     W*  DT/DZ ZICNV ZIMCH  M-O LEN  Z0 BOWEN  ALB  REF WS   WD   

HT  REF TA  HT IPCOD PRATE  RH SFCP CCVR 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- - - - - - - - - - - - - - - - - - - -  

 10 01 01 01   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 1.00    1.50  101.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 02   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 1.00    1.50   98.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 03   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 1.00    1.50  104.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 04   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 1.00    1.50  103.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 05   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 1.00    1.50  103.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 06   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 1.00    1.50  102.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 07   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 1.00    1.50  105.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 08   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 1.00    1.50  103.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 09   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 1.00    1.50   97.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 10   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 1.00    1.50  101.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 11   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 1.00    1.50  104.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 12   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 1.00    1.50   96.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 13   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 1.00    1.50  103.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 14   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 1.00    1.50   99.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 15   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 1.00    1.50  102.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 16   -3.8  0.071 -9.000 -9.000 -999.   46.      7.6 0.15 2.80 0.85    1.50  104.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 17   -2.8  0.011 -9.000 -9.000 -999.   66.     20.9 0.15 2.80 0.63    1.50  101.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 18   18.1  0.173  0.380  0.005   95.  172.    -22.3 0.15 2.80 0.54    1.50   97.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 19   38.1  0.184  0.612  0.005  272.  190.    -12.9 0.15 2.80 0.50    1.50  104.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 20   45.2  0.188  0.960  0.005  615.  195.    -11.5 0.15 2.80 0.49    1.50   97.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 21   38.6  0.185  0.999  0.005  809.  191.    -12.8 0.15 2.80 0.50    1.50  100.  

10.  272.0   2.  0  -9.00  999.  879.  6 
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 10 01 01 22   19.1  0.173  0.803  0.005  848.  173.    -21.3 0.15 2.80 0.54    1.50  102.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 23   -2.8  0.101 -9.000 -9.000 -999.   79.     29.0 0.15 2.80 0.62    1.50  100.  

10.  272.0   2.  0  -9.00  999.  879.  6 

 10 01 01 24   -0.4  0.017 -9.000 -9.000 -999.   20.      1.2 0.00 2.80 0.83    1.00  350.  

10.  270.9   2.  0  -9.00  999.  879.  7 

 

 

 First hour of profile data 

 YR MO DY HR HEIGHT F  WDIR    WSPD AMB_TMP sigmaA  sigmaW  sigmaV 

 10 01 01 01   10.0 1  101.    1.50   272.1   99.0  -99.00  -99.00 

 

 F indicates top of profile (=1) or below (=0) 

 

 *** AERMOD - VERSION  14134 ***   ***  Butte Montana PM2.5 Concentrations, 2010 - 2012                     

***        04/16/15 

 *** AERMET - VERSION  14134 ***   ***                                                                      

***        17:58:06 

                                                                                                                       

PAGE   4 

 **MODELOPTs:   RegDFAULT CONC      ELEV      DRYDPLT   WETDPLT 

 

                                   *** THE SUMMARY OF MAXIMUM ANNUAL RESULTS AVERAGED OVER   

3 YEARS *** 

 

 

                                    ** CONC OF PM25     IN MICROGRAMS/M**3                          

** 

 

                                                                                                             

NETWORK 

GROUP ID                       AVERAGE CONC                RECEPTOR  (XR, YR, ZELEV, ZHILL, 

ZFLAG)  OF TYPE  GRID-ID 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- - - - - - - - - - - - - -  

 

ALL       1ST HIGHEST VALUE IS       7.51637 AT (  383760.00,  5095433.00,  1678.00,  

2507.60,    0.00)  DC           

          2ND HIGHEST VALUE IS       0.00000 AT (       0.00,        0.00,     0.00,     

0.00,    0.00) 

          3RD HIGHEST VALUE IS       0.00000 AT (       0.00,        0.00,     0.00,     

0.00,    0.00) 

          4TH HIGHEST VALUE IS       0.00000 AT (       0.00,        0.00,     0.00,     

0.00,    0.00) 

          5TH HIGHEST VALUE IS       0.00000 AT (       0.00,        0.00,     0.00,     

0.00,    0.00) 

          6TH HIGHEST VALUE IS       0.00000 AT (       0.00,        0.00,     0.00,     

0.00,    0.00) 

          7TH HIGHEST VALUE IS       0.00000 AT (       0.00,        0.00,     0.00,     

0.00,    0.00) 

          8TH HIGHEST VALUE IS       0.00000 AT (       0.00,        0.00,     0.00,     

0.00,    0.00) 

          9TH HIGHEST VALUE IS       0.00000 AT (       0.00,        0.00,     0.00,     

0.00,    0.00) 

         10TH HIGHEST VALUE IS       0.00000 AT (       0.00,        0.00,     0.00,     

0.00,    0.00) 

 

 

 *** RECEPTOR TYPES:  GC = GRIDCART 

                      GP = GRIDPOLR 

                      DC = DISCCART 

                      DP = DISCPOLR 

 

 *** AERMOD - VERSION  14134 ***   ***  Butte Montana PM2.5 Concentrations, 2010 - 2012                     

***        04/16/15 
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 *** AERMET - VERSION  14134 ***   ***                                                                      

***        17:58:06 

                                                                                                                       

PAGE   5 

 **MODELOPTs:   RegDFAULT CONC      ELEV      DRYDPLT   WETDPLT 

 

                                                *** THE SUMMARY OF HIGHEST MONTH RESULTS 

*** 

 

 

                                    ** CONC OF PM25     IN MICROGRAMS/M**3                          

** 

 

                                                      DATE                                                                    

NETWORK 

GROUP ID                          AVERAGE CONC     (YYMMDDHH)             RECEPTOR  (XR, 

YR, ZELEV, ZHILL, ZFLAG)    OF TYPE  GRID-ID 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- - - - - - - - - - - - - - - - - - - -  

   

ALL      HIGH   1ST HIGH VALUE IS      16.78638c ON 11123124: AT (  383760.00,  5095433.00,  

1678.00,  2507.60,    0.00)  DC           

 

 

 *** RECEPTOR TYPES:  GC = GRIDCART 

                      GP = GRIDPOLR 

                      DC = DISCCART 

                      DP = DISCPOLR 

 

 *** AERMOD - VERSION  14134 ***   ***  Butte Montana PM2.5 Concentrations, 2010 - 2012                     

***        04/16/15 

 *** AERMET - VERSION  14134 ***   ***                                                                      

***        17:58:06 

                                                                                                                       

PAGE   6 

 **MODELOPTs:   RegDFAULT CONC      ELEV      DRYDPLT   WETDPLT 

 

 *** Message Summary : AERMOD Model Execution *** 

 

  --------- Summary of Total Messages -------- 

   

 A Total of            0 Fatal Error Message(s) 

 A Total of            6 Warning Message(s) 

 A Total of        10021 Informational Message(s) 

 

 A Total of        26304 Hours Were Processed 

 

 A Total of          168 Calm Hours Identified 

 

 A Total of         9853 Missing Hours Identified ( 37.46 Percent) 

 

 CAUTION!:  Number of Missing Hours Exceeds 10 Percent of Total! 

            Data May Not Be Acceptable for Regulatory Applications. 

            See Section 5.3.2 of "Meteorological Monitoring Guidance 

            for Regulatory Modeling Applications" (EPA-454/R-99-005). 

 

 Met Data File Includes       0.00 Millimeters (     0.000 Inches) of Precipitation 

   

   

    ******** FATAL ERROR MESSAGES ********  

               ***  NONE  ***          

   

   

    ********   WARNING MESSAGES   ********  
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 CO W276      70       POLLID: Special proc for 1h-NO2/SO2 24hPM25 NAAQS disabled     PM25 

H1H 

 CO W276      17       POLLID: Special proc for 1h-NO2/SO2 24hPM25 NAAQS disabled     PM25 

H1H 

 CO W363      20       COCARD: Multiyr 24h/Ann PM25 processing not applicable for     

SAVEFILE 

 OU W540      92        OUTQA: No RECTABLE/MAXTABLE/DAYTABLE for Average Period         

024-HR 

 OU W190      92        OUTQA: Incompatible Option Used With SAVEFILE or INITFILE     

DAYTABLE 

 MX W496   26305         MAIN: Total precipitation in SURFFILE is zero (0.0) with     

WetDepos 
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Appendix F: Results of Control Scenario 

2040 2050 

Month 

Monthly PM2.5 Concentration (µg/m^3) Monthly PM2.5 Concentration (µg/m^3) 

2010 - 

2012 Avg 

0% 

Replaced 

50% 

Replaced 

100% 

Replaced 

2010 - 

2012 Avg 

0% 

Replaced 

50% 

Replaced 

100% 

Replaced 

Jan 15.9 22.2 18.66 15 15.9 20.0 17.97 14.5 

Feb 12.7 19.7 16.59 13.3 12.7 10.7 10.6 8.8 

Mar 7.2 8.9 7.85 6.79 7.2 6.6 6.63 5.9 

Apr 4.6 4.4 4.22 4.06 4.6 4.6 4.61 4.4 

May 3.7 3.6 3.5 3.45 3.7 3.6 3.54 3.5 

Jun 3.8 3.8 3.74 3.68 3.8 4.0 3.93 3.9 

Jul 5.6 5.6 5.18 4.71 5.6 4.3 5.11 4.7 

Aug 6.4 5.6 5.22 4.84 6.4 5.9 5.44 4.9 

Sep 7.2 4.9 4.66 4.39 7.2 6.3 4.96 4.7 

Oct 7.7 6.6 6.06 5.46 7.7 6.6 5.6 5.1 

Nov 11.2 13.7 11.8 9.78 11.2 10.0 9.59 8.2 

Dec 17.9 22.5 18.92 15.2 17.9 22.2 20.49 16.7 

2060 2070 

Month 

Monthly PM2.5 Concentration (µg/m^3) Monthly PM2.5 Concentration (µg/m^3) 

2010 - 

2012 Avg 

0% 

Replaced 

50% 

Replaced 

100% 

Replaced 

2010 - 

2012 Avg 

0% 

Replaced 

50% 

Replaced 

100% 

Replaced 

Jan 15.9 15.6 13.4 11.1 15.9 17.8 15.1 12.4 

Feb 12.7 12.0 10.4 8.7 12.7 15.5 13.1 10.7 

Mar 7.2 8.0 7.1 6.2 7.2 7.5 6.8 6.0 

Apr 4.6 4.3 4.2 4.0 4.6 4.0 3.9 3.8 

May 3.7 4.0 4.0 3.9 3.7 3.6 3.5 3.5 

Jun 3.8 3.6 3.6 3.5 3.8 3.8 3.7 3.7 

Jul 5.6 4.9 5.2 4.7 5.6 5.6 5.2 4.7 

Aug 6.4 5.4 5.0 4.6 6.4 6.1 5.2 4.8 

Sep 7.2 5.0 4.7 4.4 7.2 7.4 5.7 5.4 

Oct 7.7 5.1 4.8 4.5 7.7 9.0 8.0 6.9 

Nov 11.2 8.7 7.8 6.8 11.2 12.3 11.5 9.5 

Dec 17.9 15.7 13.5 11.2 17.9 20.1 14.9 12.1 
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