Montana Tech Library Digital Commons @ Montana Tech

2013 Summer Poster Symposium

Undergraduate Research Projects

8-7-2013

Wetting and Reactive Air Brazing of BSCF for Oxygen Separation Devices

Richard LaDouceur

Alan Meier, Ph.D.

Follow this and additional works at: http://digitalcommons.mtech.edu/urp_aug_2013

Part of the Ceramic Materials Commons, and the Mechanical Engineering Commons

This work is licensed under a Creative Commons Attribution 3.0 License.

Recommended Citation

LaDouceur, Richard and Meier, Ph.D., Alan, "Wetting and Reactive Air Brazing of BSCF for Oxygen Separation Devices" (2013). 2013 Summer Poster Symposium. Book 4.

http://digitalcommons.mtech.edu/urp_aug_2013/4

This Poster is brought to you for free and open access by the Undergraduate Research Projects at Digital Commons @ Montana Tech. It has been accepted for inclusion in 2013 Summer Poster Symposium by an authorized administrator of Digital Commons @ Montana Tech. For more information, please contact astclair@mtech.edu.

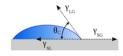
Wetting and Reactive Air Brazing of BSCF for Oxygen Separation Devices

Richard LaDouceur (Montana Tech) and Dr. Alan Meier, Mentor (Montana Tech)

Background

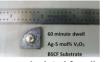
- Integrated gasification combined cycle (IGCC) is used to facilitate high-efficiency carbon capture. IGCC need a supply of highpurity oxygen in order to efficiently generate carbon dioxide and minimize the emission of other gases
- Mixed ionic/electronic conducting (MIEC) ceramic membranes catalyze the dissociation of oxygen from air on one side and transport it across a chemical gradient to the other side.
- MIEC systems are responsible for a 2-5% efficiency loss. Other systems such as cryogenic separation of air is more energy intensive and has more than a 10% efficiency loss.
- Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O₍₃₋₅₎ (BSCF) was determined to be the highest potential MIEC material based on the design and oxygen flux requirements of an oxy-fuel plant.
- Ceramic joining is difficult and most ductile metals do not wet most ceramics. Reactive air brazing (RAB) with Ag-Me_xO_y systems have been used.

Goal

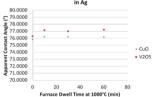

- Develop a RAB alloy and process for joining BSCF.
- Develop a fundamental understanding of the wettability and microstructural development due to reaction kinetics in BSCF/Ag-Me_xO_y systems.
- Success will be defined as the braze joint being hermetically sealed and the joint having greater than 50% of the flexural strength of monolithic BSCF.

Results

Monolithic Testing

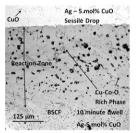

- A fully articulated four point bend flexural test fixture was designed (ASTM C1161).
- Monolithic BSCF samples were tested to determine baseline flexural strength.
- MOR for monolithic BSCF was 95 ± 33 MPa.

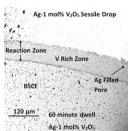
Wettability


- 1, 2, and 5 molar percent compositions of CuO and V₂O₅ in Ag were tested on BSCF substrates.
- Furnace runs were performed to 1000°C with dwell times of 0, 10, 30, and 60 minutes. The furnace would ramp and cool down at 33.3°C/min. The varying dwell times were used to attempt to control the reaction kinetics.

 Apparent contact angle was calculated for all time/composition conditions.

Apparent Contact Angle for 2% Molar Solutes




 All time/composition conditions displayed wetting behavior with apparent contact angles between 74° and 78°.

Reaction Product Layer

- All results are preliminary. SEM and EDAX analysis continues for compostion/time conditions.
- Ag-CuO interfacial microstructures exhibited dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products (Joshi, J Mater Sci (2013)).
- Ag-V₂O₅ interfacial microstructures revealed the formation of a reaction product layer with cobalt and iron being replaced by vanadium with silver filling pores in the BSCF microstructure.

Future Work

 Based on these results, brazes will be fabricated and mechanically tested to begin to optimize the brazing parameters for this system.

Acknowledgments

We would like to thank Dr. Bill Gleason and Gary Wyss for assistance with SEM/EDAX and Ronda Coguill for assistance with mechanical testing