
Montana Tech Library
Digital Commons @ Montana Tech

Software Engineering Faculty Scholarship

6-1-2012

Software Engineering Education Needs More
Engineering
A. Frank Ackerman, Ph.D.
Montana Tech

Sushil Acharua, D.Eng.

Follow this and additional works at: http://digitalcommons.mtech.edu/sw_engr
Part of the Engineering Education Commons, and the Software Engineering Commons

This Conference Proceeding is brought to you for free and open access by the Faculty Scholarship at Digital Commons @ Montana Tech. It has been
accepted for inclusion in Software Engineering by an authorized administrator of Digital Commons @ Montana Tech. For more information, please
contact astclair@mtech.edu.

Recommended Citation
Ackerman, A. F., Acharya, S. (2012, June). Software engineering education needs more engineering. 119th ASEE Annual Conference
& Exposition, SanAntonio, Texas. Used by permission American Society of Engineering Education

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital Commons @ Montana Tech

https://core.ac.uk/display/48313804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.mtech.edu?utm_source=digitalcommons.mtech.edu%2Fsw_engr%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/sw_engr?utm_source=digitalcommons.mtech.edu%2Fsw_engr%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/fac_schr?utm_source=digitalcommons.mtech.edu%2Fsw_engr%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.mtech.edu/sw_engr?utm_source=digitalcommons.mtech.edu%2Fsw_engr%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1191?utm_source=digitalcommons.mtech.edu%2Fsw_engr%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.mtech.edu%2Fsw_engr%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:astclair@mtech.edu

AC 2012-3372: SOFTWARE ENGINEERING EDUCATION NEEDS MORE
ENGINEERING

Prof. A. Frank Ackerman, Montana Tech of the University of Montana

A. Frank Ackerman has 50 years of experience in all phases of software development. In 1985, he founded
the Institute For Zero Defect Software to do applied research, consulting, and training for software de-
velopment organizations seeking to improve the reliability of their software. His personal experience has
lead him to the conviction that today’s development organizations can achieve significant improvement in
software reliability for a small increase in effort. Some of his current research and educational activities
are focused on improving current specification, coding, test, and review techniques for the development of
high quality software. Ackerman has been active in either the ACM or the IEEE throughout his career. He
is a Life Member of the IEEE. Presently, he is an Associate Professor of software engineering at Montana
Tech of the University of Montana. He is a graduate of the University of Chicago and holds a Ph.D. in
computer science from the University of North Carolina, Chapel Hill.

Dr. Sushil Acharya, Robert Morris University

Sushil Acharya, D.Eng., Associate Professor of software engineering, joined Robert Morris University
in the spring of 2005 after serving 15 years in the Software Industry. With U.S. Airways, Acharya was
responsible for creating a data warehouse and using advance data mining tools for performance improve-
ment. With i2 Technologies, he worked on i2’s Data Mining product ”Knowledge Discover Framework”
and at CEERD (Thailand), he was the Product Manager of three energy software products (MEDEE-
S/ENV, EFOM/ENV and DBA-VOID), which are in use in 26 Asian and seven European countries by
both governmental and non-governmental organizations. Acharya has a M.Eng. in computer technology
and a D.Eng. in computer science and information management with a concentration in knowledge dis-
covery, both from the Asian Institute of Technology in Thailand. His teaching involvement and research
interests are in the areas of software engineering and development (verification and validation) and enter-
prise resource planning. He also has interest in learning objectives-based education material design and
development. Acharya is a co-author of ”Discrete Mathematics Applications for Information Systems
Professionals,” 2nd Ed., Prentice Hall. He is a life member of Nepal Engineering Association and is also
a member of ASEE and ACM. Acharya is a recipient of the ”Mahendra Vidya Bhusak” a prestigious
medal awarded by the Government of Nepal for academic excellence. He is a member of the Program
Committee of WMSCI, MEI, CCCT, EEET, ISAS, AG, KGMC, and IMCIC and is also a member of the
Editorial Advisory Board of the Journal of Systemics, Cybernetics, and Informatics of the International
Institute of Informatics and Systemics.

c©American Society for Engineering Education, 2012

Software Engineering Education Needs More Engineering

Abstract

To what extent is “software engineering” really “engineering” as this term is commonly

understood? A hallmark of the products of the traditional engineering disciplines is

trustworthiness based on dependability. But in his keynote presentation at ICSE 2006 Barry

Boehm pointed out that individuals’, systems’, and peoples’ dependency on software is

becoming increasingly critical, yet that dependability is generally not the top priority for

software intensive system producers. Continuing in an uncharacteristic pessimistic vein,

Professor Boehm said that this situation will likely continue until a major software-induced

system catastrophe similar in impact to the 9/11 World Trade Center catastrophe stimulates

action toward establishing accountability for software dependability. He predicts that it is highly

likely that such a software-induced catastrophe will occur between now and 2025.

It is widely understood that software, i.e., computer programs, are intrinsically different from

traditionally engineered products, but in one aspect they are identical: the extent to which the

well-being of individuals, organizations, and society in general increasingly depend on software.

As wardens of the future through our mentoring of the next generation of software developers,

we believe that it is our responsibility to at least address Professor Boehm’s predicted

catastrophe.

Traditional engineering has, and continually addresses its social responsibility through the

evolution of the education, practice, and professional certification/licensing of professional

engineers. To be included in the fraternity of professional engineers, software engineering must

do the same. To get a rough idea of where software engineering currently stands on some of

these issues we conducted two surveys. Our main survey was sent to software engineering

academics in the U.S., Canada, and Australia. Among other items it sought detail information on

their software engineering programs. Our auxiliary survey was sent to U.S. engineering

institutions to get some idea about how software engineering programs compared with those in

established engineering disciplines of Civil, Electrical, and Mechanical Engineering. Summaries

of our findings can be found in the last two sections of our paper.

1. Introduction

The debate over whether or not “software engineering” is a legitimate branch of engineering has

been going on since the term first appeared in the professional literature in1968
[1,2]

. Naturally, as

with any new concept, the debate begins with confusion over just what the term refers to. For

starters, “software” has several meanings
[3]

. In this paper we use this term to refer to a computer

program product. Such a product must include a file, or files, that execute on a stored

programmed computing machine. Typically such a product also includes (1) text file(s) of source

code from which the executable file(s) are automatically constructed, and (2) a variety of

different kinds of “documents” that describe, among other things, how the executing program

should perform, how the source code is structured, the non-functional requirements of the

executable and source files, the processes and techniques used to create the product, and a

variety of user information, including how to report any problems that are experienced during

program execution. Under this definition a software product is essentially the same as any other

engineered product. One major difference is that ultimately software is nothing but enormous

streams of individual computer instructions that each execute in pico-seconds, so unlike all other

engineered products, a software product does not have any actual physical existence. [note 1] So

to claim that such a product is “engineered” stretches the accepted definition of “engineering”
[4]

to cover new territory. Another important difference is that unlike any other engineered product,

a software product is not manufactured, at least not in the sense that physical products are. A

software product is easily, and for negligible cost, flawlessly duplicated as many times as

desired. This attribute, however, only underscores the importance of the product’s engineering,

for essentially it is just the engineering that produces the product.

This whole discussion would just be an academic exercise except for the fact that more and more

the correct functioning of practically every other socially important engineered product depends

on the correct functioning of at least one, and sometimes hundreds of computer programs. This

problem was first recognized in military systems, and so the term “software engineering” was

created to address it. Since 1968 the “software problem” has intensified many times over to the

point where software is now an Achilles heel of our entire civilization, as the quote in our

abstract from the eminent Professor Boehm points out.

In the past the driving force behind the formalization of the traditional engineering disciplines

was similar to the current effort to formalize software engineering, as without the formalization

of the various traditional engineering disciplines buildings and bridges often collapsed, mines

caved in, chemical plants blew up, etc.
[5]

. [note 9] Yet forty-three years after the term “software

engineering” was first coined, the debate over whether or not software engineering is a legitimate

branch of engineering rages in some academic and professional circles. Meanwhile, millions of

people world-wide are daily subjected to the damages caused by poorly engineered software
[6]

.

In 1993 Fletcher Buckley laid out for the IEEE Board of Governors what was required to

transform the then current, mostly haphazard, production of software products into a responsible

branch of engineering. [note 12] In a follow-up piece in Computer
[7]

 Mr. Buckley enunciated

three major objectives that needed to be met:

1. the establishment of software engineering as an approved [academic] program, included

the associated accreditation issues;

2. the establishment of a separate set of software engineering ethics; and

3. the establishment of software engineering as a certified or registered field of engineering.

Not mentioned in his Computer piece, but also discussed by the IEEE Board was the need for

4. the creation of a comprehensive set of widely accepted Software Engineering standards.

All of these objectives except the establishment of certification or registration have now been

achieved. This has been achieved in only a few jurisdictions [note 2], but in 2009 the National

Council of Examiners for Engineering and Surveying approved an effort to develop a

Professional Engineer examination for software engineers that is now well underway
[8]

.

According to the current schedule, it is anticipated that the first licensing examination for

software engineering will be available for administration sometime in 2013
[9]

. As this effort

moves forward, however, some of the weaknesses in the accreditation criteria for academic

software engineering programs will begin to surface.

One of the foundation elements of every profession is a consensus among its members about

what constitutes the core body of knowledge and skills that make up the basic competency of

members of that profession. Over the years a lot of effort has been put into defining this core

competency for software engineering. There are two major results of this effort: (1) the Software

Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Software

Engineering
[10]

, and (2) the Guide to the Software Engineering Body of Knowledge, 2004

Version
[27]

. The curriculum guidelines describe the entire body of knowledge that should be

covered in an undergraduate program in software engineering. This knowledge is referred to as

the SEEK (Software Engineering Educational Knowledge). On the other hand, the guide

document is intended to cover just the software engineering knowledge that a software engineer

should have after four years of professional practice, and is referred to as the SWEBOK

(Software Engineering Body of Knowledge). As the subject of this paper is undergraduate

software engineering education, we leave any discussion about the SWEBOK and the

relationship between the SEEK and the SWEBOK for another venue.

The objectives of this paper are:

 to get some idea of the extent to which Software Engineering 2004 [note 4] is used as the

basis for undergraduate degree programs in software engineering,

 to get some feeling for the extent to which the academic software engineering community

thinks that Software Engineering 2004 is an adequate basis for undergraduate degree

programs in software engineering, and

 to try and determine the extent to which current undergraduate degree programs in

software engineering “line up” with similar programs in engineering generally.

To address these objectives, in addition to reviewing the literature on the professionalization of

software engineering, we constructed a survey to gather information on what academic software

engineering programs around the world were offering to undergraduates. We used

SurveyMonkey
[11]

 as the host for our survey and emailed requests to take our on-line survey to

more than a hundred academics world-wide. Thirty-one academics replied to our survey. A

detailed description of what these thirty-one people reported to us is given in the survey section

below. We then attempted to relate the software engineering material our respondents reported as

currently being taught to undergraduates to the material that is covered in traditional

undergraduate engineering programs. Our conclusions and recommendations for further efforts

in providing future software engineering graduates with the knowledge and skill they need to

create trustworthy software products conclude this paper.

Currently many more institutions offer undergraduate degrees in Computer Science than offer

degrees in Software Engineering, and due to the current shortage of recipients of Software

Engineering degrees, society’s need for software is often served, albeit haphazardly, by

recipients of Computer Science degrees. So before we jump into the analysis of our survey

results, in the next section we describe why we believe that a degree in Computer Science does

not provide an adequate foundation for a career as a professional software engineer.

2. Computer Science versus Software Engineering

Wikipedia defines “computer science” as “the study of the theoretical foundations of information

and computation. It also includes practical techniques for their implementation and application in

computer systems”
[12]

. Wikipedia defines “software engineering” as “the application of a

systematic, disciplined, quantifiable approach to the development, operation, and maintenance of

software, and the study of these approaches; that is, the application of engineering to software”
[13]

. From these two definitions it can be deduced that (1) computer science is one of the

foundation science disciplines for software engineering, as physics is for electrical engineering
[14]

; (2) there is significant overlap between the two disciplines in that both include practical

techniques for the implementation and application of computer systems; and (3) that one of the

disciplines focuses on science, and the other on engineering. In as much as academic programs in

Computer Science significantly predate programs in Software Engineering, differentiating

Software Engineering from Computer Science, and especially the establishment of separate

undergraduate degrees in software engineering has been a contentious issue in academia.

Several prominent software engineers and writers on software engineering have addressed the

difference between computer science and software engineering. Over many years David Parnas

has been a powerful and vociferous advocate for software engineering as a much different

discipline than computer science: The important issue is the content and style of the education.

University programs in engineering are very different from programs in the sciences,

mathematics, and liberal arts. These disparities derive from the differences in the career goals

and interests of the students. ... Future scientists must learn:

 what is true (an organized body of knowledge about the phenomena of interest)

 how to confirm or refute models of the world relate to that growing body of knowledge,

and

 how to extend the knowledge of what is true in their field.

In other words, scientists learn science plus the scientific methods needed to extend science. On

the other hand, future engineers, who will be responsible for designing trustworthy products,

must learn:

 what is true and useful in their chosen specialty (an organized body of knowledge),

 how to apply that body of knowledge,

 how to apply a broader area of knowledge necessary to build complete products that

must function in a real environment, and

 the design and analysis disciplines that must be followed to fulfill the responsibilities

incumbent upon those who build products for others.

In other words, engineers learn science plus the methods needed to apply science
[14]

.

Steve McConnell sums it up this way: Universities award computer science degrees, and they

normally expect their computer science students to start building real-world software. This puts

the students in a technological no-man’s land. They are called scientists, but they are performing

job functions that are traditionally performed by engineers without the benefit of engineering

training
[15]

.

3. Main Survey Results and Commentary

3.1. Survey Introduction

To understand the breadth and depth of current Software Engineering Bachelor degree programs

a survey was conducted using SurveyMonkey
[11]

. The text of our survey can be viewed

http://cs.mtech.edu/main/images/surveys/se2011survey.pdf It contains 268 questions but not all

questions are presented to every respondent. A respondent that was not at an institution that

offered a bachelors program in software engineering could complete the survey by answering

less than 21 questions. Email requesting participation in our survey was sent to 102 individuals at

institutions that we had reason to believe offered software engineering courses. In a few

instances we sent our message to more than one individual at an institution. Filling out our

survey was often more than a matter of just a few minutes, so we believe that it is safe to assume

that we received only one response from an institution unless the responses were for different

programs. Altogether we emailed to 90 institutions. In our email message we requested

recipients to forward our message to any other colleagues that might be helpful in assessing the

state of practice in undergraduate Software Engineering education, so our message may have

gone to recipients that were not on our email list.

We gave our respondents the opportunity to identify themselves and or their institution but only

5 (other than ourselves) identified themselves or their institution.

We sent email to institutions listed in Box 1. From the 102 emails we sent out, 31 responded to

the survey. Since we wanted to get as much information as we could, our survey was structured

so that respondents who did not have time to provide all the information we requested could still

provide some information and complete the survey.

A person taking any survey can of course stop answering questions at any point. SurveyMonkey

keeps track of all respondents who started the survey and also those that completed the survey by

clicking on the survey’s final closing button. In our case only 16 of the respondents that started

the survey completed it.

3.2. Overview of Survey Responses

The first few questions of the survey provided background information on the participating

institutions.

 100% of those who responded) said their institution offer courses in Software Engineering.

From this group 42% (13) offer a B.S. degree in Software Engineering, 13% (4) offer a B.S.

degree in Engineering with Software Concentration, 32% (10) did not offer a B.S. degree

with Software Engineering in the title, and the remaining 13% (4) offered a variety of

options.

 Of the 13 respondents that offer a B. S. in Software Engineering 46% (6) offer this degree

through their Computer Science Department. 39% (5) offer this degree through an

engineering department, and 15% (2) offer this degree through departments other than

computer science or engineering.

http://surveymonkey/
http://cs.mtech.edu/main/images/surveys/se2011survey.pdf

Box 1: List of Institutions

 Of the 13 respondents that offer a B. S. in Software Engineering 85% (11) are ABET (or

equivalent) accredited. [note 5]

 Of the 5 respondents who reported offering a B. S. in Engineering with a concentration in

Software Engineering, to the question: “Is your Bachelors Degree in Engineering with a

concentration in Software Engineering accredited by ABET or an equivalent organization?”

[note 8]; 40% (2) said they were accredited and 60% (3) said that they were not.

 Adelaide University  Purdue University

 Auburn University (2 messages)  Robert Morris University

 Cal Poly  Rochester Institute of Technology

 Capitol College  Rochester Institute of Technology

 Carleton University  Rose-Hullman

 Carnegie Mellon University  Salt Lake Community College

 Central Connecticut State University  San Jose State University

 Champlain College  Santa Clara University

 Clarkson University  Software Engineering, University of Victoria

 Columbus State University  South Dakota State University

 Concordia University  Southern Polytechnic State University

 CS, University of Victoria  St. Mary's University

 Dept. of CS University of Alberta  St. Edward’s University

 Dept. of CS University of Calgary  Stanford University

 Drexel University  Stevens Institute

 Electrical and Computer Engineering at the University of Alberta  SUNY Plattsburg

 Embry-Riddle Aeronautical University  The University of Tennessee

 Fairfield University  The University of Texas at Arlington

 Florida Institute of Technology  The University of Texas at Dallas

 Gannon University  The University of Texas at El Paso

 Grand Valley Stage University  UC Berkeley

 Harvard University  University of Calgary (2 messages)

 Iowa State University  University of Florida

 Lakehead University  University of Houston Clear Lake

 Lyndon State College  University of Maryland (2 messages)

 Marshall University  University of Melbourne

 McGill University  University of Michigan - Dearborn

 McMaster University (2 messages)  University of New Brunswick

 Milwaukee School of Engineering  University of New South Wales (2 messages)

 Milwaukee School of Engineering  University of North Carolina (2 messages)

 Mississippi State University  University of North Florida (2 messages)

 Mississippi State University  University of Ontario Institute of Technology

 Monash University  University of Oregon

 Monmouth University  University of Ottawa

 Montana State University  University of Pittsburgh

 Montana Tech  University of Regina

 Navel Postgraduate School  University of Washington (3 messages)

 Norfolk State University  University of Waterloo

 North Carolina A&T State University  University of Western Australia

 Oklahoma City University  University of Western Ontario

 Penn State Erie  University of Wisconsin at Platteville (2 messages)

 Penn State University  University of Wollongong (3 messages)

 Princeton University  USC

 Princeton University  UVA Wise

 Princeton University  Virginia State University

 There were 18 responses to the question: “Does your institution also offer a Masters degree

in Software Engineering?” The responses were exactly evenly split.

3.3. Software Engineering Courses for Other Degree Programs

Respondents who said that their institutions did not offer a bachelors degree with “Software

Engineering” in the title, or who chose “Other” were asked questions about which courses they

offered and whether or not these courses were offered by the Computer Science department, or

engineering department, or other department. The table below summarizes the courses and the

department that offers them. To make it easy for a respondent to complete our survey we

provided the courses listed below and instructed the respondents to select a course if they had a

course with that title or thought they had a similar course with different title. We also provided

the opportunity for respondents to list alternative or additional courses. Only one respondent

made any additional entries (3) and he/she did not enter any course titles. We believe these

entries can be ignored.

For each of the courses a respondent selected he/she had to choose one of the options (1) offered

by the Computer Science department, (2) offered by an engineering department, or (3) offered by

another department. Table 1 shows the totals for each choice for each course title that we listed

in the survey.

This was the only information we collected from respondents that indicated they did not offer a

Bachelors degree in Software Engineering or a Bachelors degree in Engineering with a

concentration in Software Engineering. After providing this information these respondents were

branched to the survey’s concluding questions.

Table 1: Software Engineering Courses for Other Degree Programs

3.4. Coverage of SEEK Knowledge Areas [note 10]

For respondents who indicated that they did offer a Bachelors degree in Software Engineering, or

a Bachelors degree in Engineering with a concentration in Software Engineering, we asked

respondents to identify the SEEK areas covered by each of the SEEK recommended Software

Course CS Department Engineering Department Other Department

Introduction to Software Engineering and Computing 2 1

Software Engineering and Computing II 2 1

Software Engineering and Computing III 1 1

Introduction to Software Engineering 5 1

Software Construction 1 1

Software Engineering Approach to Human Computer Interaction 1 2

Software Design and Architecture 3 1

Software Quality Assurance and Testing 2 1

Software Requirements Analysis 1 2

Software Project Management 1 2

Design and Architecture of Large Software Systems 1 1

Software Testing 3 1

Low Level Design Software 2 1

Software Process Management 1 2

Formal Methods in Software Engineering 1

Software Engineering Capstone Project 3 2

Engineering courses for the Bachelors degree in Software Engineering
[10]

. We instructed our

respondents to select a SEEK course title if they thought one of their course with a different title

was similar. For each course, along with the choices for selecting SEEK area coverage we

provided the option “Course did not touch any SEEK area”. In hindsight we can see that we

should have included some additional options for each course. Had we done so we might have

collected more information about offered courses even though our respondents could not relate

them to SEEK categories.

The responses were not as numerous as the authors had hoped. Table 2 shows the number of

responses for each recommended course. On average only 5 respondents assigned SEEK areas.

In our email message (sent by a third party to preserve the authors’ anonymity) we told our

recipients we would be asking them to relate their courses to the SE2004 report and in the survey

itself we provided links to summary information about the SEEK areas. For those recipients that

were familiar with SEEK the information we asked for would not have been difficult to provide.

Those recipients not familiar with SEEK or how their courses related to the SE2004 guidelines

quite possibly felt that for the purpose at hand it was not worth their time to become familiar

with the SE2004 guidelines. [note 6].

Table 2: Coverage of SEEK Knowledge Areas – Responses

In Table 3 we take a look at the data that was supplied by the few recipients that answered this

group of questions. The column headings are the SEEK Knowledge Areas and the row headings

Course Responses Received

1. Introduction to Software Engineering and Computing 6

2. Software Engineering and Computing II 5

3. Software Engineering and Computing III 5

4. Introduction to Software Engineering 7

5. Software Construction 4

6. Software Engineering Approach to Human Computer Interaction 4

7. Software Design and Architecture 8

8. Software Quality Assurance and Testing 6

9. Software Requirements Analysis 4

10. Software Project Management 4

11. Design and Architecture of Large Software Systems 3

12. Software Testing 3

13. Low Level Design Software 3

14. Software Process Management 3

15. Formal Methods in Software Engineering 3

16. Software Engineering Capstone Project 6

17. Data Structures and Algorithm 7

18. Programming Fundamentals 6

19. Object Oriented Paradigm 6

20. Discrete Structures 6

21. Statistics and Empirical Methods 6

are the courses. SEEK Knowledge Areas covered in a course identified by 50% or more of the

respondents is represented by a X. The rightmost column lists the number of respondents who

felt the course did not touch any SEEK Knowledge Area.

3.4.1. Summary - Coverage of SEEK Knowledge Areas
Table 4 depicts the cumulative responses by course by SEEK knowledge areas. Course numbers

1 to 21 corresponds to the courses listed in Table 2.

Chart 1 depicts Table 4 in a bar chart. The response from the survey shows that all SEEK

Knowledge Areas are covered by the 21 software engineering courses listed in Table 2. However

the survey does not indicate that the software engineering courses delivered at an institute covers

all SEEK Knowledge Areas. Based on the responses Software Design has been selected to be

covered the most in the software engineering courses followed by Software Modeling &

Analysis and Software Quality. However Software Evolution and Software Practice have been

selected to be covered the least in the software engineering courses. The chart also indicates that

a total of 5 respondents could not map their course to a SEEK Knowledge Area.

 Table 3: SEEK Knowledge Areas Covered in a Course Identified by 50% or More

Respondents

SEEK Knowledge Areas →

1
.

C
o

m
p

u
ti

n
g

 E
ss

e
n

ti
a

ls

2
.

M
a

th
e

m
a

ti
c

a
l

a
n

d
 E

n
g

in
e

e
ri

n
g

F
u

n
d

a
m

e
n

ta
ls

3
.

P
ro

fe
ss

io
n

a
l

P
ra

c
ti

c
e

4
.

S
o

ft
w

a
re

M
o

d
e

li
n

g
a

n
d

A
n

a
ly

si
s

5
.

S
o

ft
w

a
re

 D
e

si
g

n

6
.

S
o

ft
w

a
re

V
e

ri
fi

c
a

ti
o

n
a

n
d

V
a

li
d

a
ti

o
n

7
.

S
o

ft
w

a
re

 E
v

o
lu

ti
o

n

8
.

S
o

ft
w

a
re

 P
ro

c
e

ss

9
.

S
o

ft
w

a
re

 Q
u

a
li

ty

1
0

.
S

o
ft

w
a

re
 M

a
n

a
g

e
m

e
n

t

#
 o

f
re

sp
o

n
d

e
n

ts
 m

e
n

ti
o

n
in

g

-
co

u
rs

e
 d

o
e

s
n

o
t

to
u

ch
 a

n
y

S
E

E
K

 a
re

a

Course ↓ 8 3 6 12 11 6 5 7 10 6 ← No. of

Responses ↓

1. Introduction to Software Engineering and Computing X X X 6

2. Software Engineering and Computing II X X X X 5

3. Software Engineering and Computing III X X 5

4. Introduction to Software Engineering X X X X X X X 7 1

5. Software Construction X X X X X 4

6. Software Engineering Approach to Human Computer Interaction X X X X 4 1

7. Software Design and Architecture X X X 8 1

8. Software Quality Assurance and Testing X X X X 6

9. Software Requirements Analysis X X X X X 4

10. Software Project Management X X X 4

11. Design and Architecture of Large Software Systems X X X 3

12. Software Testing X X X X 3

13. Low Level Design Software X X X 3 1

14. Software Process Management X X X 3

15. Formal Methods in Software Engineering X X X 3

16. Software Engineering Capstone Project X X X X X X X X X X 6

17. Data Structures and Algorithm X 7

18. Programming Fundamentals X X 6

19. Object Oriented Paradigm X X X 6

20. Discrete Structures X 6

21. Statistics and Empirical Methods X 6 1

Table 4: Cumulative Responses by Course by SEEK Knowledge Areas

Chart 1: Cumulative Responses by Course by SEEK Knowledge Areas

3.5. Other Software Engineering Courses Offered

As we did for the software engineering courses offered by non-SE degree institutions,

respondents from degree granting institutions were given the opportunity to list alternative or

additional courses required for a Bachelors degree in software engineering. Six responses were

received for this option. These additional required courses and the SEEK Knowledge Area they

cover are listed in Table 5.

Chart 2 depicts the number of times each of the SEEK areas was cited in the required software

engineering courses that the respondents listed.

of

Responses 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1. Computing Essentials 41 5 3 2 2 1 1 0 0 1 0 0 1 2 0 1 3 6 6 4 2 1

2. Math & Engineering Fundamentals 32 1 2 0 2 1 0 1 0 1 0 1 1 1 0 2 3 3 1 1 6 5

3. Professional Practice 27 1 1 1 4 2 2 0 1 2 2 1 1 1 1 1 5 0 1 0 0 0

4. Software Modeling & Analysis 49 3 4 4 6 1 2 5 1 4 1 2 1 2 0 3 3 1 1 3 1 1

5. Software Design 56 3 3 2 6 4 3 7 0 1 1 3 1 2 0 1 5 3 4 5 1 1

6. Software V&V 37 1 1 4 5 2 1 3 6 1 1 1 3 0 1 1 5 0 1 0 0 0

7. Software Evolution 28 1 1 2 2 2 0 3 3 2 1 1 2 0 1 1 4 0 1 1 0 0

8. Software Process 34 1 3 2 6 0 0 2 2 2 3 0 2 0 3 1 4 0 2 1 0 0

9. Software Quality 46 2 2 2 5 2 2 4 6 1 2 2 2 1 3 2 6 0 1 1 0 0

10. Software Management 30 1 1 2 4 0 0 0 4 2 4 0 1 0 2 1 6 0 1 1 0 0

Course does not touch on any SEEK areas 5 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Courses

41
32 27

49
56

37
28 34

46

30

5 0

10

20

30

40

50

60

Cumulative Responses

3.6. SEEK Coverage of Knowledge Areas for a Bachelors Degree in Software Engineering

After obtaining information about required software engineering courses and their relationship to

the SEEK areas we asked “In your opinion, to what extent does SEEK cover all the knowledge

areas necessary for a Bachelors education for competent, socially responsible engineers?” We

offered a choice of one of the following:

 Has no serious deficiencies

 Has some serious deficiencies

 Has many serious deficiencies

 Don’t know enough about SEEK

 No opinion

Table 5: Additional Courses and SEEK Knowledge Areas

SEEK Knowledge Areas →
1

. C
o

m
p

u
ti

n
g

Es
se

n
ti

al
s

2
. M

at
h

em
at

ic
al

 a
n

d
 E

n
gi

n
ee

ri
n

g

Fu
n

d
am

en
ta

ls

3
. P

ro
fe

ss
io

n
al

 P
ra

ct
ic

e

4
.

So
ft

w
ar

e
M

o
d

el
in

g
an

d

A
n

al
ys

is

5
. S

o
ft

w
ar

e
D

es
ig

n

6
.

So
ft

w
ar

e
V

er
if

ic
at

io
n

an
d

V
al

id
at

io
n

7
. S

o
ft

w
ar

e
Ev

o
lu

ti
o

n

8
. S

o
ft

w
ar

e
P

ro
ce

ss

9
. S

o
ft

w
ar

e
Q

u
al

it
y

1
0

. S
o

ft
w

ar
e

M
an

ag
em

en
t

Course ↓

Computer Architecture for Software Engineers X X

Concepts of Programming Languages X

Database Design X

Design and Analysis of Algorithm X

Design of Operating Systems X X

Discrete Structures X

Engineering Economics Analysis X

Fundamentals of Computer Science II X X X X

Intro to Embedded Systems X

Introduction to Computer Networking X

Introduction to Software Process X X

Introduction to Software Verification X X

Introduction to Team Software Development X X

Operating Systems X X X

Presenting Technical Information X

Real Time Systems X X X X X

Real-time Embedded, Software Maintenance and Reengineering X X X

Software Component Design X

Software Engineering Economics X X X X X X X X X X

Software Maintenance X X X

User Interface Design X X

Web Application Design and Implementation X X X

Web Science X

Five of the respondents found no deficiencies with the SEEK coverage. Four respondents

indicated that the current coverage areas have serious deficiencies. If the respondent indicated

that he/she felt that seek had deficiencies we asked for further clarification. The comments we

received are listed in Box 2.

Box 2: SEEK Coverage Deficiencies

Chart 2: Other Software Engineering Courses

10
7

3 3

10

6

1
3

5
2

0

2

4

6

8

10

12

Other Software Engineering Courses

 Heavy on management. Not enough on different kinds of systems, e.g.:

operating systems, web applications. We are focused on satisfying the

ABET criteria. These criteria are too general to target specific SEEK

topics.

 SEEK is rather outdated and the discipline of SE has advanced

significantly since it was created. On the flip side, nice to have something

stay constant, but that is very rare in the fast paced world of computing.

 No clear distinction of B.S. in Software Engineering and B.S. in

Engineering - Software Engineering Track.

 The Issue of Professional Engineering (Software Engineering Licensing)

is not touched. Maybe in 2004 this was a non-issue.

3.7. Software Engineering Electives

After asking about required courses and their coverage of the SEEK areas we asked “Can a

student in your Software Engineering program take any Computer Science or Software

Engineering courses other than the required courses you selected or listed above?” Nine

respondents answered this question. One responded that in his/her program there were no

electives. For those that responded that their program included electives we gave them the choice

of (1) providing a URL to information about these electives, (2) emailing our “alter ego”

information about their electives, or (3) listing their electives. Five responded by providing a

URL, two responded by listing their electives on the survey, and one promised to email our “alter

ego” but did not. Box 3 depicts a composite list of the electives that students in software

engineering programs may take in the 7 programs that responded.

Box 3: Composite List of Electives

 Advanced Networking  Introduction to Computer Graphics
 Algorithms  Introduction to C#
 Algorithms Analys/Design  Introduction to Game Design
 Algorithms and Data Structures II  Introduction to Parallel and Cluster Computing
 Analysis and Design of Computer Communications Networks  Introduction to Geographical Information Systems
 Analysis of Algorithms  Linux System Administration
 Artificial Intelligence (3)  Management of Software Development
 Cloud Computing  Managing Software Development
 Component Based Software Engineering  Media Applications
 Computational Biology Algorithms  Microelectromechanical Systems
 Computer and Network Security (2)  Microprocessors
 Computer Animation  Mobile Application Development
 Computer Ethics  Modernizing Legacy Software
 Computer Game Design I  Multimedia Systems
 Computer Game Design II  Multiresolution Signal and Geometry Processing
 Computer Graphics (3)  Network-centric Computing
 Computer Organization  Network Security (2)
 Computer Supported Collaborative Work  Networks/Data/Computer Communications
 Computer Systems and Architecture  Numerical Methods (2)
 Compiler Construction  Object-Oriented Design
 Compiler Design  Object-Oriented Programming
 Concurrency  Open Source E-com Development (LAMP)
 Cryptography  Operating Systems Concepts
 Data Base Systems (2)  Operations Research: Linear Programming
 Data Mining  Operations Research: Simulation
 Database Management Systems  Organization of Prog Lang
 Decision Sup & Expert Sys  Overlay and Peer-to-Peer Networking
 Device Control  Practice of Information Security
 Digital Forensics  Programming Languages (2)
 Digital Forensics II  Robotics
 Digital Signal Processing  Robotics and Automation
 Digital Signal Processing: II  Secure Software Methods
 Distributed Computing  Simulation
 Distributed Systems and the Internet  Software Architecture
 Embedded Systems  Software for Embedded and Mechatronics Systems
 Fault-Tolerant Computing  Software Processes
 Global, Economic, Society, Ethical Issues in Computing  Sustainable Energy systems Design Project
 Healthcare Information Systems  Switching, Network Traffic and Quality of Service
 Human Factors in Engineering  System-on-Chip Engineering for Signal Processing
 Image Processing  System Reliability
 Industrial Robots  Testing and Quality Assurance
 Information Security  Theory of Operating Systems
 Information Systems  Web-Based Client/Server Prog
 Information Systems Desg  Web Technology
 Introduction to Computer Gaming  Wireless and Mobil Networks

3.8. Communications, Math, Science and General Engineering Courses

After gathering information on required and elective courses for software engineering programs

we asked: “Are your software engineering students required to take any Communications, Math,

Science and General Engineering Courses?”. Box 4 lists these courses.

Box 4: Communication, Science, Mathematics and General Engineering Courses

3.9. Systems Engineering

In our quest to gather information on how the courses required for software engineering degrees

aligned with those for traditional engineering disciplines we asked respondents to estimate the

percentage of time their software engineering students spent in each of the following System

Engineering areas. We received 7 responses. The data in Table 6 is the average of these

responses. Chart 3 is a pie chart representation of Table 6.

Communications Science

- Advanced Technical Writing - Astronomy

- Arguments and Research - Biology

- Business Professional Communications - Chemistry I and Lab

- College Writing - Fundamentals of Chemistry

- Communications (2) - Fundamentals of Physics

- Design and Communication - Geology

- Freshman Composition I - Physics I and Lab

- Freshman Composition II - Physics II and Lab

- Intercultural Communications - Physics III and Lab

- Presenting Technical Information

- Reading and Writing Strategies General Engineering (Basic)

- Circuits and Electromagnetic

Mathematics - Engineering Economic Analysis

- Calc I - Engineering Fundamentals I

- Calc II - Engineering Graphics

- Calc III - Engineering Success Skills

- Differential Equations - Introduction to Engineering (2)

- Matrix Algebra for Engineers - Mechanics for Engineers

- Multivariate Calculus - Operations & Product Management

- Static and Strength of Material

Table 6: Systems Engineering Coverage

Chart 3: % Time Spent on Systems Engineering Phases

3.10. Industrial Strength Software Development Environments in Education

We were curious about the extent to which bachelors level academic software engineer programs

have been able to provide their students with “real” problems and development environments.

We asked:

Educating traditional engineers often involves using scale model mock-ups of the

artifacts, systems and environments they will encounter in practice. The analogue for

software engineers might be industrial strength software development environments and

teaching system/applications. In the box below please describe the software development

environment and systems/applications your institution uses in its software engineering

courses

Box 5 lists the responses received.

Phase % Spent

Needs/Requirements 18

Conceptual Design 15

Preliminary Design 15

Detail Design and Development 27

Production/Construction 18

Operational Use and System Support 7

% Spent

Preliminary Design

Conceptual Design

Needs/Requiremen

ts

Operational Use

and System

Support

Production/Constru

ction

Detail Design and

Development

Box 5: Responses to 3.10 Question

3.11. Licensing Software Engineers

One of the major differences between many of the traditional engineering disciplines and

software engineers is that presently, at least in the U.S., there is only one state that has a

licensing program for software engineers. [note 11] As we did further research for this paper we

found that this difference is now being rigorously addressed
[9]

. We asked our respondents to

address what we think is still the ACM’s official opposition to licensure. [note 7] The responses

listed in Box 6 are in line with current efforts to eliminate this difference between traditional

engineering and software engineering.

 The Capstone Project involves real customer and real problems.-

Sharing of past student projects and their outcomes- Guest

speakers.

 Case Studies in low level and medium level design – a tool used

for Software Engineering Exercises.

 Engineering Projects in Community Service (EPICS) - a tool for

students to complete SE projects for real clients.

 Windows, Linux, MS Visual Studio, MS Office (Word,

PowerPoint, Project, Visio), Enterprise Architect, Bugzilla,

Tortise SVN, Oracle

 Eclipse Ubuntu / gnu UNIX Beagleboard

 IBM/Rational tools, Subversion and Visual SourceSafe,

Microsoft Visual Studio 2010, NetBeans

Box 6: Responses to Software Engineering Licensing

3.12. Survey Concluding Remarks

We concluded our survey by asking our respondents for any comments they would like to make

about this survey, software engineering education in general, or Software Engineering as a

recognized engineering discipline. The three remarks we received is listed in Box 7.

Box 7: Respondents’ Comments

4. Comparison with Traditional Engineering Programs

To get some idea of how Software Engineering curriculum compared with major established

engineering disciplines, namely Civil, Electrical, and Mechanical Engineering, a short ancillary

survey was conducted. For each engineering discipline the ten top discipline specific institutions

as categorized by US News
[16, 17, 18]

 (category 1) and the ten top schools by undergraduate

 Considering (1) that software now controls almost every aspect of our industrial

society, and (2) that all of the elements required for professional status are now in

place (and have been so for more than five years) it is now time for software engineers

to be licensed. Furthermore, state licensing exams would focus attention on the core

information that we should be teaching.

 Only way SE will ever come to be considered a "true" engineering discipline.

 I am really neutral on it - it can be a good idea (but not if applicants will be taking

current PE exam as part of their licensure)

 There are a lot of unqualified people doing software engineering and it makes it very

hard to tell whether the software can be made to meet the needs of a customer.

Software is involved in many mission critical aspects of our lives (avionics,

automotive, medical, etc.) and we have little knowledge as to the skills and

capabilities of the people writing this software.

 I feel it is time to revisit the policy. The society is more and more dependent on

software and as engineers it is important to assure the society that the software they

use is reliable, secure and functions the way it should. As engineers it is time for

software engineers to be accountable and responsible, it is not that they are not,

however a license could be a factor.

 I'm a bit concerned that the results of this survey will be very broad

and inconclusive, especially given the questions up front. From the

initial e-mail, I thought the survey was tailored to my institution, yet

when I actually started answering the questions it became clear that

this is not the case. Thus, the results may be very seriously flawed.

 It was very difficult mapping your course titles to the course titles

used at our university. Because of that, I feel that some of my SEEK

characteristic placement was not very accurate.

 Well rounded survey.

student enrollment as categorized by US News
[19]

 (category 2) were surveyed (a number of

institutions fell into multiple categories). The former category was chosen since they provided

quality engineers to the workforce and the latter was chosen since they provided quantity

engineers to the workforce. The participants were surveyed on the engineering design content of

their curriculum, FE examination preparation and participation, capstone projects, internships,

and Systems Engineering. As all the institutes were ABET accredited they were not asked

questions related to coverage in the sciences, mathematics, basic engineering and core

engineering areas.

A total of forty auxiliary surveys were sent out to the department heads, directors, or deans of the

institutions described above. Thirty percent of the institutions responded to the survey with most

responses being received in the electrical engineering discipline from seven category 1

institutions. Below we summarize the responses relevant to the subject of this paper.

Engineering Design: All the institutes surveyed said design is an important component covered

in multiple courses in their engineering curriculum. Some courses were more design heavy than

others. 28% said less that 25% of the curriculum focused on design, 56% said between 25% and

50%, and 17% said more than 50% of the curriculum focused on design.

Internships: Most of the institutions surveyed said engineering internship is highly encouraged

but 95% said internships are not part of their curriculum. 5% said internships are counted

towards the degree.

Fundamentals of Engineering Exam: Most of the institutions surveyed said taking the FE exam

is important and emphasized in the curriculum. 94% responded that the institute does not provide

any support in terms of tutoring, and FE fees. These institutions indicated that students know

that they need to appear for the FE exam and are mentally prepared for it. Only one institution

surveyed mentioned that they provide tutoring services.

Capstone Projects: 100% of the institutes surveyed said capstone projects (either one or two

terms) are part of their engineering curriculum. 77% of the institutes surveyed said they work

with the industry to come up with capstone project ideas, however, overall only 28% of the

projects came directly from industry.

Systems Engineering: In a question related to the inclusion of systems engineering in their

engineering curriculum a mixed reaction was received. 45% of the surveyed institutions

incorporate systems engineering in their engineering curriculum whereas 50% don’t and 5%

reported that they have been directed to cover some aspects of systems engineering. Systems

engineering is defined by
[20]

 as “an interdisciplinary collaborative approach to derive, evolve,

and verify a life cycle balanced system solution which satisfies customer expectations and meets

public acceptability.” Systems engineers evaluate designs using a broader array of measures of

effectiveness than simple cost effectiveness.

Though a small sample of the engineering institutions and disciplines were surveyed and even a

smaller number responded to the survey they provide useful information in the areas surveyed.

 Engineering design is an important part of the curriculum in all regular

engineering programs

 Internship is highly encouraged but not specifically supported

 90% of the institutions surveyed said they encouraged students to appear for the

FE examinations

 Academic and Industry work together to identify Capstone Projects

 Not all institutions have Systems Engineering in their engineering curricula

5. Conclusions

 Our conclusions from our review of the literature and our two surveys are:

1. It is extremely difficult to get much detailed information on just what knowledge students in

bachelors of software engineering programs are currently being asked to learn, and what

basic skills they are asked to be competent in. Although we got a reasonably good response

rate to our two surveys (30%), in the case of our main survey only half of the respondents

completed the survey, and of those that did, less than half of these took the time to provide

detailed information. We conclude that if the consensus of our profession is that we need

such information its acquisition must be more formally sponsored.

2. Software engineering’s major accomplishment in defining the knowledge and skills that

every person who receives a bachelors degree in software engineering should posses, the

Software Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in

Software Engineering
[10]

 appears not to be widely known or actively used. Since there is

now an effort underway to update these guidelines
[21]

 now is a good time to address this

issue. Any of our readers that are interested in this effort should sign up at the referenced site.

In addition we hope that this effort hosts forums at several of the significant software

engineering conferences, this conference being one of them. We would also suggest that

there be some formal coordination/recognition between a Software Engineering 201x

Curriculum Guidelines for Undergraduate Degree Programs and the accreditation criteria

used by ABET and the professional accreditation organizations in Canada, Australia, and

elsewhere.

On the other hand, about 20% of our respondents did relate their course offerings to the ten

SEEK areas so we can conclude that SE2004 is getting some attention. We hope that when

the revision is published in a few years that this percentage will more than double.

3. Our main survey did not give us much hard information on how bachelors level software

engineering programs compare with the traditional engineering programs. However, with

regard to the conclusions stated in the previous section:

 The SEEK design area received more attention than any of the other areas.

Furthermore, since requirements do not typically receive the same amount of

attention in traditional engineering as they do in software engineering, if we

combine the Software Modeling & Analysis area with the Software Design area

the emphasis on design in software engineering compares favorably with that

reported for traditional engineering.

 We did not ask about internships explicitly but from the detailed information we

could review from URLs that gave us access to specific programs we feel safe in

asserting that internships are a recognized and tracked component of most

software engineering programs.

 In the U.S. at least, software engineering students do not typically take the FE

exam as there is only one state that licenses software engineers. We expect this

situation to change dramatically in the next decade. See section 3.11 above and

conclusion 6 below.

 Again, in our main survey we did not ask about Capstone Projects explicitly but

they were cited in open responses and in programs we were given detail

information about. Several of the ABET Software Engineering accreditation

criteria recommend multidisciplinary projects. We expect that as more software

engineering programs come under the purview of engineering departments the

percentage of joint academia and industry Capstone Projects will increase.

4. In the light of our remarks above on the significant difference between computer science and

software engineering, we were happy to find that nearly 40% of the B.S. in Software

Engineering programs are housed in engineering departments. If we assume that all the B.S.

in Engineering with a concentration in Software Engineering programs are housed in

engineering departments we can estimate that more than half of the bachelors level software

engineering programs are housed in engineering departments. In the light of our last

conclusion we expect this percentage to increase in the years ahead.

5. We were disappointed in the responses reported above under Industrial Strength Software

Development Environments. We probably should have had two questions, one on industrial

strength tools and the other on educational applications and materials. We view the use of

tools and educational materials as two entirely separate issues, although some times the use

of some materials requires the use of specific tools. The home for the effort to revise

Software Engineering 2004 is Ensemble, a new NSF National Science Digital Library
[22]

.

Among other things, Ensemble is attempting to be a gateway to the use, reuse, review, and

evolution of educational materials at multiple levels of granularity that supports the entire

range of computing educational communities. Not currently linked to Ensemble, but

probably should be, is the SEI’s Software Engineering Information Repository
[23]

. We would

suggest that the next ASEE conference have a session or workshop on software engineering

tools and educational materials repositories and how these are related to the SEEK areas.

6. We were delighted to find that licensure programs for software engineers in an additional

nine U.S. states are well underway, and that such programs already exist in Canada and

Australia. Although some may find that these early programs are flawed, and that we still

have work to do in developing a consensus around what constitutes the core knowledge base

and skills in which every software engineer should be competent, we believe that the

licensure movement will act a positive forcing function for creating bachelor level software

engineering degree programs that accept and address the awesome social responsibilities of

software engineers.

Notes

[note 1] Electronic products have similar characteristics, but here the individual physical

components and their unique functionality can be isolated.

[note 2] The state of Texas in the United States is the only US state that presently requires

licensed professionals to be responsible for software products, and that in only limited venues. In

Canada the Canadian Engineering Accreditation Board (CEAB) has accredited three Canadian

universities. The graduates of these programs will be eligible for licensing as professional

engineers after they have gained supervised experience and pass the usual examinations on law

and ethics. The three programs differ greatly. Two were developed with the help of computer

scientists; one is very close to a computer engineering program
[5]

.

[note 3] We realize that many academics do not consider Wikipedia references acceptable. For

the most part our Wikipedia references are simply to cite definitions. Wikipedia’s open editing

policy and change logging appears to us to give credence to using Wikipedia definitions as

representing community consensus.

[note 4] During the distribution of our survey we found that work on revising Software

Engineering 2004 is already underway
[22]

. The need for updating Software Engineering 2004

will probably become more acute as current work on creating a software engineering

Professional Engineer examination proceeds
[16]

.

[note 5]. Unless we could not identify a recipient, we sent a message to each of the institutions

currently on the ABET web site as having accredited software engineering programs. Had we

been able to locate similar accreditation information for Canadian and Australian institutions we

would have included them. As it was we probably found many of them through other sources.

[note 6] An angry email complaining about the amount of effort it would take to relate his

institution’s courses to SEEK was forwarded to one of the authors. Without offering any

specifics this recipient asserted that the software engineering courses at his institution did in fact

cover all of the SEEK areas. One of the authors also found that some effort was involved in

relating his institution’s courses to SEEK. The outcomes of all of the software engineering

courses in his ABET accredited program are mapped to the ABET criteria, but it is not clear how

these criteria related to the SEEK areas. The current effort to revise SEEK
[21]

might consider

coordinating with ABET.

[note 7] From the public record the authors have not been able to tell with certainty what the

current official position of the ACM is on the professional licensure of software engineers. This

issue is not currently listed in the ACM’s public policy page
[25]

 or its U.S. Public Policy

Council’s (USACM) web page
[26]

. A search there for “software engineering licensure” did not

return anything. The most recent (2002) published statement the authors could find describes the

reasons that the ACM was not at that time in favor of licensing software engineers in general
 [24,

25]
.

[note 8] The branching logic of the survey only offered this question to those who responded that

they had engineering degrees with a concentration in software engineering.

[note 9] Of course formalizing a discipline does not guarantee that such man-made disasters do

not occur but formalization does (1) substantially reduce their probability of occurance, and (2) it

provides legal ground for the victims of professional error or malfeasance.

[note 10] Software Engineering 2004, Curriculum Guidelines for Undergraduate Degree

Programs in Software Engineering
[10]

 (SE2004):

A major challenge in providing curriculum guidance for new and emerging, or dynamic

disciplines is the identification and specification of the underlying content of the

discipline. Since the computing disciplines are both relatively new and dynamic, the

specification of a “body of knowledge” is crucial.

The body of knowledge that is essential for every software engineer to know as “SEEK” –

Software Engineering Education Knowledge.

[note 11] We don’t mean to slight the existing IEEE-CS certification programs that are based on

SWEBOK: the Certified Software Development Associate (CSDA), and the Certified Software

Development Professional (CSDP). A great deal of effort has been put into creating,

administering, and taking these examinations. This effort demonstrates that at least to some

extent software engineering professional certification is valuable. But the CSDA/CSDP exams

do not carry much weight in the engineering community at large. Would converting these

examinations to software engineering version of the Fundamentals of Engineering (FE) and

Principles and Practices in Engineering (PE) examinations and associated licensure be more

beneficial to both our profession in general and its individual practitioners?

[note 12] One of our reviewers brought the 1996 SEI report “A Mature Profession of Software

Engineering” by G. Ford and N. E. Gibbs
[28]

 to our attention. This comprehensive report

identifies eight infrastructure elements of a mature profession; evaluates software engineering

circa 1996 against each of these elements; and offers suggestions on what software engineering

needs to do to become a mature profession. This paper addresses the circa 2011 state of Ford and

Gibbs’ first infrastructure element: Initial Professional Education.

Bibliography

[1] Naur, P., and Randell, B., (1968), Software Engineering: Report of a conference

sponsored by the NATO Science Committee, Garmish, Germany: Scientific Affairs

Division, NATO.

[2] Bagert, D. J., (1999), Taking the Lead in Licensing Software Engineers,

Communications of the ACM, April, 1999, vol. 42, no. 4. 27-29.

[3] Wikipedia, (2011), Software (disambiguation),

http://en.wikipedia.org/wiki/Software_(disambiguation), Retrieved 2011-12-23. [note

3]

[4] Wikipedia, (2011), Engineering, http://en.wikipedia.org/wiki/Engineering, Retrieved

2011-12-23.

[5] Parnas, D., (2002), Licensing Software Engineers in Canada, Communications of the

ACM, November, 2002, vol. 45, no. 11. 96-98.

[6] Wikipedia, (2011), List of Computer Bugs,

http://en.wikipedia.org/wiki/List_of_software_bugs, Retrieved 2011-12-24.

[7] Buckley, F., (1993), Defining software engineering as a profession, Computer, August,

1993, 76-78.

[8] Thornton, M., (2009), Software Engineering PE Examination Development Approved,

IEEE-USA Today’s Engineer http://www.todaysengineer.org/2009/Sep/Software-

PE.asp, Retrieved 2011-12-24

[9] Thornton, M. & Laplante, P., (2011), IEEE-USA and IEEE Computer Society

Cooperate in New Professional Software Engineering Licensure Initiative,

http://www.todaysengineer.org/2011/Jan/licensure.asp, Retrieved 2011-11-23

[10] The Joint Task Force on Computing Curricula: IEEE-CS and ACM, (2004), Software

Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in

Software Engineering, http://sites.computer.org/ccse/SE2004Volume.pdf, Retrieved

2011-12-25

[11] SurveyMonkey, (2010), http://www.surveymonkey.com/, Retrieved 2011-12-24.

[12] Wikipedia, (2011), Computer Science, http://en.wikipedia.org/wiki/Computer_science,

Retrieved 2011-12-25

[13] Wikipedia, (2011), Software Engineering,

http://en.wikipedia.org/wiki/Software_engineering, Retrieved 2011-12-25

[14] Parnas, D., (1998), “Software engineering programmes are not computer science

programmes, Annuals of Software Engineering 6, 19-37

[15] McConnell, S., (1999), Software Engineering is Not Computer Science, in After the

Gold Rush: Creating a True Profession of Software Engineering, (pp 37-43), Redmond,

Washington: Microsoft Press.

[16] US NEWS, (2011), US News: Civil Engineering Rankings,

http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/engineering-

doctorate-civil, Retrieved 2011-11-22

[17] US NEWS, (2011), US News: Electrical/Electronics/Communications Engineering

Rankings, http://colleges.usnews.rankingsandreviews.com/best-

colleges/rankings/engineering-doctorate-electrical-electronic-communications,

Retrieved 2011-11-22

http://en.wikipedia.org/wiki/Software_(disambiguation)
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/List_of_software_bugs,%20Retrieved%202011-12-24
http://www.todaysengineer.org/2009/Sep/Software-PE.asp
http://www.todaysengineer.org/2009/Sep/Software-PE.asp
http://www.todaysengineer.org/2011/Jan/licensure.asp
http://sites.computer.org/ccse/SE2004Volume.pdf
http://www.surveymonkey.com/
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Software_engineering
http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/engineering-doctorate-civil
http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/engineering-doctorate-civil
http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/engineering-doctorate-electrical-electronic-communications
http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/engineering-doctorate-electrical-electronic-communications

[18] US NEWS, (2011), US News: Mechanical Engineering Rankings,

http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/engineering-

doctorate-mechanical, Retrieved 2011-11-22

[19] Sheehy, K., (2011), 10 Universities With the Most Undergraduate Students,

http://www.usnews.com/education/best-colleges/the-short-list-

college/articles/2011/11/29/10-universities-with-the-most-undergraduate-students,

Retrieved 2011-12-07

[20] Blanchard, B. & Fabrycky, W., (2010), Systems Engineering and Analysis , Systems

Engineering and Analysis, Fifth Edition, Prentice Hall (2010) ISBN-13:

9780132217354

[21] Ardis, M., (2011), SE 2004 Review Task Force,

http://www.computingportal.org/se2004rtf , Retrieved 2011-12-31

[22] Ensemble, (2012), Computing Portal Connecting Computing Educators,

http://www.computingportal.org/, Retrieved 2012 -01-04

[23] Software Engineering Information Repository, (2012), Software Engineering Institute

https://seir.sei.cmu.edu/seir/, Retrieved 2012-01-04

[24] ACM, (2012), Public Policy, http://www.acm.org/public-policy, Retrieved 2012-01-02

[25] USACM, (2012), ACM US Public Policy Council, http://usacm.acm.org/, Retrieved

2012- 01-01

[26] White, J. & Simons, B., (2002), ACM’s Position on the Licensing of Software

Engineers, Communications of the ACM, November, 2002, vol. 45, no. 11. 91

[27] IEEE Computer Society Professional Practices Committee, SWEBOK: Guide to the

Software Engineering Body of Knowledge, 2004 Version, http://www.nt.fh-

koeln.de/fachgebiete/inf/nissen/softeng/swebok.pdf, Retrieved 2012-3-12

[28] Ford, G. & Gibbs, N. E., A Mature Profession of Software Engineering, CMU/SEI-96-

TR-004, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,

1996.

http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/engineering-doctorate-mechanical
http://colleges.usnews.rankingsandreviews.com/best-colleges/rankings/engineering-doctorate-mechanical
http://www.usnews.com/education/best-colleges/the-short-list-college/articles/2011/11/29/10-universities-with-the-most-undergraduate-students
http://www.usnews.com/education/best-colleges/the-short-list-college/articles/2011/11/29/10-universities-with-the-most-undergraduate-students
http://www.computingportal.org/se2004rtf
http://www.computingportal.org/
https://seir.sei.cmu.edu/seir/
http://www.acm.org/public-policy
http://usacm.acm.org/
http://www.nt.fh-koeln.de/fachgebiete/inf/nissen/softeng/swebok.pdf,%20%20Retrieved%202012-3-12
http://www.nt.fh-koeln.de/fachgebiete/inf/nissen/softeng/swebok.pdf,%20%20Retrieved%202012-3-12

	Montana Tech Library
	Digital Commons @ Montana Tech
	6-1-2012

	Software Engineering Education Needs More Engineering
	A. Frank Ackerman, Ph.D.
	Sushil Acharua, D.Eng.
	Recommended Citation

