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Nothing in the world can take the place of persistence. Talent will not; 

nothing is more common than unsuccessful men with talent. Genius will 

not; unrewarded genius is almost a proverb. Education will not; the world 

if full of educated derelicts. Persistence and determination alone are om

nipotent. The slogan 'Press On' has solved and always will solve the 

problems of the human race. 

—Calvin Coolidge 
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Chapter 1 

Introduction 

In this thesis we study the behavior of supercurrent flows in mesoscopic superconduct

ing rings, i.e., rings of finite circumference. Two classes of nonequilibrium behavior 

will be considered: (i) the system is prepared in a nonequilibrium state and subse

quently allowed to relax toward equilibrium, and (ii) the system is in contact with an 

external driving force that does not allow the system to relax toward equilibrium. For 

concreteness, we imagine that a solenoid penetrates the center of the ring, thereby 

providing a driving mechanism. For example, if the solenoidal current varies linearly 

with time, then by Faraday's law of induction a time-independent electromotive force 

will be induced in the ring. 

In Chap. 2 we consider the problem of the lifetime of persistent supercurrents. 

Here, the system is prepared in a nonequilibrium state and subsequently relaxes to

ward equilibrium. For the case of wires that are in the thermodynamic limit (i.e., 

not mesoscopic), this problem has been well studied [1, 2, 3, 4]. Although persistent 

supercurrents have been observed to flow without decay for over a year, under certain 

circumstances, e.g., for narrow rings at a temperature slightly below the supercon

ducting transition temperature, the current can decay in a measurable amount of 

time. The mechanism of current decay, in which energy is dissipated, is via a pro

cess whereby thermal fluctuations carry the system over an energy barrier. These 

processes are known as thermally activated phase-slip processes. Thus, it is ther

mal fluctuations that are responsible for the dissipation of the kinetic energy of the 
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supercurrent. For the case of wires that are infinitely long, the dependence of the 

rate of decay of a persistent current on the temperature and supercurrent has been 

calculated [2, 3]. 

In the first part of Chap. 2 we extend the results for the temperature and current 

dependence of the lifetime to include the dependence on the ring circumference. The 

main result is that there are substantial length-dependent corrections that have a 

stabilizing effect, i.e., the decay rate (the inverse of the lifetime) per unit length of the 

sample, decreases as the length of the wire is reduced. In the second part of Chap. 2 

we compare two distinct experimental situations: (i) the superconductor is driven by 

a voltage source, and (ii) the superconductor is driven by a current source. For an 

ensemble of systems driven by a voltage source, the solenoidal flux is the independent 

variable, and for an ensemble of systems driven by a current source, the supercurrent is 

the independent variable. For wires that are in the thermodynamic limit, a distinction 

need not be made between a voltage source and a current source [5]. However, we 

shall see that for mesoscopic wires driven by a voltage source, the lifetimes of the 

metastable states acquire substantial length-dependent corrections. By contrast, we 

shall see that for mesoscopic wires driven by a current source, the lifetimes of the 

metastable states do not acquire substantial length-dependent corrections. This is 

an explicit example of the general result that for mesoscopic systems, i.e., systems 

that are not in the thermodynamic limit, the choice of the ensemble is not free, but 

depends on the experimental circumstances. 

In Chap. 3 we present a method for the regularization of the determinants of 

differential operators. In order to calculate the lifetime of a persistent current, it is 

necessary to compute the ratio of determinants, with all zero eigenvalues removed, 

of certain differential operators. The process of factoring the zero eigenvalues out of 

the determinants involves a step known as regularization. As the eigenvalues of these 

operators characterize the curvature of the free energy, the determinants are known 

as fluctuation determinants. The need to calculate fluctuation determinants arises in 

many scientific problems [6]. Consequently, powerful mathematical tools have been 
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invented that reduce the problem of the computation of the infinite product of all 

the eigenvalues (i.e., the unregularized determinant) to that of finding the solutions 

to a homogenous differential equation [7, 8, 9, 10]. In these techniques, it is only the 

boundary values of the homogenous-equation solutions, and their derivatives, that are 

required. However, in many cases of physical interest, such as the calculation of the 

lifetime of persistent currents discussed in Chap. 2, it is the regularized determinant 

that is needed. Usually, the regularization is carried out in an ad hoc way, either 

by moving the location of the boundaries (e.g., see Refs. [11, 12]), or by perturbing 

the operator (e.g., see Refs. [13, 14]). In Chap. 3 we present a systematic method of 

regularization that allows the regularized determinant to be expressed in a form that 

is no more complicated than the form for the unregularized determinant. 

In the final chapter of this thesis, Chap. 4, we consider the problem of the dynamics 

of the supercurrent near the critical current. In particular, we imagine that the system 

is under the influence of an electric field of sufficient strength so that the current is 

driven to the critical current, at which point the system becomes unstable. (We 

shall see that this situation is readily obtainable as long as the temperature is not 

too close to the superconducting transition temperature.) Once the system becomes 

unstable, there are multiple metastable states that can compete for occupation. We 

shall find that for 'weak' electric field strengths single phase-slip processes dominate 

the dynamics, but as the field strength is increased, there is a crossover to double 

phase-slip domination. In this problem, the important decay processes are from a 

point of instability. This is in contrast to the problem of the lifetime of a persistent 

current, where it is the decay from a point of metastability that is important. The 

problem of the rate of decay from a metastable state is an old one, and the theoretical 

approach is by now well known. By contrast, a theory for the decay from an unstable 

state when multiple metastable states compete for occupation is not available. In the 

final part of Chap. 4, a possible approach to this problem, inspired by the work of 

Onsager and Machlup [15], and based on a path integral technique, will be presented. 
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Chapter 2 

Lifetime of Persistent Currents 

2.1 Introduction 

The physical situation under consideration is that of a narrow superconducting loop 

of length L threaded by a magnetic flux which is possibly time dependent. The main 

issue to be addressed is the lifetime of persistent currents in such systems, paying 

particular attention to the length dependence. 

The system is considered to be close to equilibrium if the supercurrent flowing 

in the wire is much smaller than the critical supercurrent. In addition, what is 

meant by mesoscopic is that the length L of the wire, when measured in units of 

the superconducting fluctuation correlation length £{T), where T is the temperature, 

does not greatly exceed one. Finally, we will restrict our attention to narrow wires. 

More specifically, if a is the cross-sectional area, then the wire is considered to be 

narrow if y/cr, the cross-sectional dimension, is much smaller than either £(T) or the 

temperature dependent magnetic penetration depth. This system is therefore termed 

'quasi-one-dimensional'. 

The basic idea is that the current-carrying states of a quasi-one-dimensional 

superconductor are metastable (see Ref. [1]). This is illustrated schematically in 

Fig. 2.1. Hence, the central issue is the rate of transitions between two neighboring 

metastable states, or, equivalently, the lifetime—the inverse of the transition rate—of 

a metastable current-carrying state. This is a specific example of the generic problem 

of the transition rate between two neighboring metastable states; an old problem, 
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Figure 2.1: Schematic plot of the free-energy as a function of current. 

appearing in many areas of science [2, 3]. For example, in the theory of chemical 

reactions, a reaction is pictured as occuring via a transition between two metastable 

free energy wells, separated by an energy barrier [4]. In the limit of large damping, 

the rate for such a reaction is given by the well-known Arrhenius formula of chem

ical reaction theory [5]. This relation expresses the rate of reaction in terms of two 

quantities: the energy barrier separating the neighboring metastable states, and a 

pre-exponential factor, sometimes referred to as the 'attempt frequency'. The expres

sion for the inverse of the lifetime of the supercurrent in a narrow superconducting 

ring is the multi-dimensional generalization of the Arrhenius equation. 

A direct consequence of the metastability of current-carrying states in narrow 

wires is the concept of the intrinsic resistance of a superconductor [6, 7, 8, 1]. If a 

wire carrying a supercurrent is isolated, the current will eventually decay. Therefore, 

in order to maintain a constant current, energy must be supplied to the system; the 
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rate at which the energy must be supplied, divided by the square of the supercurrent, 

is a measure of the intrinsic resistance. In other words, the resistance is due to 

the fact that the system is in the superconducting state. When the resistance of a 

narrow superconducting wire is measured as a function of temperature, it is found 

that the resistive transition is not infinitely sharp. Rather, there is a certain range 

of temperatures for which the resistance is reduced, but still not zero. The combined 

theoretical work of Langer and "Ambegaokar [7], and McCumber and Halperin [8], 

collectively known as the LAMH theory, was successful in explaining the width (in 

temperature) of the resistive transition. In the LAMH theory, the ratio L/£ is assumed 

to greatly exceed unity. In this chapter we extend the results of LAMH to the situation 

in which £/L is not negligible. 

There are two main results to be presented in this chapter. The first concerns the 

lifetime, or alternatively, the rate of decay, of persistent currents. In this case, as the 

length of the wire is reduced, we find algebraic (as opposed to exponential) length-

dependent corrections that tend to increase both the barrier heights and attempt 

frequencies [9]. The former corrections tend to reduce the rate, per unit length of 

the wire, at which transitions occur, whereas the latter will have the opposite effect. 

Thus, there is a competition between these two tendencies. For cases of practical 

interest, the barrier height contributions dominate, leaving the final result that as 

the length of the wire is reduced, the decay rate (per unit length of the sample) will 

decrease. The second main result concerns the distinction between the situation in 

which the system is driven by a voltage source, versus that where the system is driven 

by a current source. For the voltage source we find that there are algebraic length-

dependent corrections to both the barrier heights and attempt frequencies, with the 

net result being dominated by the barrier height corrections. These results are the 

same as those found for the lifetime of the persistent currents. By contrast, for the 

current-source we find no algebraic length-dependent corrections. The difference in 

behavior between a system driven by a voltage source versus that driven by a current 

source, is a specific example of the general result that for mesoscopic systems, i.e., 
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systems that are not in the thermodynamic limit, the choice of ensemble is not free, 

but depends on the experimental circumstances. 

This chapter is organized as follows. In the next section the theoretical model, 

the Ginzburg-Landau theory of superconductivity, is introduced. Following that, 

in Sec, 2.3, the central notion of the metastability of the current-carrying states is 

explained. Presented in Sees. 2.4 and 2.5 the properties of the metastable and saddle-

point states, respectively. The length-dependence of the barrier heights is discussed 

in Sec. 2.6, and in Sec. 2.7 the attempt frequencies are computed. The results of these 

two sections are summarized in Sec. 2.8. The situations in which the superconductor 

is driven by a voltage source and by a current source are discussed in Sees. 2.9 and 

2.9, respectively. Finally, in Sec. 2.11 the conclusions of this chapter are summarized. 

2.2 Theoretical Model 

In this section the theoretical model used throughout this thesis will be presented. 

The theoretical description is based on the Ginzburg-Landau (GL) theory of super

conductivity, in which the superconductive state is described by a complex-valued, 

space- and time-dependent order parameter \P [10]. It is sometimes useful to think of 

# as an 'effective wavefunction' for the superconducting electrons, representing, as it 

does, the quantum mechanical coherence underlying the phenomenon of superconduc

tivity. The precise relationship between the BCS theory [11], a microscopic quantum 

mechanical theory, and the phenomenological GL theory, for temperatures close (but 

not too close) to Tc (the superconducting transition temperature) was established by 

Gor'kov [12]. Throughout this thesis, it is assumed that the GL theory is adequate. 

The basic idea of the GL approach is to apply Landau's theory of second or

der (i.e., continuous) phase transitions [13, 14] to superconductivity—a second order 

phase transition in the abscence of a magnetic field. Thus, the order parameter $ is 

considered to be a thermodynamic variable, and the free energy of the superconductor 

F[#] is expanded in powers of | # | and its spatial gradient |V#|. In the presence of a 

8 



magnetic field B = V x A, where A is the electromagnetic vector potential, the total 

energy is a sum of F[9] and the magnetic field energy, where the spatial gradient, 

which is analogous to the momentum operator in quantum mechanics, is modified 

to include the momentum (2e/fic)A of the electromagnetic field [15]. (Here e is the 

electronic charge, ft is Planck's constant, and c is the speed of light.) The total free 

energy can then be written as 

F [* , A] = / d r { | ( V - (t2e/ftc)A(r))tf (r)|2 - a |*(r) |2 + | | * ( r ) | 4 } 

+ ( 8 * ) - ' / « f r ( V x A ) ' , (2.1) 

where r is a three-dimensional position vector, and a and /? are expansion coefficients. 

The factor of 2e in eq. (2.1), rather than a factor of e, accounts for the pairing of 

electrons into Cooper pairs [16]. The superconducting transition is manifested in the 

sign of a, which is assumed to be temperature dependent. For temperatures higher 

than Tc, a < 0, whereas for temperatures lower than Tc, a > 0. In the former case, 

the homogeneous part of the free energy density, - a | * | 2 + (/?/2)|$|4, has a single 

local minimum at | # | = 0. This reflects the notion that for these temperatures the 

normal state (i.e., | $ | = 0) is energetically favorable. However, as T is reduced 

through Tc this single local minimum becomes a local maximum, and at the same 

time, a one-parameter family of local minima at | # | = Ja//3 evolve continuosly, i.e., 

a(Tc) = 0. In other words, for temperatures below Tc, the superconducting state 

(i.e., | # | = Jot/(3) is energetically favorable. The original Ansatz of Ginzburg and 

Landau was that a(T) oc (T — Tc), and the expansion coefficient /? was assumed to 

be independent of T (see below). In this thesis, we will always work in the regime 

where T < Tc. 

The celebrated Ginzburg-Landau equations for $ and A are obtained by requiring 

that the variations {6F[V, A]/6# and &F[#, A)/SA) of F[$,A] with respect to * and 

A vanish. The conditions that SF/6^/ = 0 and 6F/6A = 0 are known as stationarity 
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conditions, and they can be written as 

( - t V - (2e/Ac)A)2* -<*$ + /?|tf|2|tf = 0 (2.2) 

V x (V x A) = (4TT/C)J, (2.3) 

where the supercurrent density J is given by 

J[$] = ^ [tt"(V - (*2e/Ac)A)$) - c.c]. (2.4) 

At this stage it is convenient to postpone the discussion of the boundary conditions 

that the stationary configurations must satisfy. This issue is best dealt with at a 

slightly later stage. Throughout this thesis, the vector potential A will be treated 

as a parameter, rather than a dynamical variable. In other words, eqs. (2.2) and 

(2.3) are not solved self-consistently. Thus, the conditions of stationarity for $ and 

A reduce to a condition of stationarity for # (which will depend parametrically on 

A). For narrow wires, this approximation can be made reasonable (see Appendix A 

of Ref. [7]). The basic idea is that due to the small cross-sectional area of the wire, 

the magnetic field generated by the supercurrent does not significantly influence the 

order parameter. In addition, the magnetic-field energy due to the supercurrent is 

much smaller than the energy associated with the order parameter. Therefore, the 

magnetic energy term in eq. (2.1) will be dropped, and F[9, A] will be written as 

F[9]. 

For the specific case of a narrow superconducting ring of cross-sectional area a and 

circumference L, the integration in eq. (2.1) over the spatial coordinates perpendicular 

to the longitudinal coordinate (denoted here by X) of the wire can be performed, with 

the result that 

-L/2 

where Ax is the component of the vector potential in the longitudinal direction. 

The requirement that the order parameter be single valued leads to the following 

periodicity condition for $ : 

9(L + X) = V{X). (2.6) 

10 
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It is convenient, both for notational simplicity and for the purpose of making the 

physical meaning of the parameters in the equations transparent, to transform the 

dimensionful variables in eq. (2.5) to dimensionless variables. This transformation 

proceeds in two steps. First, # , Ax, and X are exchanged for ^ , Ax, and x via 

$ = yjjjo^q, (2.7) 

Ax = {2e/hcy/E)Ax, (2.8) 

x = y/aX. (2.9) 

Second, the two parameters a and /? are exchanged for the more physically meaningful 

variables £(T) and He{T), via 

£(T) = 1/V5, (2.10) 

He(T) = y W / / 3 . (2.11) 

The quantity He(T) is the thermodynamic critical field, so that #2/8?r is the conden

sation energy per unit volume, i.e., the energy difference between the higher-energy 

normal state ( |# | = 0) and the lower-energy superconducting state ( |# | = y/a/fi). 

Using the temperature dependence of a, i.e., a oc Tc — T, and the temperature in

dependence of /?, from eqs. (2.10) and (2.11) we see that £(T) oc (Tc - J 1) - 1 ' 2 and 

HC(T) cm Tc-T. For temperatures close to Tc, the temperature regime in which 

expect the GL theory is valid, both of these dependences are consistent with the 

results from BCS theory. This justifies, a posteriori, Ginzburg and Landau's original 

Ansatz. 

By using the transformations of eqs. (2.7)-(2.ll), the GL free energy given in 

eq. (2.5) can be written in the form 

F$] = {i*)-loHc{T)%T)r[i>, Ax], (2.12) 

FtfX] = /%/={!(& - ^*M*)I2 - W*)l2 + ^l#*)|4}, (2-13) 
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where 

£ = L/aT). (2.14) 

The periodicity condition (2.6) is unaffected by the above transformations so that 

t}>(t + x) = rf>(x). (2.15) 

Using eq. (2.4) for the supercurrent density J, the supercurrent / = a J can be written 

as 

7 [# = ^ m (2.16) 

J[$] = ^ b h & - iAx)4>) ~ cc], (2.17) 

where the quantity J[ij>] is the dimensionless supercurrent of state ij>. Finally, the 

equation of stationarity (2.2) becomes 

(0X - iAx)
2i>(x,t) + # r , ( ) - 4>(x,t)$(x,t)\2 = 0. (2.18) 

At this stage it is convenient to discuss the boundary conditions associated with 

the stationarity condition (2.18). Certainly, the requirement that V> be single-valued 

implies that tj> satisfy eq. (2.15). However, (2.18) is a second order differential equa

tion, so that an additional boundary condition is required. This condition is de

termined by the requirement that F be stationary at the boundaries. To be more 

explicit, the term (dx — iAx)
2i> in eq. (2.18) is obtained by requiring that ^[xp] be 

stationary with respect to variations 6t/>" of ij>*; this procedure generates a term of the 

form [(dx — iAx)i>][dx6x[>*], which when integrated by parts, generates the boundary 

term 6t/>* (0x-i-4x)^|_//2- This term can be made to vanish if (i) 6$ satisfy eq. (2.15), 

which implies that if> must also satisfy eq. (2.15), and if (ii) 

(dx - iAx)j>\t+x = (dx - iAx)^\x. (2.19) 

Equation (2.19) is the so-called natural boundary condition, and is the additional 

condition that was sought. Thus, the stationary states must satisfy the (differential) 

eq. (2.18), subject to the periodicity conditions given in eqs. (2.15) and (2.19). 
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The form of the GL free energy given in eq. (2.13), and the form of the boundary 

condition given in eq. (2.15), will be most useful in Chap. 4 where the dynamics of 

the supercurrent is studied. However, in this chapter it is convenient to make one 

final change of variables to eliminate the explicit dependence of the free energy on 

the vector potential. Changing from ^ to V>, via 

^ s e - T * ' ^ , (2.20) 

the free energy becomes 

fty] = £ £ dx{\dMx)\2 - Mx)\2 + l | v w r } , (2.2i) 

and the boundary condition (2.15) becomes 

TK< + s) = e*V(a), (2.22) 

$ = ^ r^A„ (2.23) 
nc J-m 

2ef /</* 
-t/2 

where $ is a dimensionless measure of the magnetic flux through the ring. In addition, 

the equation of stationarity (2.18) and the natural boundary condition (2.19) become 

V/'-|-V-V#l* = 0, (2.24) 

0'(* + aO = e*V(*), (2.25) 

where the prime denotes differentiation with respect to x. Finally, the dimensionless 

supercurrent J given in eq. (2.17) becomes 

J M = i[V>-d*</>-Vdxn (2.26) 

Thus, the effect of the vector potential has been taken into account via a transforma

tion that alters the boundary conditions from periodic [eq. (2.15)], to twisted periodic 

[eq. (2.22)]. For most of this chapter $ is taken to be static; in Sections 2.9 and 2.10, 

where the voltage and current sources are discussed, the flux $ is endowed with time 

dependence. 
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For the purposes of this chapter, there are two types of characteristic feautures on 

the free energy landscape: local minima and saddle-points. The local minima corre

spond to the metastable current-carrying states of the superconductor (see Sec. 2.3), 

and the saddle-points correspond to the points of lowest free energy that connect two 

neighboring metastable states (see Sec. 2.4). As will be seen in the following sections, 

the lifetime of the persistent currents depends on the properties of these states. Both 

classes of states make the free energy stationary, i.e., both classes of states satisfy 

eqs. (2.24)-(2.25). We will denote by rj>e (the e stands for extremal) a stationary 

state that is either a saddle-point or a metastable point, so that if e = m then the 

state is metastable, and if c = s the state is a saddle-point. In other words, rpm is a 

metastable state and if>a is a saddle-point state. 

In order that the characteristics of the stationary states may be understood more 

fully when they are introduced in Sees. 2.4 and 2.5, we discuss the stationarity con

dition (2.24) in detail. By introducing a polar decomposition if>(x) = /(z)e'#=), the 

stationarity condition (2.24) for V* can be written in terms of / and <j> as 

E' = & [ ( / ) ' + f - | r + / W l = 0, (2.27) 

J' = dx[f2<f>'] = 0. (2.28) 

The equations of stationarity, eqs. (2.27) and (2.28), are analogous to the classical 

equations of motion for a particle moving in two dimensions under the influence of a 

radial potential. This mechanical analogy will prove to be a useful aid in the visual

ization of the stationary states. In the analogy, / is interpreted as a radial coordinate, 

^ as an angular coordinate, and x as time. The quantity E is the mechanical energy 

of the classical particle, and J is its angular momentum. Both of these quantities are 

'conserved' in the sense of the mechanical analogy, i.e., they are independent of the 

'time' x. The conservation of E and J allows the stationary states to be determined 

explicitly (see Sees. 2.4 and 2.5 and App. B). The conservation of J allows <j> to be 

eliminated from eqs. (2.27) and (2.28), leaving a second-order differential equation 
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J=0.1 

Figure 2.2: Effective potential V(/ ; J ) as a function of / , for J = 0.1. 

for / that can be written in the form 

/" = -dfV(f;J) 

= - W 2 / 2 - /V4 + J'/2f). (2.29) 

The effective radial potential V{f; J) is pictured in Fig. 2.2. For J < 2/>/27 there are 

two positive roots of - d / V ( / ; J ) = 0, namely f0 and / i . The radial force -djV(f; J) 

vanishes at these two points. If J > 2/\/27 then f0 = / i and the two roots merge. 

Their significance will be discussed in Sec. 2.4. 

2.3 Metastability 

The key idea, due to Little [6], is that the current-carrying states in a quasi-one-

dimensional superconductor are metastable. In other words, thermal fluctuations can 

carry the system from one metastable current-carrying state, to another. This is 
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illustrated schematically in Fig. 2.1. In order for a transition to occur, the system 

must overcome an energy barrier that protects two neighboring metastable states 

from one another. As the barrier heights protecting a particular state from current-

decreasing transitions are smaller than the barriers protecting from current-increasing 

transitions, the current-decreasing transitions are more likely. Thus, on average, the 

current decays with time, with the kinetic energy of the current being lost to the 

environment in the form of heat. The current-altering processes are therefore dissi-

pative. The transition process requires that the superconducting condensate acquire 

energy. This is possible because the condensate interacts with the phonons and quasi-

particles of the metal, which act as a heat bath [7]. Thus, the condensate can absorb 

energy from these other degrees of freedom, thereby acquiring the energy required 

to overcome the barrier. These transitions are usually referred to as 'thermally ac

tivated' because the requisite energy is provided by the thermal bath (phonons and 

quasiparticles). 

The theoretical description of the thermally activated processes requires a dynam

ical description of the condensate. This is provided by the time-dependent Ginzburg-

Landau theory (TDGL) [17,18], which, in its simplest form, is relaxational dynamics: 

d+{x,t) = 6?$[ 
dt 6xj>'(x,t) 

= (%-zA=)4W-V#l\ (2.30) 

where Fty] is given in eq. (2.13), and where the (dimensionless) time t is measured 

in units of the the Ginzburg-Landau time 

**-aa£ni' (2'31) 
where &g is Boltzmann's constant. The effect of the heat bath is taken into account 

by adding to the right hand side of eq. (2.30) a space- and time-dependent Gaussian 

noise term, fj(x,t), Dirac-delta correlated in both space and time with mean zero and 
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variance 2D, where D is determined by the fluctuation-dissipation theorem and is 

given by [8] 

The resulting stochastic time-dependent Ginzburg-Landau (STDGL) equation can be 

written in the form 

at 8i})*(x,t) 

The stochastic time-dependent Ginzburg-Landau equation (2.33) is in the form 

of a Langevin equation. An alternative dynamical description can be achieved by 

studying the associated Fokker-Planck equation for the probability density functional 

P[%j)} [3]. In this description, the dynamical equation for P[ij)] is in the form of 

a continuity equation, thereby allowing the identification of a probability current 

(see App. C). Under conditions of steady-state (i.e., dP/dt = 0), there can be 

a non-zero probability current through the saddle-point. The resulting probability 

flux will determine the rate of transition from the associated metastable state. If 

the barrier height—the difference in energy between the saddle-point state and the 

associated metastable state—is much larger than the thermal energy h&T, then the 

rate expression is of the Arrhenius type: an 'attempt frequency' pre-exponential factor 

divided by the exponential of the ratio of the barrier height to feT [19, 20, 21]. In 

our case, the expression for the rate #"_(+) at which current decreasing (increasing) 

transitions occur can be written as [8] 

£r± = !)± exp(-U±/kBT). (2.34) 

This equation, for the specific case considered here, is derived in App. C. As the fluc

tuation rate is proportional to £, for convenience in exhibiting the length-dependent 

corrections to the rate, we have defined T± to be the fluctuation rate per unit length. 

The quantity (/-(+) in eq. (2.34) is the energy barrier protecting the metastable state 

from current decreasing (increasing) transitions. More specifically, U is the difference 

in (free) energy between the transition (i.e., saddle-point) state, and the associated 

17 



metastable state. The quantity il± is the so-called attempt frequency prefactor, and 

depends on, among other things, the curvature of the free energy about the metastable 

and saddle-point states. Both U and fi will be discussed in detail in the following 

sections. 

For the situation in which £ » 1, the barrier heights U, and their dependence on 

current, were computed by Langer and Ambegaokar [7]. The main qualitative feature 

of their result is that the barriers are a decreasing function of the current, vanishing at 

the critical current. (The behavior for currents near the critical current is the subject 

of Chapter 4.) In this same limit, i.e., £ » 1, the attempt frequencies fl, and their 

dependence on current, were first calculated by McCumber and Halperin [8], and 

subsequently by Duru, Kleinert and Unal [22]. Again, the main qualitative feauture 

of both results is that ft vanishes at the critical current. 

In the present, we determine the length-dependent corrections to the barrier 

heights and attempt frequencies. We find that as the length of the wire is reduced, 

the barrier heights increase. This has the effect of decreasing T, the fluctuation rate 

per unit length. On the other hand, as the length of the wire is reduced, the attempt 

frequency prefactor acquires length-dependent corrections that tend to increase Q/£. 

This has the effect of increasing T. Thus, these two effects compete. As we shall 

see, the effect due to the barrier heights is dominant, and so the final conclusion is 

that as the length of the wire is reduced, the decay rate (per unit length of the wire) 

decreases. 

2.4 Metastable States 

The fluctuation rates are determined by the properties of the two distinguishing 

features on the free energy landscape: the local minima and the saddle-points. The 

metastable states are the subject of this section. These states are a subset of the 

simplest stationary states: uniformly twisted plane waves. These configurations have 

a constant amplitude, either f0 or / i (see Fig. 2.2), and a phase that is linearly 
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proportional to x. In the mechanical analogy, the uniformly twisted plane waves 

correspond to a particle executing circular motion with constant radius /o or / i , and 

a constant angular velocity. In addition, the mechanical energy Em is equal to either 

V(/o, J) or V(/i, J). Denoting these states by V"m, they can be written as 

^m(z;Mm,o) = /mexpt<£m(x) (2.35) 

fl = u(km), (2.36) 

&,(*) = <t>mfl + kmx, (2.37) 

where «(g) = (1 — q2), and (j>m<0 is an arbitrary phase (which can be taken to be zero). 

A useful visualization of these states can be achieved by constructing a parametric 

plot of the real and imaginary parts of ^ , as a function of x. The resulting plot is 

a helix with £km/2n loops, as shown schematically in Fig. 2.3. 

The wavevector km characterizes the uniformly twisted states. The supercurrent 

Jm = J[ipm] is obtained by inserting eq. (2.35) into eq. (2.26), yielding 

Jm(km) = km(l-k2
m). (2.38) 

Notice that Jm achieves a maximum value of Jc = 2/\/27, the so-called critical 

current, at the critical wavevector ke = l / \ / 3 . For a given Jm < Jc, there are two 

values of km that satisfy this relation, one smaller than fcc, and the other larger. The 

smaller of these determines /0 , and the larger, / i (see Fig. 2.2). 

The free energy Tm = ^[ipm] of the uniformly twisted states can also be ex

pressed in terms of the wavevector A:m. The desired expression is obtained by inserting 

eq. (2.35) into eq. (2.21), yielding 

f"m(W = - ^ ( l - W (2-39) 

As a function of fcm, ^(fcm) has a point of inflection at k = kc; for k < (>)kc, the 

curvature of Tm is positive (negative). Thus, the metastable states are those uni

formly twisted states for which k < kc. This implies that the mechanically stable 
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Figure 2.3: Schematic parametric (in x) plot of the real and imaginary parts of state 
t/>m- The simple circle represents the wire. 

states (in the sense of the mechanical analogy) for which fm = f\ are thermodynam-

ically unstable. Furthermore, the mechanically unstable states for which fm = fQ 

are (thermodynamically) metastable. The stability of the uniformly twisted states is 

treated in more detail in Sec. 4.5. 

In the physical situation of a ring-shaped wire of circumference L = ££(t) (see 

eq. (2.14)), threaded by a static magnetic flux fi$/2e (see eq. (2.23)), the two (di

mensionless) independent variables are t and $. Imposing the boundary condition of 

eq. (2.22) relates km to both of these via 

km£ = 27rnm + 0, (2.40) 

where nm is an integer. Thus, once I and $ are given, the properties of the metastable 

states, i.e., their currents Jm and free-energies Fm, are completely determined. More

over, these states are quantized, in a manner analogous to the quantization of angular 
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momentum in quantum mechanics. In other words, for a system of finite length, there 

are a fixed number of metastable states, in which the system can reside for extended 

periods of time (illustrated schematically in Fig. 2.1). The duration of such stays are 

what we intend to compute. 

In the present chapter we focus on the decay of a metastable current-carrying 

state. A useful visualization of this process can be obtained by referring to the helical 

plot of V>m shown in Fig. 2.3. In this representation, the decay of a metastable current 

carrying state is associated with the loss of a loop of the helix. In order for this to 

occur, the amplitude of rf>m must vanish at some point in the sample. (Recall that the 

boundary condition given in eq. (2.22) precludes the unwinding at the boundaries.) 

The vanishing of \if>a\ implies that the phase of the order parameter becomes undefined 

at the point at which |0 , | = 0. In this way, the total phase-difference can change by 

an integral multiple of 2w. In this chapter, we will only consider phase changes of 2ir. 

These processes are often referred to as 'phase-slip' processes. Physically, a phase-slip 

is associated with the creation of a region of normal (i.e., nonsuperconducting) metal, 

and is therefore dissipative. More specifically, the kinetic energy of the condensate is 

lost to the environment (quasi-particles and phonons), and is dissipated as thermal 

energy (i.e., heat). In order to fully understand the phase-slip process, we now need 

to turn our attention to the transition states. 

2.5 Transition States 

The transition states are the points of lowest free energy connecting two neighbor

ing metastable states. In other words, these states are saddle-points of T and are 

characterized by the existence of a single 'downhill' direction in function space—the 

reaction coordinate. One way to picture a current-altering transition is to view the 

system point as (mainly) executing small random excursions about a metastable state 

\j)m. Occasionally however, the fluctuating environment can supply enough energy so 

that it is possible for the system to explore the neighborhood of the saddle-point, and 
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thus make the transition to a neighboring local minimum of Jr. 

The saddle-point states are obtained by solving the stationary equations (2.27) 

and (2.28). In contrast to the metastable states, which have a constant amplitude, the 

saddle-point states have an amplitude that varies with x. Referring to the mechanical 

analogy (see Fig. 2.2), the saddle-point trajectories have a mechanical energy E < 

V(/o, J ) . Thus, /», the amplitude of the saddle-point state, is bounded below by c, 

and above by k. As the boundary conditions require that fa(—£/2) = /,(£/2), the 

radial motion must be periodic, with period £. As an example, suppose that at 'time' 

x = — £/2, the radius of the mechanical particle is b. Then, at 'time' x = 0, the particle 

radius will have reached the turning point, and fa = c. At this point, the radius will 

continue to increase again until reaching the other turning point at / , = 6. These 

trajectories are sometimes referred to as bounce (or instanton) solutions [23, 24]. 

Here, we will only consider trajectories that 'bounce' once. 

The conservation of E and J allows 0 , to be determined by quadratures, with the 

result that (see App. B) 

08(x; k„ m, x0, <k,o) = f,(x) exp i<f>a{x), (2.41) 

/ . ( * ) ' = 2k2 + imxA{ka) + m A{k.) sn(\/A(6,)/2 (x - x„)|m)2, (2.42) 

&(*) = 4>.fl + J.(k„m) f dx7.(x')-2 , (2.43) 
Jxo 

where 

J , = J N (2-44) 

is the dimensionless supercurrent of the saddle-point state [see eq. )2.26)]. The func

tion sn in eq. (2.42) is a Jacobi elliptic function [25, 26], A(q) = (1 — 3q2) and 

mi = (1 — m). As with the metastable states, it is useful to construct a parametric 

plot of the real and imaginary parts of ^i, as a function of x (see Fig. 2.4). In this 

figure we can see that the helix is in the process of losing a loop. However, as the 

amplitude of \tpa\ is not zero, the phase-slip has not yet occured. 

The states ipa depend on four constants of integration: ka, m, xo, and <f>afl. The 

position xo locates the point at which |^(x)| achieves its minimum value; due to the 
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Figure 2.4: Schematic parametric (in x) plot of the real and imaginary parts of state 
Vv The simple circle represents the wire. 

assumed translational invariance of the wire this point is arbitrary, and can be set to 

zero. The constant <f>aJ0 is an arbitrary phase-reference; due to the U(l) symmetry of 

the integrand of T, this phase is arbitrary, and can also be set to zero. These two 

symmetries, translational and gauge, are however, important. They each give rise 

to a Goldstone mode [27], and this will be important when we consider the attempt 

frequency in Sec. 2.7. The constant ka is an effective wavevector, and m is related to 

the mechanical energy Ea of eq. (2.27); both of these will be discussed below. 

The relationship between the constants ka and m and the independent variables 

£ and $ is obtained by requiring that ipa satisfy the boundary condition given in 

eq. (2.22), which gives 

£{ka,m) = j8/A(ka)K(m), (2.45) 

&(f/2; ka, m) = $ + 2™,, (2.46) 
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in which K is the complete elliptic integral of the first kind [26], and n„ is an integer. 

In the limit that m —» 1, 2K(m) —»ln(16/mi), so that eq. (2.45) reduces to 

mi « ^ exp{-y/A(ka)/2£). (2.47) 

Thus, if the exponent of eq. (2.47) is much larger than one, ignoring terms of order 

mi is valid. As we are interested in possible algebraic length-dependent corrections 

to the lifetime of the current-carrying states, we will assume that mi •< 1. This 

condition requires that £<jA(ka)/2 ~ 1; this condition is violated if ka is too close to 

l / \ / 3 . Therefore, we are restricted to near-equilibrium regime where the current Ja 

is far from the critical current. In the limit that m —+ 1, eq. (2.46) reduces to 

W + 2x(*.) = 2xn. + *, (2.48) 

X{q) = arctan \/A(g)/2g2. (2.49) 

Thus, as we found previously (in Sec. 2.4) for the metastable states, the saddle-point 

states are quantized. Notice that eq. (2.48) differs from the corresponding equation 

for fcm, eq. (2.40), by the term 2%(&,). Thus, the parameter k, is interpreted as an 

effective wavevector. 

The free energy Ta = «F[^,] of the saddle-point states is given by [28] 

*,„)[*£ ^ - H ? (2.50) 
u ma? 3a2m2 

and the current Ja [see eq. (2.44)] is given by 

Ja(k„m) = abc/y/2, (2.51) 

where E(m) is the complete elliptic integral of the second kind [26]. The three 

constants a, 6, and c are pictured in Fig. 2.2, and are defined in terms of terms of m 

and k3 in App. B. In the limit that m —• 1, eqs. (2.50) and (2.51) reduce considerably, 

yielding the forms 

f.(W = ~ (1 - k2)2 + \y/2A(kt) (2.52) 
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and 

Js(ka) = 6,(1 - A2). (2.53) 

Thus, in this limit, the free energy and the current of the saddle-point states are com

pletely determined by ka and £, with ka being the effective wavevector characterizing 

In order to compute the barrier heights and attempt frequencies, it is necessary 

to make the connection between a given metastable state and its associated saddle-

point states. This connection is made in the following way. The key notion is that 

all states, by virtue of the boundary condition given in eq. (2.22), have the same 

phase (modulo 2?r). Suppose that the metastable state ipm under consideration has 

a wavevector km = $/£ [see eq. (2.40)]. Then the saddle-point state ij)~ protecting 

ipm from current-reducing fluctuations will have a current J~, and hence wavevector 

k~, that is slightly smaller than km. On the other hand, the saddle-point state V>* 

protecting \j>m from current-increasing fluctuations will have a current Ja
+, and hence 

wavevector &+, that is slightly larger than km. Thus, k~ can be obtained by setting 

na = 0 in eq. (2.48), and equating this expression with that from eq. (2.40). This 

gives k~£ + 2^(6~) = km£. As 6+ is slightly larger than fcm, we have that n, = 1, 

and so k+£ + 2%(&+) — 2?r = kmL These two expressions can be combined into the 

compact form 

kmt = k?£ + 2X(kf) - (7r ± TT), (2.54) 

up to terms of order mi. Equation (2.54) gives km in terms of 6,; we seek ka in terms 

of km. Inverting eq. (2.54) gives, to second order in i'1, 

kf = km- f'x=k(W - r 2 - ^ % & L + c?(r3), (2.55) 
U{km)y/A(km) 

X±(q) = 2X(q)-(ir±v). (2.56) 

This relationship is central. It is the length-dependence of the relationship between 

km and kf that gives rise to the algebraic length-dependences of the barrier heights 

and attempt frequencies. 
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Finally, the main results of this section, for the particular case of a saddle-point 

protecting a metastable state from a current-decreasing transition, are summarized 

visually in Fig. 2.5. In this figure, the amplitude and phase of a metastable state (dot

ted curves) and its associated (current-decreasing) saddle-point state (solid curves) 

are plotted as a function of x. Here we see that / , is reduced over a spatial region 

of width 0(£) around xo, which in this case is zero. This reduction in / , means that 

the phase (j>a must wind more rapidly in this region. However, in order to compensate 

for this, i.e., in order that ka—the slope of <f>a in the outer regions—satisfy eq. (2.48), 

the phase must wind less rapidly in the region over which |^i,(x)| varies. This implies 

that ka < km, as can be seen in Fig. 2.5. 

2.6 Barrier Heights 

The barrier heights are determined by the difference in free energy between the 

metastable and saddle-point states, i.e., 

U = D~l kBT(F[i>a] - F[K]) = D~l k*TAF. (2.57) 

Although Tm and T, are given in eqs. (2.39) and (2.50), respectively, we seek the 

barrier heights protecting a given metastable state ij)m from current-altering transi

tions. Thus, we are required to determine the relationship between a given state ipm 

and its associated saddle-points. This was accomplished in the previous section [see 

eq. (2.55)], where we restricted our attention to the nearest-neighbor saddle-points. 

Combining eqs. (2.55), (2.39) and (2.50), we find 

A^± = A ^ + e-'A^ + Oil-2), (2.58) 

A f f = y2A(km)-2X±(km)kmu(km), (2.59) 

Af2> = X±(W=A(W, (2.60) 

where A^"+(_) is the barrier height associated with current increasing (decreasing) 

transitions. Although only the 0(£~l) correction to the barrier is exhibited, it is 
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Figure 2.5: |V>«| and <j>a as a function of x for a saddle-point associated with a current 
decreasing transition. The dotted lines are the corresponding amplitude and phase 
for the associated metastable state. 

straightforward to compute the subsequent (algebraic) corrections. In order to com

pute the nth order correction, it is necessary to find ka as a function of fcm, to the 

(n + \)th order, as the free energies Tm and Ta are proportional to £ [see eqs. (2.39) 

and (2.50)]. 

Evidently, the barrier heights are increased relative to their infinite-length value. 

In the small current limit, i.e., when km —» 0, we find that AT^ —» %2; thus, the 

corrections can be numerically significant. At first sight, it is not obvious that, in the 

m = 1 approximation [see eq. (2.47)], any nonexponential length-dependent correc-
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tions should arise. One might expect that, due to the fact that the spatial variation 

is localized to a spatial region of order £(T), the system would be sensitive to the size 

only when L ~ £(T). If this reasoning were valid, we would expect that the leading 

length-dependent corrections would be exponential in l~x. That they are algebraic 

results from the presence of the phase degree of freedom, and the consequent require

ment that the metastable and transition states have the same winding angle, modulo 

2TT. More specifically, the length-dependence of the barrier heights arises solely from 

the relationship, given in eq. (2.55), between km and ka; it is precisely this relationship 

that is the source of the algebraic length-dependence. 

2.7 Attempt Frequencies 

The prefactor ft in the Arrhenius-type expression for the fluctuation rate £T is given 

by 
1 y(i)y(2) 

0 = fm^#-'^' 
det 'I , 
det'L„ 

-1/2 
(2.61) 

(This equation is derived in App. C.) The quantity f(T) = TGL{T)VD4IT3 is a char

acteristic time [see eq. (2.31)]. The V-factors appearing in eq. (2.61) arise from 

integrations over the so-called zero modes (see [29] and App. C); V^ and V*J* result 

from integrating over the collective coordinates associated with gauge invariance, and 

Vj2) results from integrating over the collective coordinate associated with transla

tional invariance. This latter symmetry gives rise to the overall scaling of ft with £. 

The quantity XM is the negative eigenvalue associated with the reaction coordinate 

(see below). The fact that ft is proportional to A ĵ is consistent with the intuitive 

notion that an increase in the curvature of the free energy at the saddle-point, in the 

'downhill' direction, will result in an increased fluctuation rate. As we are interested 

in algebraic corrections to ft, the value of X^ obtained for £ = oo is sufficient, as any 

corrections are 0(m,\). Based on this, it is tempting to argue that since any individ

ual eigenvalue should only acquire corrections of O(mi), the overall length-dependent 

corrections to ft will be of this same order, i.e., not of interest here. This is not in 
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fact the situation, as will be borne out by the explicit exhibition of algebraic length-

dependent corrections to ft. The reason is that the exponentially small corrections to 

an individual eigenvalue accumulate in the infinite product of eigenvalues to generate 

an algebraic dependence on the length. 

The quantities Lm and La appearing in eq. (2.61) are the so-called fluctuation 

operators that are associated with the second variation 

&#:) = [t/2 dx6&Le6* 
J-t/2 

of the free energy. The two components of Sty are Srp and its complex conjugate, so 

•that 

I , = (2.62) 
- d 2 - l + 2 / 2 /e

2e2'*« • 
/e2e-2,*« _ 5 2 _ 1 + 2 /2 

The metastable states %l>m are those states for which all eigenvalues of Lm are non-

negative. In other words these states are local minima of T. The saddle-point states 

V>, are characterized by the existence of a single negative eigenvalue (A,o) in the spec

trum of La. The associated negative eigenvector is the so-called reaction coordinate 

representing the direction (in function space) of largest decrease of T. 

Whereas it was straightforward to compute the barrier heights, the same is not 

true for the attempt frequencies. The difficulty is in the computation of the ratio of 

functional determinants 

# = det 'L,/det 'Lm , (2.63) 

that appears in eq. (2.61. The primes on det indicate that no zero eigenvalues are 

included in the computation of the determinants. The dependence of ft on the ratio B! 

can be understood intuitively, in the following way. First of all, the proportionality of 

ft to \/det' Lm is actually what gives rise to the labelling of ft as an attempt frequency. 

(Strictly speaking, it is only this term, divided by the dimensionful time f (T), that 

should be called an attempt frequency.) The idea is that as the curvature of the free 

energy about the metastable state increases, the frequency with which the system 

fluctuates about the state 0 m increases, thus leading to an increase in the number 
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of attempts, per unit time, to cross the barrier. On the other hand, ft is inversely 

proportional to y/6.et' Lt. This dependence reflects the notion that if the curvature 

of the free energy at the saddle-point, perpendicular to the reaction coordinate, is 

decreased, the system has more configuration space through which to pass over the 

top of the barrier, and hence the result will be an increase in the fluctuation rate. 

A useful interpretation of \/det' Le is in terms of an entropy [8]. That is, Se = 

—&gln \Zdet' Le is interpreted as the entropy associated with order parameter fluctu

ations about state rj)e [8]. Then, if Ttot[^e\ = . ?# , ] + TSe is defined to be the total 

free energy (where F is now interpreted as an energy, rather than a free energy), then 

the fluctuation rate ^P can be written in the form 

# = ?^)^?lA»°le"t/'0,/'!BT' (2.64) 

where Utot = {Ftot[il>>) — Ftot[>l>m])/D. This interpretation of the ratio of fluctuation 

determinants, and hence the fluctuation rate T, will be useful when the current source 

is discussed in Sec. 2.10. 

At first sight, the calculation of R is daunting. There are two main issues. The 

first is that R is the ratio of two infinite products of eigenvalues of differential opera

tors, which are in general difficult to diagonalize directly. The second is that any zero 

eigenvalues must be omitted from the ratio of products. In the work of McCumber 

and Halperin [8], R was computed directly. However, their result only applies to the 

situation in which £ = oo, and it is not clear how to generalize their results to the 

case of finite £. 

Fortunately, however, there is a recent mathematical result, due to Forman [30], 

that expresses R (the ratio of determinants including all eigenvalues) in terms of the 

boundary conditions and the solutions of the homogeneous equation 

Forman's result is that 

Iene = 0. (2.65) 

«-rg:as-
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Here the (4 x 4) matrices N and M encode the boundary conditions, and Ye(x) is 

the so-called fundamental matrix, constructed from the i]e (see Chap. 3 and App. D). 

Thus, the ratio of infinite dimensional matrices has been reduced to the ratio of finite-

(in this case four-) dimensional matrices. In addition, Forman's equation (2.66), a 

generalization of the GePfand-Yaglom formula [31], is particularly useful in that it 

emphasizes the independent roles of the boundary conditions and the solutions T/e, 

which, by definition, have no dependence on boundary conditions. 

The first issue discussed in the previous paragraph, viz., the computation of the de

terminant of an infinite-dimensional matrix, is resolved by Forman's equation (2.66). 

However, in order to compute ft, R is needed, not R, which in the presence of zero 

modes would be 0/0, and thus not well-defined. Thus, eq. (2.66) must be modified in 

some way. One natural approach is to 'regularize the problem'. Generally, this con

sists of perturbing the problem in some way so that what were once zero eigenvalues 

are no longer zero, in which case eq. (2.66) can be used to obtain a meaningful result. 

Next, the pseudo-zero eigenvalues are computed, usually perturbatively, and factored 

out of the perturbed result. Finally, the perturbation parameter can be taken to zero, 

leaving a well-defined result for the ratio R. 

There are at least three distinct schemes by which to accomplish the regularization. 

One way to proceed is to to move the location of the boundaries. This is essentially 

the procedure followed by Duru, Kleinert, and Unal [22]. In their approach they made 

use of the Gel'fand-Yaglom formula [31]; in this sense their approach is similar to the 

approach presented here. However, their approach, which requires integrating out 

the phase degree of freedom (leaving 1 x 1 matrix-differential operators, as opposed 

to the 2 x 2 matrix-differential operators Le [see eq. (2.62)] under consideration here) 

is only valid in the limit that £ = oo. Another option is to perturb the operator in 

such a way so that the determinant of the perturbed operator can be calculated using 

Forman's equation. What was a zero mode will now be non-zero, in proportion to 

the strength of the perturbation; the psuedo-zero eigenvalue can then be calculated 

perturbatively. This is the approach that we have followed in computing ft [9]. The 
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utility of our approach, discussed in detail in Appendix D, is our perturbation scheme, 

which allowed us to make use of Forman's equation (2.66). A third approach is to 

perturb the form of the boundary conditions, while leaving the form of the operator 

unchanged (see Chap. 3). The utility of this approach is that it allows the derivation of 

remarkably simple equations for R, which only depend on the n,- at the boundaries. 

This approach, which was developed in collaboration with A. J. McKane, will be 

explained in detail in Chapter 3. 

The second approach mentioned in the previous paragraph, namely regularizing 

by perturbation of Le, yields the following form for ft±, accurate to O(mi): 

ft± = 27/4f(r)-1£A(Jb±)A(ifc,±)7/4eV/S(M^-v/^(*.±)/« 

r A ^ M W m , 2V2 11-i/2 

^ A l w W V-u{kf)jA(kt)i\ ' (2>67) 

where A(q) = - 1 - , 2 + [3A(g)2 + (1 + q2)2]1'2. The details of the derivation of 

eq. (2.67) are provided in App. D. Equation (2.67) gives the prefactor ft± in terms of 

ka which, by virtue of eq. (2.55), can be expressed solely in terms of A:m and £. Thus, 

it is possible to expand ft±(fcm) in powers of £~l, to any desired order, yielding the 

result that the length-dependent corrections have the effect of increasing ft/£. In the 

limit that km —» 0, the expression for ft± simplifies considerably to the form 

fi±=4[l+r*i^ + C?(r2)]. (2.68) 

The evident increase of the prefactor as the length is reduced is interpreted as the 

flattening out of the free energy at the saddle-point, in the directions perpendicular to 

the reaction coordinate, thereby providing the system with more configuration space 

through which to pass over the barrier. Thus, the length-dependent correction to 

ft±/£ has the effect of tending to increase T±. This is in contrast to the effect from 

the barrier height corrections which, as was found in Sec. 2.6, tend to reduce Y±. 
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2.8 Results 

In Sec. 2.6 we found that as the length of the wire is reduced, the length-dependent 

corrections to the barrier heights tend to reduce the fluctuation rate per unit length, 

whereas, in Sec. 2.7 we found that the length-dependent corrections to the pre-

exponential factor, or attempt frequency, have the effect of increasing the fluctua

tion rate per unit length. Thus, these two effects compete. In order to quantify this 

competition, it is useful to expand, viz., 

AF « AJ*0) + tl AJ*l\ (2.69) 

ft «• n(°) + /- ,nw. (2.70) 

Thus, we find 

ln[r(£)/r(co)] w fl{ - f r 'AfO + ft(1>/ft<°>}, (2.71) 
r(oo) = ftWexp(-5A^°)). (2.72) 

The competition between the barrier height and attempt frequency corrections is a 

consequence of the positivity of A ^ ^ and ft*1'. However, in order for the Ginzburg-

Landau approach to be valid, we should have D < 1 [8]. Thus, the length-dependent 

corrections to the fluctuation rate, and hence the lifetime of the persistent currents, 

are essentially determined by the length-dependent corrections to the barrier heights. 

For the sake of illustration, we suppose that Tc = 1 K, Hc = 100 G, ((0) = 1000 X, 

y/a = 750 A, and T/Te = 0.99, so that D % 0.10. In the low-current limit, AF^ = 

7T2, so that r(()/r(oo) « exp(-D-*Af(i)/f) % exp(-99/f), i.e., roughly 0.14 when 

L=50^m. It is worthwhile to note that T is extremely sensitive to the temperature; 

this is due to the temperature dependence of D. For example, for the parameters 

introduced above, P(oo) « 6 Hz. However, if we reduce T from 0.99 K to 0.98 K, then 

D changes from « 0.10 to « 0.035 and now T(oo) w 10~14 Hz. Thus, it is only for 

temperatures reasonably close to Tc that the lifetime of a current carrying state is 

measurable. 

33 



2.9 Voltage Source 

So far in this chapter we have considered the situation in which the magnetic flux pen

etrating the ring is static in time. This allowed us to compute the length-dependent 

corrections to the lifetime of the persistent currents in the ring. If we now allow 

the (dimensionless) flux $ [see eq. (2.23)] to increase linearly with time, then, by 

Faraday's law of induction, a constant electromotive force (emf) 

y = (6/2eTG6)^P (2.73) 

will be induced in the ring. (See Chap. 4 for a more detailed discussion.) 

The induced emf will accelerate the superconducting condensate, according to the 

first London equation (i.e., Newton's law of motion applied to the condensate) [16]. 

However, as we have seen, the current-carrying states are metastable, i.e., the current 

can decay. Thus, if the current-altering transitions occur sufficiently frequently, it is 

possible to establish a nonequilibrium steady state, in which the increase in current 

resulting from the acceleration due to the emf is balanced, on the average, by the 

net decrease in current due to thermally activated phase-slip processes. In general, 

the fluctuation rates will depend on both the current of the metastable state, as well 

as the externally applied emf. If we denote by (?_(+)(/, V) the (current and voltage 

dependent) fluctuation rate for current-decreasing (increasing) transitions, then the 

emf V required to maintain a certain average supercurrent I is given by [32] 

V = ^[T.(I,V)-T+(I,V)}. (2.74) 

Equation (2.74) is complicated by the fact that right-hand-side depends on V. This 

situation can be simplified considerably if we make a quasi-static approximation. To 

do so, we identify two time scales. The first is h/2eV; this is the time required for the 

emf to advance the phase of the order parameter by 27r. The second is the time-scale 

for an individual phase-slip process, which we estimate as being of 0(JGL)- Now, 

if TGL <C h/2eV, then during a particular phase-slip event, the phase is essentially 
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static. This defines the quasi-static approximation. Under these conditions, eq. (2.74) 

can be replaced by 

7 = ~(r_(/,o)-r+(/,o)). (2.75) 

But, T±(/,0) are the rates per unit length that we have computed previously. Thus, 

using eq. (2.64), we can write eq. (2.75) in the form 

V = (A^r_ (l - ^±e-^-u-^T). (2.76) 

Using the results in eqs. (2.58) and (2.68), in the limit that km < 1, the above 

expression reduces to 

V = IRint (2.77) 

Rim = K{l + ~ ^ + 0{£-2))e-*r-lD (2.78) 

where RQ = £(h/2e)2/fkBT, I = k^eksT/Dh [see eq. (2.16)], and Af_ is given in 

eq. (2.58). The quantity #,„« is the intrinisc resistance of the superconductor. (Using 

the parameters of Sec. 2.8 and for T = 0.99K, in order of magnitude Rint/£ % 1.8pft.) 

Thus, as we found previously for the length-dependent corrections to the lifetimes of 

the current-carrying states, the length-dependent correction to the barrier height AT-

will dominate. Thus, we see that as the length of the wire is reduced, Rint/£, the 

intrinsic resistance per unit length, will decrease. 

2.10 Current Source 

In this section we imagine that the superconducting ring is driven by a current-source. 

In particular, we imagine that the solenoidal flux can respond to the supercurrent 

fluctuations, by inserting or removing flux, so as to maintain a constant supercurrent. 

This requires some type of feedback mechanism whereby the magnetic moment of the 

ring is monitored (e.g., using a SQUID magnetometer) and any time a fluctuation in 

the magnetic moment is detected, the feedback mechanism responds in just such a 

way as to counteract the intrinsic fluctuation. In this case, the independent variable 
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is the (dimensionless) supercurrent J, in contrast to the voltage source, where the 

independent variable is the (dimensionless) flux $. In other words, for a current-

source, the flux $ fluctuates and the current J is determined, in contrast to a voltage-

source, where $ is determined and J fluctuates. 

In order to compute the fluctuation rates when J is the independent variable, 

we need to change the ensemble from one in which $ is constant to one in which J 

is constant. Referring to eq. (2.64), this means that we need to compute the total 

free energy when the current is the independent thermodynamic variable. This is 

accomplished by introducing a (generalized) fugacity exp(2D~x J), multiplying the 

numerator and denominator by this quantity, and integrating each over the now 

unconstrained (i.e., fluctuating) variable $: 

! rrd*eaD-^*{e-D-,t*Jvi1)Vi3)|A<0||det'L.r1/2}l 
£T = J_/° r2T - — . (2.79) 

T<T) j[ #,,D-V*{,_D-.fWV(i) |de</L,»r'/2}|, 

The integrations over $ may be performed using Laplace's method because Z ) < 1 

[33]. The maximum values of the exponents, i.e., (minus) the Gibbs free energies [34] 

g[ipe] = F[il>e) - 2 J $ « (2.80) 

occur at 

$ , = let + 2%(6) (mod 2%) (2.81) 

and 

$n = kl (mod 2^), (2.82) 

where &(< l / \ /3) satisfies J = k u(k). This can be seen by first noting that the $ e 

satisfy 
FiTUl, 1 fIT Fll-

(2.83) 2J = ^ ^ 
d$ dked$ 

Using eqs. (2.39) and (2.50) for Tm and Ta, respectively, and eqs. (2.40) and (2.48) 

for fcm($) and &,($), respectively, and defining k to be the smallest positive root of 
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J-k(l- fc2) = 0 (for J < 2/y/Ti), eq. (2.83) yields the result that 

ke = k. (2.84) 

Equation (2.84), when combined with eqs. (2.81) and (2.82), yields the values for $„ 

given in eqs. (2.81) and (2.82). The interpretation is that the current source responds 

to a fluctuation by inserting (or removing) flux so as to maintain a constant current. 

Thus, $ m and $ , differ. Using Laplace's method, eq. (2.79) can be written as 

where F"=d2P[il>e]/d$2\tt. This quantity takes into account the phase fluctuations 

that are required to maintain a constant current J. Using eq. (2.39) for ,Fm, and 

eq. (2.40) for fcm($), w e fil"* that 

K-2®. (2.86) 

Similarly, using eq. (2.50) for Ta and eq. (2.48) for 6,($), we find that 

Now, the the third factor in the right-hand-side of eq. (2.85) can be obtained from 

eq. (2.67) by replacing km and ka by k [see eq. (2.84)], which when combined with 

eqs. (2.86) and (2.87) yields 

£T± = 27/4f(T)-1£A(fc)A(fc)7/4e-c/±/ fcBT, (2.88) 

where the barrier heights £/± are given by 

U = D-xkaT(9[1>.\ ~ G[1>m]) = D~lkBTAg±, (2.89) 

and where 

AQ± = i\/2A(6) - 4x±(fc)A: u(k) + 0(rm). (2.90) 
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The +(—) subscript stands for flux-increasing (decreasing) transitions. As AG- < 

AQ+, the flux-decreasing transitions are more likely than the flux-increasing transi

tions, which implies that on average, the current-source must add flux to the system; 

in other words, the system is dissipative. From eq. (2.88), we see that although the 

pre-exponential factors in the integrands of eq. (2.79) depend algebraically on £/L, 

this algebraic dependence is exactly cancelled by the ratio \jPmlT" that arises from 

the Gaussian fluctuations of $. Thus, in contrast with the voltage-source case, we 

see that the rate per unit length T is insensitive to the sample circumference, up to 

terms 0(mi). 

The different behavior of mesoscopic superconducting rings under the influence 

of voltage and current sources is a specific example of the general result that for 

systems that are not in the thermodynamic limit, i.e. mesoscopic systems, the choice 

of ensemble is not free. In thermodynamics, the different thermodynamic potentials 

that are associated with different ensembles, which are distinguished by their inde

pendent variables, are related by a Legendre transformation. However, when the 

system is not in the thermodynamic limit, the change of ensemble is implemented 

as above, by introducing a generalized fugacity, and integrating over the variable 

conjugate to the independent variable. This allows the effect of the fluctuations of 

the conjugate-variable to be taken into account. As we have seen explicitly above, 

where the fluctuations in 0 are responsible for the exact cancellation of the explicit 

time dependence of the attempt frequency, these fluctuations can be important in the 

mesoscopic regime. 

2.11 Conclusions 

In this chapter we have studied the length-dependence of the lifetime of persistent 

currents in superconducting rings. We found algebraic length-dependent corrections 

to both the energy barriers and attempt frequencies that enhance both quantities. 

The increase in the barrier heights has the effect of reducing the transition rate (per 
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unit length), whereas the increase in the attempt frequencies (per unit length) has the 

effect of increasing the transition rate (per unit length). Thus, a competition arises. 

In practise, we found that it is the barrier heights that dominate, so our conclusion 

was that as the length of the wire is reduced, the transition rate (per unit length) 

decreases. 

In the second part of the chapter we considered two distinct experimental situ

ations: (i) the system is driven by a voltage source, and (ii) the system is driven 

by a current source. We found that for the voltage source case, the lifetimes of 

the metastable current-carrying states acquire algebraic length-dependent corrections 

that are identical to those found for the persistent currents. On the other hand, we 

found that in the case of the current source, there are no algebraic length-dependent 

corrections. This is a specific example of the general result that for systems that are 

not in the thermodynamic limit, the choice of ensemble is not free, but depends on 

the experimental circumstances. 

In order to carry out the computations, we made use of two mathematical results: 

Forman's equation and Jacobi's theorem. The former is relatively new, and is a pow

erful generalization of previous results that express functional determinants in terms 

of the solutions to homogenous differential equations. The latter, Jacobi's theorem, 

is much older. Nevertheless, it was an important component in our computation 

because it provided an algorithmic method for solving the homogenous differential 

equation that arises through the use of Forman's equation. 
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Chapter 3 

Regularization of Functional Determinants using 
Boundary Perturbations 

3.1 Introduction 

In this chapter I present a method for regularizing functional determinants using 

boundary perturbations. This work was done in collaboration with A. J. McKane 

(Univ. Manchester, U. K.). We were motivated by the increasing use of path inte

grals as a calculational tool, which has led to a corresponding increase in interest 

in the evaluation of functional determinants. This is simply because the evaluation 

of Gaussian path integrals typically gives such determinants. The first results were 

obtained over thirty years ago: Gel'fand and Yaglom [1] derived expressions for the 

functional determinants obtained from evaluating path integrals with the simplest 

type of quadratic action. In subsequent years the results became more general and 

the formalism more elaborate [2,3], culminating with the work of Forman [4] who gave 

a remarkably simple prescription which can be applied to a rather general operator 

and boundary conditions. 

However, in many calculations involving Gaussian integrals that are currently 

carried out, these results are not directly applicable. The reason is that the Gaussian 

nature of the integral is frequently a consequence of expanding about some non-trivial 

"classical" solution of the model (e.g., a soli ton or instanton). Typically this results 

in a particular point (in space or time) being selected, which breaks the translational 

invariance of the theory, and so gives rise to a Goldstone mode. There are other 
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possible ways that such a zero mode could come about, but in all cases the Gaussian 

approximation breaks down. The remedy is to first extract this mode as a collective 

coordinate [5] and to treat only the non-zero modes in the Gaussian approximation. 

Therefore, it is not the functional determinant that is required in these cases — it 

will in any case be identically zero — but the functional determinant with the zero 

mode extracted. 

In this chapter we present a systematic method to calculate this quantity. The 

most obvious way to proceed is to "regularise" the theory in some way, so that the 

eigenvalue of the operator under consideration, which was previously zero, is now 

non-zero. The determinant is now also non-zero and the pseudo-zero eigenvalue can 

be factored out, the regularisation removed, and a finite result obtained. Previous 

approaches have been rather ad hoc, being performed on a case by case basis as the 

need arose. For example, it may be possible in certain cases to modify the form 

of the operator in such a way that the zero mode is regularised, but also that the 

calculation may still be performed [6, 7]. This is the approach that we used to 

compute the fluctuation determinant that arises in the expression for the rate of 

decay of a persistent current in a quasi-one-dimensional superconducting ring (see 

Chap. 2 and App. D). In other cases, it may be possible to move the boundaries to 

achieve the same end [8, 9]. Here we adopt an approach which applies to very general 

situations and which, we believe, is the simplest and most systematic regularisation 

and calculational procedure. This is because the method is the least intrusive — 

the operator and the position of the boundaries are left unchanged — only the form 

of the boundary conditions are modified in the regularisation procedure. We use 

the notation and general approach of Forman to calculate the regularised functional 

determinant, as it is ideally suited to this form of regularisation, emphasising as it 

does the separation of the boundary conditions from the solutions of a homogeneous 

differential equation. 

In Sec. 3.2 we develop our method in one of the simplest situations in order to 

clearly illustrate it. The calculation of the regularised expression for the formerly 
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zero eigenvalue is derived, for the most general case that will interest us, in Sec. 3.3 

and the general procedure for finding the functional determinant with the zero mode 

extracted is described in Sec. 3.4. In Sec. 3.5 we apply the method to certain specific 

cases and we conclude in Sec. 3.6 with some general remarks. 

3.2 A Simple Example 

In this section we will explain the method by carrying out an explicit calculation 

on what is perhaps the simplest example. Suppose that we wish to calculate the 

determinant of an operator of the form 

d2 

L = ^ + P(t), te[a,b], (3.1) 

where P(t) is a known real function. We suppose that the boundary conditions on 

the functions on which L operates are homogeneous Dirichlet, i.e., u(o) = u(b) = 0. 

In particular, the eigenfunctions of L have to satisfy these conditions. 

We now give Forman's prescription for calculating det L. A more detailed discus

sion is given in Sec. 3.4, where our approach is explained in greater generality. The 

recipe has two ingredients: 

(i) Write the boundary conditions on L in the form: 

M 
u(ay 

.«(«). 
+ N 

u(by 

Mb). 

o-
.0. 

(3.2) 

where M and N are 2 x 2 matrices and u = du/dt. These two matrices are not unique; 

for the case of our boundary conditions u(a) = u(b) = 0 we choose them to be 

M = 
1 0 

.0 0. 
, N = 

0 0" 

.1 o. 
(3.3) 

(ii) Now consider a different problem. Let yi(t) and y2(t) be two independent 

solutions of the homogeneous differential equation 

Lh = 0. (3.4) 
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H(t) = 

Construct the matrix H(t) defined by 

yi(0 ito(0' 

M*) Ht). 
and the 2 x 2 matrix Y(b) = H(b)H~l(a). 

Forman then proves that [4] 

detL det(M + NY(b)) 

(3.5) 

(3.6) 
d e t l det(M + NY(b)) 

We would expect that det L itself is divergent, being a product of an infinite number 

of eigenvalues of increasing magnitude. Therefore it is only when it is defined relative 

to the determinant of an operator of a similar type (denoted here by L), that it has 

any meaning. In applications to path integrals, ratios of determinants such as the one 

on the left-hand-side of eq. (3.6) naturally arise from the normalisation of the path 

integral itself. In general, they will relate to a simple quantum mechanical system or 

stochastic process, such as the harmonic oscillator or Ornstein-Uhlenbeck process. In 

these cases, P(t) is independent of t and will not, in general, have a zero mode. 

For the matrices M and N of our simple example, 

det(M + NY(b)) = Yu(b) 
Vi{a)y2(b) - y2(a)yi(b) 

(3.7) 
yi(a)y2(a) - yiia^a)' 

The denominator of this expression is the Wronskian, which does not vanish as the 

two solutions yi(t) and y%(<) are presumed independent. If we take yi(t) to be a 

solution for which yi(a) = 0, then (3.7) can be simplified to yi{b)/yi(a), so that, if 

yi(a) also vanishes, 
detL yi(b)yi(b) 

d e t i " - y i ( 6 M 6 ) ( ' 

This simple expression is particularly useful, since it only involves yi,j)i and their 

first derivatives at one of the boundaries. We should stress that results such as this 

have been known since the work of Gel'fand and Yaglom — our purpose here is to 

introduce the formalism required to describe our approach, in as simple a way as 

possible. 
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Now suppose that yi(6) = 0 (as well as yi(a) = 0). Then yi(t) is an eigenvalue 

of L with zero eigenvalue. This is the situation of interest to us in this chapter. To 

extract this zero mode, we first regularise the problem by modifying it so that the 

operator is unchanged, but the boundary conditions u(a) = u(b) = 0 become 

u'£ '(a) = 0, ti«(6) = £u<£>(6) (3.9) 

where e is some small number. Now yi(t) is no longer an eigenfunction of L with zero 

eigenvalue. Let yj (<) be the corresponding eigenfunction (i.e., the one that reduces to 

j/i(<) when e —• 0) and let it have eigenvalue A^. TO find det L with these boundary 

conditions we first note that Y(b) is unchanged, as it does not involve boundary 

conditions at all; it only depends on two independent solutions to the homogeneous 

differential equation Lh = 0. Modifying the boundary conditions as in (3.9) only 

changes M and TV to 

M<<> = 
1 0 

0 0 
7VW = 

0 0 

1 - e 
(3.10) 

This gives det(M« + N^Y(b)) = Yi2{b) - eY22(b). But as yi(a) = y,(6) = 0, 

Yn(b) = 0, and so 

det(M<<> + N^Y(b)) = -ey22(6) 

Mb) 
yi(o) 

(3.11) 

This is the regularised form of the determinant. In the next section we will give a 

general method for finding A^. In this simple problem it turns out that, to lowest 

order in e, 

Af> = - » ' « 
toils.)' 

where (y\\yi) is the norm of the zero mode: 

<yi|yi> = fdtyKt). 
Ja 

From (3.11) and (3.12) we have: 

det(MW + N^Y(b)) 
lim-
e—o AW 2/1(0)2/1(6) 

(3.12) 

(3.13) 

(3.14) 
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This remarkably simple result is the one that we sought. Note that, apart from the 

norm, it is only involves t/i at the boundaries. In applications, it will usually be 

the case that the norm in eq. (3.14) will cancel with an identical factor coming from 

the lowest order form of the Jacobian of the transformation to collective coordinates. 

Therefore (j/i|t/i) need not be calculated. Denoting the determinant of L with the 

zero mode extracted by det' L and normalising by det L, we finally obtain 

det'L (yijyi) Vl(b) 
detL"yi(a)yi(6)yi(6) ^ ' 

The method we have described to find the regularised form of det(M + NY(b)) 

is hardly more complicated than finding the unregularised form. The key to achiev

ing this happy state of affairs was firstly the decision to modify only the boundary 

conditions, and secondly, the choice of regularised boundary conditions, which gave 

simple forms for AfW and TVW. We shall now show that these choices also allow AW 

to be determined in a very simple and elegant way. 

3.3 The Regularisation of the Eigenvalue 

While the regularised form of the determinant could be found by use of Forman's 

method, a new technique for calculating the previously vanishing eigenvalue AW has 

to be developed. It is natural to attempt to calculate it perturbatively in c, but it is 

not at all obvious that a general procedure can be set up. Fortunately, it will turn 

out that choosing the regularised boundary conditions in the manner illustrated in 

Sec. 3.2 on a simple example, enables AW to be found to lowest order almost without 

calculation. 

Let us begin describing the method where the operator is of the simple form 

eq. (3.1); we will generalise to more complicated operators later in this section. There 

is no need to specify the boundary conditions at this stage, because, as we will see, a 

useful formula for AW can be derived without having to make any choices of boundary 

conditions. Using the notation introduced in the last section: 

6y|'> = A V , (3.16) 
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where yi\t) —» yi(t) and AW -> 0 as e -> 0. From eq. (3.16) we have 

rh , > . . fb Jadty1Ly[t) = AWjTdiy^W 
= AW( y i | y i) , (3.17) 

to lowest order in c. Integrating by parts gives, again to leading order, 

fain) l ' 
This result is true for operators of the form (3.1) with arbitrary boundary conditions. 

As an example, suppose we impose the regularised boundary conditions (3.9). Then 

the eigenfunction y{e)(0 will satisfy them: y['\a) = 0, y[t](b) = ey{e)(6). In addition 

yi(ot) = yi(6) = 0, so that to lowest order 

AW = _ yi{b)y\i](b) 

(«/i W 

= -etmB. (3.19) 
(yilyi) 

as given in Sec. 3.2. Note that the e dependence simply came from the requirement 

that yi(b) = eyi(i), to lowest order. 

Analogous results to eq. (3.18) hold for more general operators. For example, 

suppose that 

Li^Si — l-Pijit); i,j = l,...,r, (3.20) 

where P(t) is a complex matrix, and suppose that the operator (3.20) has a single 

zero mode y,,i, that is, £j=i Lijyj,\ = 0. In matrix notation, the zero mode is the 

column vector y% = (yi,i, ..,yr,i)T. Let yW(() be the corresponding eigenfunction of 

the regularised problem with eigenvalue AW. Then to lowest order we have 

rb 

where now 

/ dt £ ylLijy$ = AW %2(y,,i|y,,i), (3.21) 

(yilyi) = E W l K i ) = t dt Y, I2/,M(0I2- (3-22) 
t Ja i 
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Integrating the left-hand-side of (3.21) by parts gives the leading order result 

M _ TU ki(Qyg(0-^(Qyg(0]l fidt D.jy^(0{^-^}yg(0 _ _ 
A - S) + (yTW -(3'23) 

In most cases of interest to us L will be formally self-adjoint, and so the second term 

in eq. (3.23) will vanish. The self-adjoint nature of L is expected from its origin as 

the second functional derivative of the action in the path integral with respect to the 

fields: 

X2C 

The most general operator that we shall study in this paper takes the form: 

Li: = [ft(*)]« J + [A(01«4 + [m]* (3,25) 

where P0(t), Pi(t) and P2(t) are complex r x r matrices. We begin by making the 

transformation 
pa(t) = exp { i f dt (Po)-\Pi)} , (3.26) 

W ) = [pW'ff t ) (P)"1,. - [P(P)-% (3-27) 

so that 

where 

La = (Po)« (p_l)w£/m (p)mj, (3-28) 

Ai = ^ ~ + ^ i ( 0 - (329) 

Now if L is such that #,(*) = P0{t), then 

det L det C 
(3.30) 

det I d e t £ ' 

where £ is as in eq. (3.29), but with P replaced by P. Therefore the problem has 

been reduced to that considered earlier in this section (see eqs. (3.20) et seq). In 

fact, as regards determining the ratio of the determinants, Forman gives a general 

expression for the left-hand-side of eq. (3.30) (see next section), and so there is no 
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need to implement the transformation given in eqs. (3.26) and (3.27). To find the 

eigenvalue AW, however, this transformation is useful. It is easy to see that C has a 

zero mode if, and only if, L does, and that, in particular, if y,(t) is an eigenfunction 

of Lij with zero eigenvalue, then z,(<) = £ j Pij(t)yj(t) is an eigenfunction of £,-j with 

zero eigenvalue. The results of eqs. (3.21)-(3.23) now hold, but with L and y replaced 

by C and z, respectively. As in all of the examples discussed in this section, a judicious 

choice for the boundary conditions on the regularised eigenfunction y_W will yield an 

explicit regularised form for AW with the minimum of calculational effort. 

3.4 General Procedure 

There are two aspects to our approach to the calculation of det' Lj det L. One is the 

operation of finding AW to leading order, which was explored for the general case in 

the last section. The other aspect concerns the application of Forman's method for 

the calculation of det L/ det L, but with the regularised boundary matrices MW and 

JV"W. This was illustrated with a simple example in Sec. 3.2; in this section we discuss 

Forman's method in more detail and explain how to apply it to the general operator 

(3.25). We end the section with a summary of the general procedure that we have 

developed in this chapter. 

We suppose, following Forman [4], that the boundary conditions on (3.25) may 

be expressed as 

M 
«(«) 

.£(<*) J 
+ N 

\Mb) 

Mb) 
(3.31) 

where M and N are 2r x 2r matrices. This equation is simply the r-dimensional 

analogue of (3.2). So, for instance, if the boundary conditions are u(o) = «(&) = 0, 

then 

M = 
•iT 0 

.0 0. 
, N = 

0 0' 

J r 0. 
(3.32) 

where IT is the r xr identity matrix. 
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Now suppose that hi{t); i = 1 , . . . , r, is a solution of the homogeneous differential 

equation 52j Lijhj — 0, and define the 2r x 2r matrix Y(t), which describes the 

evolution of a solution and its first derivative with respect to t, by 

h{t) 

kt)\ 
= Y(t) 

h(a) 

i(«) 
(3.33) 

If y.i(t),y2(t), —^r(t), are 2r solutions of Lh = 0, then eq. (3.33) will apply to each 

solution separately, i.e., H{t) = Y(t)H(a), where 

) = r s , w *<«> - fcWi (334) 

So, in particular, H(b) = y(6)i/(a), or, if the solutions are independent so that 

det H ± 0, 

Y(b) = H(b)H-\a) (3.35) 

This explains the second construction [labelled (ii)] in Sec. 3.2. 

The formula for the ratio of determinants for operators of the type given in 

eq. (3.25) is [4] 

det L = exp ( | fj dt trP1(t)Po1(t)) det(M + NY(b)) 

det 2 " exp(l^<&trA(<)fo"'(*)) det(M + NY(b))' 
(3.36) 

For this result to be applicable, the matrices Pi(t) and Pi(t), and also P2(t) and 

P2(t) need not be equal, however the matrix Po(t), multiplying the second derivative, 

must be the same for both operators. In most applications L will be normalised by 

an L, which has a different, and simpler, matrix P2, but is otherwise the same. In 

these situations Pi = Pi, the exponential factors in (3.36) cancel out, and the simple 

formula given by (3.6) holds (except, of course, that M, N and Y(b) are now 2r x 2r, 

not 2x2 , matrices). We also note that, although the formula seems to be asymmetric 

with respect to the two points a and b, one could just as well define a matrix Y(t) by 

h(ty 

Mt). 
= y(<) 

6(6)' 

Mb). 
(3.37) 
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so that H{a) = Y(a)H(b). Then de t (M + NY(b)) = det(JV + MY(a)). Therefore, 

alternative formulae to (3.6) and (3.36) exist, with M and N interchanged and Y(b) 

replaced by Y(a). 

All of the formalism discussed so far in this section also applies to the problem 

with regularised boundary conditions — the only difference is that M and N are 

replaced by MW and JV"W respectively. We are now in a position to summarise the 

whole procedure: 

1. Modify the boundary conditions of the original problem by a small amount (e), 

so that y_j(t) is no longer a zero mode. Let yW(f) be the eigenfunction of the 

new problem with an eigenvalue A ^ which tends to zero as e —• 0. Express the 

modified boundary conditions in the form (3.31) so that they are characterised 

by two matrices AfW and JVW. 

2. Calculate Y(b) = # (6 )# - ' ( a ) , where H(t) is given by eq. (3.34). 

3. Calculate det(A/W + N^Y(b)). 

4. Calculate AW from eq. (3.23). 

5. Hence determine 

e-.o AW v ' 

6. Calculate the denominator factor de t (M + NY(b)) 

7. The ratio of the results of the last two steps gives det' Lj det L. 

We will now study various specific examples where this procedure is applied. 

3.5 Specific Examples 

The algorithm given at the end of the last section gives a method for determining 

the ratio det' Lj det L. In this section we will give explicit results for a few examples 

with commonly met boundary conditions and also discuss one example in some detail 
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to show how the method we have developed works in practice. We will only give 

results for the quantity given by (3.38), as the final result is found by normalising 

this by det L, which can be found from the formulae given in, for example, Forman's 

paper [4]. 

For simplicity we only consider the single component (r = 1) case where the 

operator has the form (3.1), for a variety of boundary conditions. 

(a) With the boundary conditions Au(a) + Bit{a) = 0; Cu{b) + Dii{b) = 0, 

d e t ' I 

(yilyi) 

+AC/yi(a)yi(b), iiA,C?0, 

-J3C/yi(a)yi(6), i f B , C # 0 , 

-AD/yi(a)yi(6), i f A D ^ O , 

+BD/y,(a)y,(6), if 5 , 0 ^ 0 . 

If all four constants A, B, C, D are non-zero it is easy to see that all four expres

sions are equivalent. Similarly, if only three of the constants are non-zero, then 

the two applicable expressions are equivalent. If only two constants are non

zero, one involved in the boundary condition at a, and the other at 6, then only 

one of the above applies. The simple example given in section 2 falls into this 

class: the boundary conditions there correspond to /I = 1, B = 0, C = 1, Z) = 0, 

and in this case eq. (3.39) reduces to eq. (3.14). 

(b) With periodic boundary conditions u(a) = u(b); u(a) — u(b)> 

d e t ' I _ y2{b) - y2{a) 
(yM Vi(a) det H(aY 

where det H(a) = y2(a)yi(a) — yi{a)y2{a) is the Wronskian. 

(c) With anti-periodic boundary conditions u(a) = — u(b); u(a) = — ti(4), 

det'L _ y2{b) + y2(a) 

(yilyi) yi{a) detH(a)' 

(3.40) 

(3.41) 
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As an example of the application of these results, we use one of the most well 

known situations in which instantons exist: imaginary time quantum mechanics with 

a potential V(x) = \x2 — \xA [6]. As shown in App. E, this problem leads one to 

consider operators of the form 

L = ~ + 1 - 3/?2dn2(rx|m), (3.42) 

where dn is an elliptic function [10], u = 0(t — t0)/y/2 and (5 = 2(1 — m)/(2 - m). 

The constants to and m originate from the integration of the second order ordinary 

differential equation that is satisfied by the instanton. The parameter to reflects the 

breaking of the time-translational invariance of the original theory and m is related to 

the energy of the classical particle in the mechanical analogy. The spectral properties 

of the system can be studied by imposing periodic boundary conditions on the path-

integral [11], which dictates that we use eq. (3.40) to find the required functional 

determinant. A straightforward calculation, outlined in App. E, yields 

d e t ' I 2(2 -mfl2 

(yilyi) ~ m2 

where K(m) and E(m) are the complete elliptic integrals of the first and second kind 

respectively. 

This result simplifies considerably in the limit where the energy of the particle 

in the mechanical analogy is zero and consequently the period of the instanton T 

becomes infinite. In App. E it is shown that the asymptotic forms of eq. (3.43), 

det(M + NY(b)) and (yi|yi), for T large are, respectively, eT/16, - e T and f. Com

bining all of these results gives 

This is in agreement with previous calculations (e.g., eq. (29) of Ref. [6]). It also 

illustrates the extra complication that may occur if the range (a, 6) is infinite. In 

these cases the numerator (3.38) and the denominator det(M+NY(b)) may separately 

diverge as T = (b—a) -* co. One can avoid these divergences in various ways, but the 

K(m) E(m) 
2 - m 2 ( 1 - m ) 

(3.43) 
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most obvious way to proceed in these cases is to use T as a regulator and to perform all 

calculations with T large, but finite, cancelling out the potential divergences between 

numerator and denominator before taking the T —* oo limit. 

3.6 Conclusions 

In this chapter we have developed a simple and effective way of regularising oper

ators which have zero modes. The method allows the functional determinants for 

these kinds of operators, with the zero mode extracted, to be calculated. The main 

advantage of the method, and the reason for its power, is that it leaves much of the 

structure of the unregularised problem intact. This means that much of the formal

ism originally developed in this case can be taken over with very little change. The 

approach that we have adopted has not emphasised rigor; it would be very interesting 

to put this work on a rigorous footing and explore further possible generalisations. 
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Chapter 4 

Supercurrent Dynamics Near the Critical Current 

4.1 Introduction 

In this chapter the dynamics of the supercurrent for currents close to the critical 

current will be discussed. As in Chap. 2, the physical system under consideration is 

a superconducting ring of circumference L threaded by a time-dependent solenoidal 

flux. In this chapter, we take the flux to be a linearly increasing function of time, so 

that by Faraday's law of induction, a time-independent electromotive force (emf) V 

will be induced in the ring. 

According to the London theory [1,2], a phenomenological theory of the electrody-

namic behavior of superconductors, the electric field (of strength V/L) will accelerate 

the condensate. More specifically, the London theory assumes that there is a dis

tinction between superconducting electrons and non-superconducting electrons. The 

phase transition from the normal state of a material to the superconducting state 

is viewed as a type of condensation of the superconducting electrons; the collection 

of superconducting electrons is therefore referred to as the condensate. The first 

London equation is simply Newton's first law of motion (F = ma) applied to the 

superconducting electrons, i.e., 

dl/dt oc V, (4.1) 

where I is the supercurrent. (The normal electrons are assumed to obey Ohm's 

law: /„ oc V, where Jn is the normal current.) Thus, according to eq. (4.1), the 

supercurrent increases without bound. 
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However, the existence of a critical current Ie is well established [3, 4]. Generally, 

the critical current is associated with the thermodynamic critical magnetic field He. In 

other words, Ic is understood as the value of the current that produces a magnetic field 

of strength Hc. This is known as Silsbee's rule [3]. Therefore, the unbounded growth 

of I predicted by eq. (4.1) is unphysical. Rather, we expect that the supercurrent 

will increase to the critical current. The question of what happens next is the focus 

of this chapter. 

Clearly, the London theory is unable to shed light on the question of the su

percurrent dynamics near the critical current. However, based on the success of the 

stochastic time-dependent Ginzburg-Landau (STDGL) theory (c.f. Sec. 2.3) as a basis 

for the understanding of the width of the resistive transition in quasi-one-dimensional 

wires [5], it is reasonable to use the STDGL theory to describe the behavior of a quasi-

one-dimensional superconductor in the presence of a constant electric field. In the 

problem of the width of the resistive transition, the system is close to equilibrium, i.e., 

the supercurrent flowing in the wire is much smaller than the critical current. Here, 

however, the supercurrent is close to the critical current, i.e., the superconductor is 

far from equilibrium. Thus, the success of the TDGL theory in the near-equilibrium 

regime does not justify our use of the TDGL in the far-from-equilibrium regime, it 

simply makes our choice reasonable. 

In the Ginzburg-Landau (GL) description of a superconducting ring of a finite 

length, there are a finite number of metastable current-carrying states of the super

conductor, each of which is a local minimum of the GL free energy (see Chap. 2). 

At this stage it is useful to refer to Fig. 4.1 (c.f. Fig. 2.1), where the metastability 

of the free energy is illustrated schematically. This figure is a schematic plot of the 

free energy as a function of the supercurrent at a particular time. The important 

point is that there are a finite number of metastable states in which the system can 

reside. Suppose that the system occupies the metastable state labelled by the arrow. 

We assume that the electric field is strong enough, and that the noise is weak enough 

(i.e., T is sufficiently far from Tc) so that thermally activated processes have a van-
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free energy 

metastable 

current 

Figure 4.1: Schematic plot of the free energy as a function of current. 

ishingly small probability of occuring on the time scale required to drive the current 

to the critical current [6]. Then, in the presence of an electric field, the current, and 

hence energy, of this state will increase. The system point will thus move along the 

envelope curve in Fig. 4.1. As this 'motion' takes place, the energy barrier protecting 

this state will decrease (c.f. Chap. 2, Sec. 2.6), i.e., the free energy schematically 

pictured in Fig. 4.1 will evolve in time. This process will continue until the energy 

barrier protecting this state vanishes. At this point the system becomes unstable; 

the instability is known as the Eckhaus instability [7]. What happens then? One 

reasonable hypothesis is that the system makes a transition to a metastable current-

carrying state of lower current and energy. But, as pictured in Fig. 4.1, there can be 

a multiplicity of such states. Which one of these, if any, is the one selected? 

In this chapter, we shall find that when the instability is reached, the system 

makes transitions to metastable current-carrying states of lower current and free en-
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ergy. In addition, the particular state that is selected depends on the strength of 

the electric field VIL. For 'small' electric field strengths, transitions to the nearest 

metastable state predominate. In other words, one quantum of current is lost. These 

transitions correspond to the occurence of single phase-slip processes, which are de

scribed in detail in Chap. 2. However, as the field strength is increased, there is a 

crossover to a situation in which transitions to the next-nearest metastable state, with 

a lower current and free energy, predominate. In this case, two quanta of current are 

lost. These transitions correspond to the occurence of double phase-slip processes. 

Obtaining an understanding of this crossover phenomena is the focus of this chapter. 

It should be emphasized that the transitions of concern in this chapter are from a 

point of instability, in contrast to the situation in Chap. 2, where the transitions are 

from a point of metastability. In other words, in the situation here, the important 

dynamical processes do not involve thermal activation over an energy barrier. Rather, 

the electric field drives the system to a point of local instability where there is no longer 

any energy barrier. The theoretical description of the decay from a metastable state 

is by now very well developed. By contrast, the theory of the decay from an unstable 

state, especially when multiple metastable states can compete for occupation, is not 

well developed. 

Recently, the Eckhaus instability, the instability associated with the critical cur

rent, has been studied rather intensively [8, 9, 10, 11,12]. The interest in this subject 

is part of the more general interest in the problem of pattern formation [13, 14]. In 

a paper that partially inspired the work to be presented in this chapter, Kramer et 

al. [9] studied the behavior of a system initially prepared in an unstable state far from 

the Eckhaus instability. They were motivated primarily by the problem of pattern 

selection in classical physical systems, such as Taylor-Couette systems, Rayleigh-

Benard convection cells, and the buckling instability of thin plates. In their work, 

they envisioned preparing the system in a state beyond the Eckhaus instability and 

analyzed the dependence of the final state on the initial state. This is in contrast to 

the situation here, where the system is driven through the Ekchaus instability. They 
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were unable to study systematically the behavior of the system close to the Eckhaus 

instability because their simulations became prohibitively computer-time consuming. 

They did note, however, the possibility of multiple phase-slip processes. 

Previous work in the area of nonequilibrium superconductivity has focused on 

situations in which the superconducting wire is connected to a current source, i.e., 

the total current flowing in the wire is the independent variable. This is in contrast 

to the situation of interest in this chapter, where the system is driven by a voltage 

source. The basic problem is to understand the current-induced breakdown of super

conductivity in narrow superconducting wires. In general the wires are assumed to 

be connected to external leads. The recent book by Tidecks [4] contains a compre

hensive review of the vast experimental and theoretical work in this area. Here, I 

will briefly mention a few examples. One of the first theoretical attempts (1972) to 

study this problem was that of Rieger et al. [15]. They considered a weak (quasi-one-

dimensional) superconductor, bounded at its two ends by two strong superconductors. 

The weak superconductor is defined by the condition that it have a lower transition 

temperature than the strong superconductors. Thus, for temperatures close to the 

transition temperature of the weak superconductor, phase-slip events will occur in 

the weak superconductor, but not in the strong superconductors. The main result of 

their work is that for applied currents that are larger than the critical current of the 

weak superconductor, the supercurrent is an oscillatory function of time, where the 

amplitude of the oscillations is constant in time, and the frequency of the oscillations 

is the Josephson frequency. The reason that the amplitude of the current oscillations 

is constant is due to the fact that the phase-slips were introduced into the calcula

tion by hand. More specifically, as soon as the free energy of the current-carrying 

state exceeded the free energy of the nearest metastable state, the authors slipped 

the phase by 2ir. The validity of this approach is questionable [16]. In a later work 

(ca. 1974), Likharev [17] showed, via a numerical integration of the TDGL equa

tion, that for an applied current To that is slightly smaller than the critical current, a 

normal-superconducting interface is stable. He therefore concluded that if the applied 
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current is smaller than Jo then the interface propagates in the direction of the nor

mal phase, whereas if the current is larger than To then the superconducting state is 

unstable, and the interface propagates in the direction of the superconducting phase. 

In 1977, Kramer and Baratoff [16] found, using numerical techniques, locally stable 

solutions of the TDGL equation for applied currents slightly smaller than the value 

of J0 found by Likharev. One of their conclusions was that the Langer-Ambegaokar-

McCumber-Halperin (LAMH) theory must be modified for currents near the critical 

current. This conclusion should not be too surprising. The results derived in Chap. 2, 

which are an extension of the results of the LAMH theory, are only valid in the regime 

where £Jl — 3k* ~ 1 [c.f. eq. (2.47)]. However, near the critical current ka is close to 

l / \ /3 and the above inequality can therefore not be satisfied. 

This chapter consists of two main parts. Sections 4.2-4.5 comprise the first part 

of the chapter. In Sec. 4.2 the basic equations are introduced. Section 4.3 contains 

a discussion of what we expect to see based on our experience discussed in Chap. 2. 

In Section 4.4, the numerical results obtained by integrating the stochastic time-

dependent Ginzburg-Landau equation will be presented. The main result of this 

section is that for small electric field strengths, single phase-slip processes dominate 

the dynamics, but as the field strength is increased, there is a crossover to double 

phase-slip domination. In Sec. 4.5 the Eckhaus instability will be studied using linear 

stability analysis. The results of such an analysis will allow us to understand the 

essential reason for the crossover phenomenon. Section 4.6 comprises the second 

part of this chapter, which is devoted to the search for a systematic approach to 

the problem of the decay from an unstable state when multiple metastable states can 

compete for occupation. In this section I will present a theoretical approach, based on 

a path-integral technique, aimed at this question. Finally, this chapter is summarized 

in Sec. 4.7. 
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4.2 Theoretical Description 

Consider the situation in which an infinitely long solenoid, carrying a current that 

varies linearly with time, passes through the center of the superconducting ring. Ac

cording to Faraday's law of induction, the solenoidal current, and hence flux, will 

produce a static electric field in the direction tangent to the ring. In order to in

corporate the effect of this emf on the superconductivity, we need to determine the 

electromagnetic vector potential A (see Sec. 2.2). This is done in the following way. 

The solenoidal current will produce a linearly time-dependent magnetic field 

B = V x A (4.2) 

that is completely confined to the interior of the solenoid. According to one of 

Maxwell's equations the time-dependent magnetic field induces an electric field E, 

i.e., 

V x E = - c - i & B (4.3) 

= - c - ' f t ( V x A ) . (4.4) 

If eqs. (4.3) and (4.4) are integrated over a surface which passes through the ring, 

then the right hand side of eq. (4.3) is given by -c"*0(6, where $ is the solenoidal 

flux. In addition, we can use Stokes' theorem to convert the surface integrals over 

V x E and dt{V x A) to line integrals over E • dx and dt A • dx, respectively. Here, dx 

is the infinitesmal longitudinal line segment. By symmetry, the integrands of the line 

integrals are constant in x. If we denote the longitudinal component of the electric 

field by Ex and the longitudinal component of the vector potential by Ax then we get 

that, up to a time-independent constant, 

Ax = -Exct = - (4.5) 

The electromotive force (emf) V is related to the tangential component of the electric 

field Ex via 

V = EXL. (4.6) 
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As discussed in the Introduction, our description of the superconductor is based 

on the STDGL equation (2.33) for the space- and time-dependent order parameter 

rf>(x,t). In this formulation, Ax = (2e£/hc)Ax is the dimensionless longitudinal com

ponent of the vector potential (see Sec. 2.2). Using eqs. (4.5) and (4.6), Ax can be 

expressed in terms of the emf V via 

i, = -fi, (4.7) 

At this stage it is convenient to define a dimensionless wavevector and a dimensionless 

frequency 

k(t) = k0+ut/£, (4.8) 

w = TGL{2eV/h). (4.9) 

so that Ax ~ k0 — k{t), with k0 a constant. The parameter w is a dimensionless 

measure of the electromotive force V. In terms of the wavevector k(t), the STDGL 

equation (2.33) for V> can be written as 

dti> = (dx + ik(t))2rl> W - t£M2 + fj (4.10) 

where $ satisfies the periodicity condition: 

4>{£ + x,t) = j>(x,t). (4.11) 

[See Sec. 2.2 for the definitions of the parameters that appear in eq, (4.10).] 

For the purpose of estimating the values of certain important quantities, through

out this chapter we will use the following (typical) values for the various parameters: 

T = 0.937;, Tc = ZK, Hc(0) = 300G, £(0) = 1000A, and y/Z = 1000A. With these 

parameters we have that D = 0.001, TQL « 1.4 x 10~us, V « 23wpV. {TGI and 

D are given in eqs. (2.31) and (2.32), respectively.) The relationship between the 

physical supercurrent I and the dimensionless supercurrent J is given in eq. (2.16), 

i.e., I = (4eksT/hD)J. For the above parameters this gives 7 % 2.3 x 10"* J A. 

Thus, for J = JC = 2/\/2f, this corresponds to a critical current Ic « 9.0 x 10~5A. 
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In eq. (4.10), there are two dimensionless parameters: w and D. The first, w, is a 

dimensionless measure of the strength of the external field. Our aim is to understand 

the behavior of the system as w is varied. Typically u will lie between 10 -4 and 10 -2; 

thus, we consider w to be a small parameter. In order of magnitude, the range of 

values of w correspond to emf's of between 2.3 nV and 0.23/xV . A voltage of 2.3 nV 

corresponds to roughly 10* flux quanta passing through the ring in one second. The 

second dimensionless parameter, D, is a measure of the noise strength. In this chapter, 

this parameter is fixed and for the parameters introduced in the preceding paragraph, 

D = 0.001; i.e., we are working in the small noise regime. 

Intuitively, we expect that if we drive the system with a sufficiently strong electric 

field, and if the noise is sufficiently weak, then thermally activated processes will not 

have time to occur, and the system will find itself at the Eckhaus instability. This 

notion is made more precise in Sec. 4.3 where we find that for D = 0.001, the emf 

must be such that w > £ x 10~25. Thus, for all practical values of w the current will 

be driven to the critical current. 

Two main approximations have been made in taking eq. (4.10) as the dynamical 

equation. First, the dynamics of the vector potential A have been ignored. More 

specifically, the solenoidal current produces an electric field that accelerates the su

perconducting electrons, and, in addition, produces a normal current, according to 

Ohm's law. These currents will, in turn, generate magnetic fields. It is these fields 

that are not taken into account when the dynamics of A are ignored. Justification for 

this approximation is dependent on the geometric properties of the wire [18]: for wires 

in which the cross-sectional dimensions are much smaller than either the temperature-

dependent correlation length or magnetic penetration depth, this approximation is 

reasonable. 

The second approximation is the neglect of the electrochemical potential Vec that 

enters into eq. (4.10) by replacing dt with dt + i{2eVec/h)TaL [19]. Inclusion of this 

term allows the normal current generated by the electric field to be taken into ac

count. This is done by invoking Ohm's law, so that IN — LcrNdxVec, where IN is the 
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normal current, O~N is the normal-state conductance, and L is the circumference of 

the wire. Now, Vec is determined by imposing the requirement that any change in the 

supercurrent be compensated for by a corresponding change in the normal current, 

so that 8X(IN + Is) — 0, where Is = (AekBT/hD)lmip(dx + ik)ip is the supercurrent 

[c.f. eq. (2.16)]. (Here, lm denotes the imaginary part.) This requirement leads to 

an equation for Vec, of the form 

Thus, as can be seen from eq. (4.12), by neglecting Vec we are assuming that the 

normal state conductivity O~N is infinite. In other words, the quasi particles respond 

instantaneously to any changes in the condensate (i.e., order parameter); that is, we 

are making an adiabatic approximation. In a realistic situation, <r# will be finite. 

Therefore, our neglect of Vec cannot be well justified. Nevertheless, my hope is that 

the corrections that result from the inclusion of this term will not affect my qualitative 

conclusions. 

The dynamical equation (4.10) can be put into a different form, more convenient 

for numerical computation, by making the transformation V> —» e'*W*^, s o that ip 

satisfies the equation 

0 = 0" + 0 _ 0|̂ |2 + xflUXlf> + T] (4.13) 

where the overdot denotes partial differentiation with respect to time, and 0 satisfies 

the (twisted) periodicity condition: 

iP{£ + x,t) = eikWil>{x,t). (4.14) 

This formulation makes it apparent that the effect of the electric field is to 'wind 

up' the order parameter, i.e., the total phase difference k(t)£ (modulo 2it) increases 

linearly with time. 

In order that eq. (4.13) can be integrated numerically, this equation is converted 

to a discrete map by first constructing a space-time lattice of points, spatial points 
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being separated by a distance hx, and temporal points separated by a time ht. The 

function ip(x,t), defined on the space-time continuum, is then approximated by its 

values V\\j = *l>(xi,tj) at the nodes (xi,tj) = (ihx,jht) of the lattice. In addition, the 

noise term n(x,t) becomes Vi,j/i/hxht, where t/,j is Kronecker-delta correlated in t 

and j , the discrete spatial and temporal coordinates, respectively. The square-root 

factor is introduced to account for the difference in units between the Kronecker-delta, 

and the Dirac-delta. On the discrete lattice, the second-order spatial derivative rjj" is 

approximated by a space-centered finite-difference (V"(+w + V\-i J " %,;)/&«, an<^ the 

first-order time derivative iff is approximated by a forward difference (fyj+i— 0t,i)/^t. 

Finally, there is an ambiguity as to how to integrate the noise term. I will follow the 

Ito interpretation, in which eq. (4.13) is causal [20]. Thus, the discrete map is of the 

form 

ht n% 

-NrW.\; + -Pi=. (4.15) 

There are five parameters that enter into (4.15): u,D,£,hx,ht. The first two, 

w and D, have already been discussed. A useful way to parametrize the length £ 

is in terms of a parameter nt, such that 2irnt = £/\/3. Then, nt is interpreted as 

the winding number of t/> at which the instability is encountered (see the following 

paragraph). In this chapter, nt will always be taken as 2.5. This corresponds to 

£ = 27.2, which, if we use the parameters listed at the end of Sec. 4.2, corresponds to 

L = 10.3/xm. This value of nt allows enough complexity, in that the winding number 

can change by 1 or by 2 without becoming negative (i.e., without the current having 

to change sign), yet it is small enough so that the numerical calculations are feasible 

in a reasonable amount of time. I have performed numerical calculations using values 

of nt larger than 2.5. Although I have not systematically analyzed these other cases, 

in all cases the the crossover phenomena was exhibited. 

The parameters hx and ht are chosen so that eq. (4.15) is numerically stable. We 
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are not focusing on high numerical accuracy. Rather, our goal is to understand the 

general phenomena contained in the time-dependent Ginzburg-Landau equation so 

that we may obtain a caricature of the behavior in the presence of an electric field. 

This is the reason that a simple Euler differencing scheme, rather than a more accurate 

scheme, such as Runge-Kutta, is sufficient. Typically, we would like to represent one 

wavelength by at least 8 points. This means that we should have hx < n</8, or if Nx 

denotes the number of spatial points, we should take Nx > 8ne = 20. For the standard 

diffusion equation, in order for the Euler differencing scheme to be stable, ht < A2, up 

to some constants of order unity. This is a reasonable rule of thumb. The philosophy 

here is to use values for hx and ht that are numerically efficient, and then to change 

these values, comparing the qualitative results to ensure that the numerical results 

are not a numerical artifact. It should be kept in mind that the quantitative results 

will depend on the choices of hx and ht. This can be seen most easily by studying 

the linear stability properties of eq. (4.15). The growth rates depend quantitatively 

on hx and ht, but the qualitative feautures that are important for the results of this 

chapter are not sensitive to these values. 

4.3 Expectations 

Before proceeding with the results of the numerical integration, it is useful to take 

a moment to discuss a certain class of fixed points of eq. (4.10). In the Introduc

tion to this chapter I discussed the results we might expect based on the notion of 

metastability (see Fig. 4.1). The discussion in this section more precisely quantifies 

these ideas. Here, a state $ is called a fixed point of eq. (4.10) if the right hand side, 

evaluated at V», vanishes. For our purposes, the important class of fixed points of 

eq. (4.10), denoted by V»n, are given by 

&.(*, 0 = \A - Qn{t)2 exp(iqnx), (4.16) 

where 

qn = 2wn/£, (4.17) 
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Qn(t) = k(t) + qn. (4.18) 

The states >̂n are nothing but the metastable current-carrying states ij)m that were 

discussed in Chap. 2. The states V>„ have (dimensionless) free energy 

:Fn(/) = - ( £ / 2 ) ( l - Q 2 ) 2 , (4.19) 

and (dimensionless) current 

Mt) = Qn(\-Q
2

n). (4.20) 

(Notice that Jn = ^dFnjdQn.) For w > 0, both the free energy Fn and the current 

Jn are increasing functions of time, Jn achieving a maximum value Jc = 2/\/27, at 

Qn = kc = l/\/3, the same point at which Tn has a point of inflection. For \Qn\ < kc, 

the curvature of T is positive, and for \Qn\ > kc, the curvature is negative. This 

implies that those states V>„ for which \Qn\ > kc are unstable. In other words, this 

simple analysis indicates that in the presence of an electric field, the supercurrent will 

increase to Jc, at which point the system becomes unstable. What happens then? 

Does the system end up in a state t/>„i for which |Q„'| < kc, and if so, which value of 

n' is selected? Furthermore, how does the value that is selected depend on the rate 

w at which the system is driven? As we will see in the following sections, the above 

analysis is not quite accurate. Nevertheless, it captures the essence of the problem in 

a simple manner. 

What we shall find is that after encountering the instability, the system indeed 

ends up in a state t/v for which |Qn<| < kc. For 'small' electric field strengths (i.e., 

small values of w) n' = n — 1. This corresponds to the occurence of a single phase-

slip process. However, as the strength of the field is increased, it becomes more and 

more likely that states xf>ni for which n' = n — 2 will be selected. Thus, we shall 

find that there is a crossover from single phase-slip domination to double phase-slip 

domination, as the strength of the field is increased. The main purpose of this chapter 

is to understand this crossover in a comprehensive and systematic way. 

70 



At this stage we are in a position to estimate how strong the electric field must 

be in order that the system reach the Eckhaus instability before the occurence of a 

thermally activated phase-slip. In Chap. 2 we determined the transition rates £r± 

out of a metastable state x(fm [c.f. eq. (2.35)]. We will use these rates to estimate, 

for a given D, how large w must be. Now, in the presence of an electric field, the 

wavevector km = k that characterizes state tj>m will be time dependent, according to 

eq. (4.8). Thus, £T±, will depend on time. We now ask: If the system is initially 

in a metastable state y/l - 6(0)2e'%°)*, what is the probability P(tc) that at time 

te = (kc - &(0))/w the system is in state y/l - k*eikcX ? Then, the condition that the 

system be likely to reach the instability is: 1 - P(tc) <C 1. 

We determine P(tc) as follows. First, we denote by P(t) the probability that at 

time t the system is in state 4>k(t) = \ / l — k{t)2eik^x. Next, if we define 

7 ( « ) M r + + r . ) , (4.2i) 

then i(t)dt is the probability that between time t and time t + dt a single phase-

slip process occurs. (For the purposes of this estimate, we do not consider double, 

or higher, phase-slip processes, as we expect these to be be less likely.) With these 

definitions we have that 

P(t + dt) = P{t)[l-idt]. (4.22) 

If we take dt < 1, then we can write P(t + dt) « P(t)+dtP(t)dt, which when inserted 

into eq. (4.22) gives a differential equation for P(t) of the form dtP(t) = —fP(t). This 

equation is elementary to solve, with the result that 

P(*c) = e - / < > ^ ) , (4.23) 

The condition (i.e., 1 — P(tc) <. 1) that the system reach the Eckhaus instability is 

satisfied if the exponent in eq. (4.23) is much smaller than unity, i.e., if 

Jtcdti{t)<l. (4.24) 
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If w 4C 1 then we can make the quasi-static approximation (see Sec. 2.9), and we have 

that 

7 = *(r+(*(*)) + r_(*(0)), (4.25) 

= ( f i + e-° - , * : F +-fn_e- D - , * r - ) . (4.26) 

If we change the variable of integration in eq. (4.24) from t to k, where dk/dt = 

U/£TGL, the condition (4.24) that the system reach the Eckhaus instability can be 

written as 

7 » rGL ["' dk (n+e-*-'^+ + n_e-D-'Af-), (4.27) 

where.we have used eq. (4.26) for 7. For D < 1, the right-hand-side (rhs) of (4.27) 

will be very small, due to the factors of e~D~>Ar±. We can use the expressions for 

Af± [see eq. (2.58)] and fi± [see eq. (2.67)] that were obtained in Chap. 2 to compute 

the numerical value of the rhs of (4.27). Strictly speaking, this is not valid, as these 

results were derived based on the assumption that e~'v A<fc) < 1 [see eq. (2.47)]. Near 

the Eckhaus instability however, A = 1 — 362 —» 0. Nevertheless, for the purposes of 

this estimation these forms for il and AT7 should be sufficient. Taking D = 0.001 and 

6(0) = 0.55 (fcc = 0.57735), the rhs of (4.27) is « £ x 10~25. [As D < 1 this integral 

is only weakly sensitive to 6(0).] Thus, for this value of D (0.001) a very small value 

of w is sufficient to ensure that the system survive to the Eckhaus instability. Finally, 

it should be noticed that the right hand side of eq. (4.27) is extremely sensitive to D. 

For example, if D = 0.01 then the rhs of (4.27) is » 4( x 10 -14, and for D = 0.1 it is 

« U x 10-*. 

Finally, I should remark that I have not systematically addressed the question 

of what happens for stronger electric fields. In my preliminary investigations of this 

issue, I have seen evidence of triple, and higher, phase-slips. However, as the field 

strength is increased, the dynamics becomes more complicated. For example, the 

phase-slips cease to be localized in time, instead they tend to overlap. It is possible 

that in regions of parameter space I have not explored, there is other interesting dy

namical behavior. For example, in the context of pattern forming systems, Riecke and 
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Paap [11] found evidence for spatio-temporal chaos by applying what they described 

as 'smooth spatial ramps' to pattern forming systems that exhibit the Eckhaus insta

bility. In their language, the termw(z/f) that appears in eq. (4.15) is a smooth spatial 

ramp. Although the dynamical system studied by Riecke and Paap is not identical 

to that considered here, their results are suggestive of potentially interesting effects 

in systems that can be described by time-dependent Ginzburg-Landau equations. 

4.4 Numerical Results 

The numerical integration of eq. (4.15) proceeds as follows. For a given initial condi

tion tfrifi, a particular emf (i.e., a particular value of w), and D = 0.001, eq. (4.15) is 

iterated forward in time, generating ipij. In order to understand the dynamical be

havior of the system, the space-average current J(t), and the winding number h(t), 

are computed as a function of time (i.e., j). The former quantity, in the continuum 

notation, is given by 

J(t) = {2£)~1 ll dx Im(V"(z, t)dxil>(x, t)), (4.28) 

JO 

and the latter by 

n(<) = (27T)"1 / dxdxMg(ij>{x,t)). (4.29) 
Jo 

For w = 10 - 4 , eq. (4.15) is iterated for a given realization of the noise, and n(t) 

and J(t) are plotted in Figs. 4.2 (a) and (b), respectively. Using values for the 

parameters as described in Sec. 4.2, this particular value of w corresponds to an emf 

V of approximately 2 nV. As expected, the current increases to the critical current, 

at which point the Eckhaus instability (see Sec. 4.5) is encountered, and a single 

phase-slip process occurs, resulting in a decrease of one quantum of current [21]. The 

supercurrent then continues to increase, and the phase-slip process is repeated. The 

important point is that in this case, it is only single phase-slip processes that occur. In 

other words, the winding number only changes by one, and not by two or more. The 

time between phase-slips is approximately TCL2IT/L>. Using TGL ~ 1.4 x 10 _ u s (see 

Sec. 4.2), we can estimate that the phase slips are separated in time by « 0.9 x 10~6s. 
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Figure 4.2: Winding number (left column) and current (right column) as a function 
of time. Parameters used: Nx = 32, ht = 0.2 (and nt = 2.5). 

Now, we increase w to 5 x 10-4 (V ~ 10 nV). The winding number n(t) and the 

space-average current J(t) are plotted in Figs. 4.2 (c) and (d), respectively. Again, 

due to the presence of the electric field, the current increases to the critical current, 

but now we observe that the current sometimes changes by one quantum, and at 

other times by two. In this plot [as well as that of Fig. 4.2 (f)], we can plainly see 
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the growth of the fluctuations of the current as the Eckhaus instability is approached. 

This growth is an indication that the free-energy landscape about the metastable 

states is flattening out. This will be discussed in considerable detail in the following 

sections, especially Sec. 4.5. 

We now increase w even further, to w = 2 x 10 -3 (V ~ 400 nV). As can be seen 

in Figs. 4.2 (e) and (f), for this field strength, only double phase-slip processes occur. 

Using TGL ~ 14 x 10 - u s , we can estimate that the double phase slips are separated in 

time by TGL2IT/U « 4.4 x 10-8s. Notice that in some cases a double phase-slip process 

appears to occur via a sequence of single phase-slips. This is not in fact the case; the 

noise strength D = 10~~3 is so small that after entering a metastable state, there is 

essentially zero probability of a thermally activated process. This then precludes the 

possibility of a double phase-slip occuring via a sequence of single phase-slips. What 

is actually causing the step-like features will be discussed below. 

Thus, what we have found is that for small values of w, single phase-slip processes 

dominate. As the field strength is increased, it becomes more and more likely that 

double phase-slip processes will occur. In other words, as the strength of the electric 

field is increased, there is a crossover from single phase-slip domination to double 

phase-slip domination. 

This crossover phenomena can be illustrated in a more quantitative way, as follows. 

For a given electric field, eq. (4.15) is integrated N times, each time the integration is 

stopped the first time a particular event (i.e., either a single or a double phase-slip) 

occurs. The number N\ (N2) of single (double) phase-slips is then counted, yielding 

the probability Pi(u) = Ni/N (P2(u) = N2/N) of a single (double) phase-slip, as a 

function of electric field. The results for P\ (with N = 100 and D = 10-3) are shown 

in Fig. 4.3. 

Before proceeding with the details of the analysis that will explain this crossover 

phenomena, it is useful to investigate in detail the dynamics of the order parameter 
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Figure 4.3: Probability of a single phase slip vs. w. Parameters used: Nx = 32, 
ht = 0.2 (and nt = 2.5). 

during a phase-slip event. This is done via a mode expansion: 

fp(x,t) = £>„(<) exp(iQ_n(*)x), (4.30) 

in which the an(t) are complex, time-dependent expansion coefficients, and q„ and 

Qn are given in eqs. (4.17) and (4.18), respectively. Notice that explicit temporal 

dependence of rfj{x,t) appears via both an(t) and k(t). Initially, a0(0) = J l — 6(0)2, 

and all other an(0) = 0. The value of 6(0) is chosen so that the initial state is 

metastable. (The results do not depend on the specific value of 6(0), as long as it is 

such that the initial state is locally stable.) In this representation, a single phase-slip 

process corresponds to |ai(()| ^ 0 at some time t > 0, with all other \an(t)\ <K 1. 

Likewise, a double phase-slip process corresponds to \a2(t)\ ^ 0 at some time t > 0, 

with all other \an(t)\ < 1. More precisely, after a type-n process (e.g., type-1 refers 
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Figure 4.4: Mode amplitudes for a single phase-slip process (a) and a double phase-slip 
process (b). Parameters used: 60 = 0.58, iVx = 32, ht = 0.2 (and nt = 2.5). 

to a single phase-slip) has occured, we find that an(t) ta Jl — Q-n(t)
2, and all other 

amplitudes are <C 1. These other amplitudes are not identically zero because of the 

presence of the noise. 

As a first example, plotted in Fig. 4.4 (a) are the absolute values |a0(<)|, |ai(<)| 

and \a2(t)\ for a case in which a single phase-slip has occured. That is, after the 
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event (ax(<)| *z \j\ — Qi i ( t ) , and both |a0(*)| and \a2(t)\ are < 1. Note that there is 

essentially no coexistence of the various modes, i.e., the transition is fairly sharp, as 

can be seen in Fig. 4.4 (c), where the winding number is plotted. A second example 

is given in Fig. 4.4 (b), where the n = 0, 1 and 2 mode amplitudes are plotted. In 

this case, a double phase-slip has occured, and, in addition, the winding number, 

plotted in Fig. 4.4 (d), changes in a step-like way [as in Fig. 4.2 (e)]. The reason 

for the step-like change in the winding number is that in the this case there is some 

coexistence of the various amplitudes, i.e., the transition is not sharp. Also note, that 

even though |<%i| > |<^| for a certain period of time, a2 ends up dominating. For the 

times in which |oi| > |o;|, neither of these amplitudes is small, in fact they are both 

« 0.5. This implies that nonlinearities appear to play a role in determining which 

state is selected. We will come back to this issue in Sec. 4.5. 

An understanding of the dynamics of the an is central to understanding the 

crossover effect. In fact, the qualitative features can be understood by examining 

the nature of the Eckhaus instability (the instability associated with the critical cur

rent) using linear stability analysis (LSA). This will be done in Sec. 4.5. We will 

learn from the LSA that the system first becomes unstable with respect to fluctua

tions with wavevector 6 ± q\, and later on, the system becomes unstable with respect 

to fluctuations with wavevector 6 ± q2. However, the q2-type fluctuations, once they 

start growing, grow more rapidly than the <?i-type. So, although the q\ fluctuations 

start growing earlier than the q2 fluctuations, it is possible for the q2 fluctuations to 

dominate the dynamics, as we have seen. 

Before proceeding with the linear stability analysis of the Eckhaus instability, 

we first turn our attention to whether or not it might be possible to observe ex

perimentally the crossover effect. The natural quantity to measure is the time-

dependence of the magnetic moment of the ring. There are three important is

sues. First, there is the issue of the sensitivity of the magnetometer to the mag

nitude of the current. For a type-n process, the current changes by an amount 

A/n = (AekBT/hD)(J(kc) - J(kc - qn)). For the parameters given in Sec. 4.2, 
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i.e., Tc = 3K, T = 0.93TC, and D = 0.001, we have that Ah w 1.9 x 10_SA and 

A/2 « 6.4 x 10~5A. Thus the magnetometer must be sensitive enough to detect 

current changes of this magnitude. The second issue is the time sensitivity of the 

magnetometer. For the single phase-slips pictured in Figs. 4.2 (a) and (b), the time 

between phase-slips is 0.9 x 10~6s. If time is measured in units of 2JTTG£,/W, then the 

period is unity. On the other hand, for the double phase-slips pictured in Figs. 4.2 (e) 

and (f), the time between phase-slips is 4.4 x. 10~8s. If time is measured in units of 

27rTG£,/w, then in this case the period is two. If the magnetometer has the temporal 

resolution to resolve double phase-slip events, then these can be distinguished from 

the single phase-slip events by the periodicity of the time-dependence of the magnetic 

moment if time is scaled in the appropriate way, i.e., in units of 2ITTGL/V- The third 

issue is the time rate of change of magnetic flux that corresponds to the values of w 

considered here. As discussed in Sec. 4.2, a value of w = 10 -4 corresponds to 106 flux 

quanta passing through the ring per second, which correspnds to « 0.207 Gcm2s -1. 

Thus, if L = 10 fim, the magnetic field must change at a rate of « 108Gs -1 . If the 

field is applied for 10~4 s, then the final value of the field is 104 G. These rather large 

values are due to the small cross-sectional area L2/47r. If the ring is made longer, 

then the field values will be reduced. However, for longer rings, the magnitude of the 

current changes will be be made smaller. 

4.5 Eckhaus Instability 

The essential understanding of the crossover effect can be obtained by examining 

the linear stability properties of the fixed points ij>m(x,t) = y 1 — QIAt)exp(igmx) 

of eq. (4.10); see Refs. [8, 9, 10]. At this stage, it is convenient to make an adia-

batic approximation in which we set w = 0, so that 6(f) is constant in time. This 

assumption considerably simplifies the linear stability analysis, and is justified be

cause w 4C 1. The basic idea is to understand the circumstances under which the 

(metastable current-carrying) states t/>m become unstable with respect to very small 
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fluctuations Srj}m', if V>m is locally stable, then Sij)m will decay with time, whereas, if 

V>m is locally unstable, then Sif>m will grow with time. Since Sxf>m is assumed to be 

very small, the TDGL can be linearized around tpm. The solution to the resulting 

linear equation can be written in the form 

Si>m = E a n(0)e*^[{e-" ' " I + /m,„e«''«x}eA:l-B' 
n>0 

+ { e - ' ^ - / m ) _ n e ^ } e A - " t ] (4.31) 

where 
, 2 Q m g n - ^ ( l - Q 2

n ) 2 + 4Q2
ng

2 

Jm,n — i ™ ' \fk.O£) 
1 _ V m 

and 

Xt<n = A±(Qm, qn) = - 1 + Q2
n -q

2
n± y/(l - Q*J* + 4Q2

l9
2 . (4.33) 

The an(0) are determined from the initial condition Sif>m(x,0). At this point, we 

would like to imagine that w ^ 0. Although the growth rates were derived assuming 

no external field, as u < 1, we are justified in taking the effect of the field into 

account by simply re-endowing k(t), and hence Qm = k(t) + qm, with the appropriate 

time dependence, via 6(() = 60 + wt/£. 

The quantities A*n are the growth rates: A£iX and A£i2 are plotted in Fig. 4.5. 

Their sign determines whether or not the state i/>m is stable (negative) or unstable 

(positive) with respect to fluctuations characterized by a wavevector qn. The growth 

rates A~n are negative-definite, and hence will be ignored. On the other hand, A^„ 

can sometimes be positive. More specifically, for a given n, A+n is a nondecreasing 

function of Qm, being negative for |<3m| < K„, and changing sign at Qm = ± K „ , where 

K. = - L [ l + g2/2]i/2. (4.34) 

(For nt = 2.5, «i = 0.585 and K2 = 0.607.) The points ±«i locate the so-called 

Eckhaus boundary. It is interesting to notice that for i finite, «i > 6C = l/y/S, where 

6C is the location of the Eckhaus boundary for £ = oo. Thus, the finite length has 
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Figure 4.5: Growth rates for n = 1 and n = 2 (nt = 2.5). 

a stabilizing effect [8], expanding the domain of stable wavevectors by an amount 

«i — 6C. 

For present purposes, the growth rates A^„ have two important features (see 

Fig. 4.5). First, the K„ have the property that Ki < K2 < n3.... Thus, V>m is locally 

stable (i.e., metastable) as long as Qm < K\. For Qm between %i and K2, ̂ >m is unstable 

with respect to fluctuations of wavevector 6 ± q\. (As it is the gi-type fluctuations 

that grow first, it is sometimes said that the Eckhaus instabiity is characterized by 

the instability with respect to long wavelength fluctuations.) As Qm increases beyond 

K2, state V>m now becomes unstable with respect to fluctuations of wavevector qi and 

q2. It is in this situation that the competition between single and double phase-slip 

processes may arise. In general, if Qm lies between K„ and K„+I , then %j)m is unstable 

with respect to all wavevectors qn< < qn. The possibility thus exists for competitition 

between many different modes. 
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The second important feature of the growth rates is that Â  < X'n+1, where A'n = 

dX+{nn,qn)/dQ. (For m = 2.5, X[ = 0.263 and A'2 = 0.921.) In other words, the 

growth rates for the higher n modes increase more rapidly with Qm, after the onset 

of the respective instability, than do the lower n modes. This means that, although 

the system becomes unstable with respect to the n = 1 mode first, if this mode does 

not have sufficient time to grow to dominance, it is possible, by virtue of the fact that 

A2 > A'j, for the second mode to actually win, corresponding to a double phase-slip 

process. 

The situation is (loosely) analogous to a race of a tortoise and a hare, if we take 

\ai\ to represent the position of the tortoise, and \a2\ to represent the position of the 

hare. In this case, the tortoise starts the race earlier than the hare, by an amount of 

time (K2 — «i)/w, but the hare is the faster runner (i.e., A2 > X[) so that it is possible 

for the hare to overtake the tortoise. 

To make the discussion in the above paragraph more precise, consider the time-

dependent Ornstein-Uhlenbeck process [22] for two modes, at and a2: 

^ = X+(k(t),qn)an(t) + Ut), (4-35) 

where ijn is a Gaussian random variable with mean zero, and variance 2D/£. (This 

renormalization of the noise strength by the factor £~l can be obtained by considering 

eq. (4.35) to be derived from a linearized version of eq. (4.10), by multiplying (4.10) 

by eiqnX, and integrating from 0 to £.) By integrating eq. (4.35), we find that 

<k(0l 2 ) = T e 2 < M 0 I i dt> e ~ 2 < r n ( ° ' (4.36) 

where an(t) = /„' dt X+(k(t),qn), and angular brackets denote a noise average. To 

evaluate the right-hand-side of eq. (4.36), first notice that o-„(t) is non-positive (at 

least for the times of interest to us here), being zero at t = 0, and achieving a local 

minimum at tn = £(K„ — 60)/u>. Thus, the integral on the right hand side of eq. (4.36) 

is bounded from above, and so is of secondary importance for the growth of (|an(*)|2)-

Of primary importance is the factor e2"n^\ 
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For t near t„, we can expand an{t) to second order in t — tn, i.e. 

Then, inserting this expansion into eq. (4.36), we get 

(|an(')n = ̂ e ^ r ^ ^ ^ ^ (4-3?) 

where we have defined zn(t) = (t — *„)/T„ and 

Tn = y/£/X'nu. (4.38) 

Thus, we can identify a characteristic time 

t*n ~ TB>/In(//2DTW) (4.39) 

as the time, after the onset of the instability with respect to mode n, at which 

(lan|2) ~ O(l). The characteristic time t* depends weakly (i.e., logarithmically) on 

the noise. More interesting, however, is the fact that T„, and hence <*, is inversely 

proportional to the geometric mean of X'n and (JJ/£; the former factor being a reflection 

of the intrinsic dynamics, and the latter a reflection of the strength of the external 

field. From eq. (4.39) a characteristic wavevector 

6; = / c n + i < (4.40) 

can be defined for each mode, where <* is given in eq. (4.39). The crossover field 

w*'2 separating the regimes of single and double phase-slip domination is then defined 

by the solution to the equation k\ = 62. For w < w*'2, single phase-slip processes 

should dominate, whereas for w > w]'2, double phase-slip processes should dominate. 

For D = 0.001 and £ = 2?rn<\/3, where nt = 2.5 (i.e., the same parameters as those 

used in obtaining the results of Fig. 4.3), the condition 6J = k2 yields a value for 

Wg'2 « 1.9 x 10~5. Comparing this value with that obtained from the simulation (i.e., 

that of Fig. 4.3), it is seen that this estimate is too small by an order of magnitude. 

This should not be unexpected, as our estimate is based on the results from the linear 
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stability analysis. As was exhibited explicitly in Fig. 4.4, the state-selection can occur 

in the nonlinear regime. Thus, any analysis that is restricted to the linear properties 

is undoubtedly inadequate. Nevertheless, this analysis is useful in that we are able to 

understand in a qualitative way the essential reason for the crossover phenomenon. 

The above analysis can be used to deduce what we might expect to see for an 

arbitrary value of nt. Let us denote by w",n+1 the value of w for which 6* = 6*+1, 

where 6* is given in eq. (4.40). Then for w between w"71,n and w"'n+1 we expect that 

type-m processes (e.g., type-2 corresponds to a double phase-slip) will dominate. As 

mentioned previously in Sec. 4.3, I have not investigated the behavior for values of 

w > wc
,mor_1,nmoir where nmax is the smallest integer nearest to n<. In this regime, the 

phase-slips begin to overlap in time, and the dynamics becomes complicated. 

Finally, before proceeding further, it is useful to notice in eq. (4.31) that the term 

multiplying eAm'n< is a sum of eWnX and e~,,nX. The modes that have wavevector — qn 

have the possibility of achieving occupation, whereas those modes with wavevector 

+<7„ do not. To see this, suppose that state V>m is unstable, i.e., Qn > K„ for some 

n > 0. Now, according to eq. (4.31), the amplitudes for both qn and — qn grow, 

initially at a rate A+ n . However, the component of Sij>m that has a wavevector qm+qn 

has an associated Qm+n > Qm, and thus has no chance of becoming a stable fixed 

point, as this would require a Q value, such as Qm_„, in the stable range. It is the 

nonlinearities, not included in the present analysis, that will cause the amplitude of 

this mode eventually to decay to zero. Although the modes with positive qn cannot 

compete for occupation, they are nevertheless extremely important. In fact, they act 

as 'catalysts'. That is, as can be seen from eq. (4.31), in the linear regime they are 

vital to the growth of the negative qn modes. Thus, any approximation in which a 

mode expansion of V>n is truncated, must include these positive qn modes, otherwise 

the resulting dynamical system will not have the same linear-stability properties as 

the original dynamical system. In App. F I will present the construction of a two-

mode dynamical system that exhibits the crossover effect. The positive qn modes play 

an important role in the construction of the two-mode system. 
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4.6 Path Integral Approach to the Decay From an Unstable State 

In the first part of this chapter, we saw that the effect of the externally applied electric 

field is to drive the system to a point of instability. When the system reaches this 

point, there are multiple metastable states that can compete for occupation. The 

question is: how can we understand the resulting state-selection? In other words, we 

seek a theory for the decay from an unstable state when multiple metastable states 

compete for occupation. A succesful theory should be able to predict the relative 

number of single versus double phase-slips as a function of electric field. 

In this section I will present a possible approach to this problem, in the limit 

where the noise strength D <C 1. The path integral approach, to be presented below, 

allows the derivation of a closed form expression for the probability of a single phase-

slip, relative to that of a double phase-slip. This expression, which involves only 

the ratio of determinants of fluctuation operators, is analogous to the Arrhenius-type 

expression for the decay rate when there is no barrier. This is appealing because here 

we are dealing with the decay from an unstable state, i.e., there is no energy barrier. 

The derivation is based on the following hypothetical picture of the dynamics of 

the probability density functional P[V>]. In principle, the dynamics of P[ip] can be de

termined from the functional Fokker-Planck equation associated with the stochastic 

eq. (4.10). However, the functional nature of this equation renders this procedure in

tractable. The general picture of the dynamics of P is as follows. We imagine that at 

some time, say t = 0, we have an ensemble of systems, all of which reside in the same 

metastable state, say V>„(0). Thus, all of the weight of P[0] is located at a single point 

in function space. In the presence of an electric field, and as long as the ensemble 

of systems have not encountered the Eckhaus instability, the peak value of P[x(>] will 

follow the point i>n(t) in function space. The noise will cause P to spread out, but 

as long as the state i>n{t) remains locally stable, the probability will remain localized 

about this state. (We are assuming that the noise strength D is small enough so that 

thermally activated processes do not occur.) The situation will change dramatically 
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when the systems encounter the Eckhaus instability. When this occurs, the proba

bility will flow away from the state V>„. Based on the results of the first part of this 

chapter, if the electric field is such that single phase-slip processes are dominant, we 

expect that most of the probability will flow to the neighborhood of state ^„_i, i.e., 

most of the members of the ensemble will experience single phase-slips. On the other 

hand, if the electric field is such that double phase-slip processes dominate the dy

namics, we expect that most of the probability will flow to the neighborhood of state 

t£„_2, i.e., most of the members of the ensemble will experience double phase-slips. 

For an electric field of intermediate strength, we expect that some of the probability 

will flow to state ^„_i and some to state V>„_2, the amount of probability that flows to 

each state will depend on the relative number of single versus double phase-slips that 

occured. Subsequent to the transitions, we expect that P[^>] will remain localized 

about states ^„_i and 1^-3, and that the relative number of single versus double 

phase-slips will be given by the ratio of _P[^„-i] to .P[?/>„_2]. In the rest of this section 

I will present a derivation of this ratio. The results contained here should be regarded 

as speculative. In addition, due to the complexity of the STDGL equations, it is dif

ficult to verify explicitly the ideas contained in this section. In App. F a two-mode 

dynamical system that exhibits the crossover effect is constructed. For this system of 

reduced dimensionality we can (numerically) solve the Fokker-Planck equation, and 

this enables to visualize the probability flow in a two-dimensional plane. The results 

(see Fig. F.2) are consistent with the picture described above. 

Suppose that at time t = 0, the system is in the state r/>(x, 0) = V>0 = \ / l — 6(O)2, 

where 6(0) < «i, so that i>{x,0) is a stable fixed point. We then ask, for a given 

value of w, what is the (conditional) probability that at a later time T, the system 

will be in the metastable state 4>n(x, r) = ^/l - Qn(T)2e~iqnX. That is, we will only 

consider those states V>„ for which Qni?) < %i. Denoting this conditional probability 

by Pu , (n,T|0,0) = Pu(n,T), a definition of this quantity is [23] 

P»(n, T) = W ( z , r) - Mx, T))>, (4.41) 
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where 6() is a functional delta-function, the angular brackets denote an average over 

the noise, and I{>(X,T) satisfies eq. (4.10). From an operational point of view, the 

interpretation of eq. (4.41) is as follows. Suppose we have an ensemble of systems, 

each governed by the dynamical equation (4.10), and characterized by a particular 

realization of the noise rj. At t = 0 each member of the ensemble is in state ipo- The 

systems then evolve according to eq. (4.10), and at time T we observe each member 

of the ensemble, and count the fraction that are in state \j)n(x,T). This number is 

Pu(n,r). 

Strictly speaking, we should ask not for the probability that the system is tn state 

0„(r), but for the probability that the system is tn the neighborhood of state tj>n(T), 

where the size of the neighborhood is proportional to D. Then the functional delta-

function in eq. (4.41) should be replaced by a sharply peaked functional with a width 

proportional to D. For simplicity of presentation, we will continue with the form of 

Pu(n, T) given in eq. (4.41), although it is straightforward to modify the following 

discussion. 

The key idea is that the probability distribution for the noise, denoted here by 

P[fj\, is known. Thus, Pu(n,r) can be written as 

P»(n, T) = JVrj PoM 6W(z, r ) - 4>n(x, r)), (4.42) 

where 

Po.rffl oc exp ( - j T dt fQ dx\f,{x, t)\2/2D). (4.43) 

The noise distribution is only required for t € [0, T] because of our causal interpre

tation of the stochastic equation (see Sec. 4.2). In eq. (4.42), the functional integral 

should be interpreted as the integral over the real and imaginary parts of the complex 

variables fjij = ij(xi,tj) defined on the nodes of the lattice described in Sec. 4.2, in 

the limit that the lattice spacings hx and ht go to zero. Then, Vij is to be interpreted 

as 

HrnH4M2, 
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where 

where fj\j is the real part of fjij, and ij\j the imaginary part. By regarding eq. (4.10) 

as a mapping from t/space to ^-space, Pu(n, T) can be written as a path integral over 

^ by a simple change of variables. As our interpretation of the stochastic equation 

is causal, the Jacobian, \Sij(x,t)/Stp(x',t')\, is a constant, which we can ignore as it 

will only affect the normalization. In addition, the functional delta function can be 

accounted for by imposing the boundary condition 0 ( Z , T ) = VL(r) on the functional 

integral. Thus, Pw(n, r ) can be written as 

f w ( » , T ) = / ^ ^ W e - % ^ (4.44) 

S$] = fdr j'dx \dtrf> - (dx + ik(t))2rj> -rf> + V # | f . (4.45) 

Thus, the conditional probability is given by a sum over all possible configurations 

consistent with the boundary conditions, each term in the sum being weighted by a 

factor e~sWM2D. This is analogous to the (imaginary-time) Feynman path integral for 

the probability amplitude in quantum mechanics. The term in the exponent, 5 [ $ , 

is referred to as the generalized Onsager-Machlup functional, or the thermodynamic 

action [24, 25, 26, 27, 28, 23]. 

The normalization of Pu{n,T) is determined by the requirement that at any given 

time the system must occupy some state. That is, from eq. (4.44) we see that the 

probability PUW/HT) that a state V>/ is occupied at time T is given by 

r^^^e-^/^. (4.46) 
J^(z,0)=r/io 

The normalization condition is then given by 

% W W , ] ( T ) = 1. (4-47) / : 

As we are working in the small noise regime, the path integral in eq. (4.44) will be 

dominated by the paths of least action, denoted by £„. These paths are determined 

by the condition that they make 5[t/)] stationary, i.e., SS/Sipl^ = 0. In the steepest 



descent approximation, Pu(n, r ) will be given by 

where 

5„(r) = 5[Cn], (4.49) 

and Ln is the fluctuation operator (in this case a matrix partial differential operator) 

associated with the second variation, 

6^S = j dt J dxS¥Ln[l\Sty, 

of S. ty is the two component vector [ij>{x,t), ^*(x,t)]T. The prime on det indicates 

that any zero modes must not be included in the determinant of Ln. The factor V„ 

is a consequence of the integration over the collective coordinates associated with the 

zero modes. 

Let us first consider the behavior of 5 „ ( T ) , the minimum value of S, as a function of 

T. We can distinguish two regimes: the early-time regime and the late-time regime. In 

the early-time regime, the paths of least action ( are essentially ballistic trajectories 

connecting V>o with V>„(T). More specifically, if T < 1, then ( » « ( ! — < /T)0 O + 

(< /T)0„ (T) . In other words, in order for a path to propagate from the initial state 

to the final state in a short amount of time, the trajectory must be ballistic. This 

means that for these configurations, Sn(r) is dominated by the kinetic energy of the ( 

trajectories, and thus Sn(r) ~ T~1 . Thus, in the early-time regime 5 „ ( T ) > D. This 

means that for these times the states ^ ( r ) are not appreciably occupied. Rather, 

the probability distribution has spread into regions of function space that do not 

include the initial and final states. As time progresses, however, we expect that the 

probability distribution will begin to accumulate about the states V>„. This will begin 

to occur in the late-time regime, characterized by those times for which Sn(r) <C D. 

Because the system is continuously being driven, we should only consider those times 

r that are smaller than Tn<xipp„ = 27rn/w, the time required for the phase-difference 

to change by 2?rn. The characteristic time t*n ~ (u/£)~l/2 [see eq. (4.39)] provides an 
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estimate of the time separating the early- and late-time regimes. Notice that since 

/* ~ 1/y/ui and TniUppeT ~ 1/w, we have that t* ~ Tn<UVP„. This condition implies that 

if a type-n process occurs, the time required for the system to make the transition is 

shorter than the time required for the external field to drive the system back to the 

Eckhaus instability. 

The existence of configurations C,n for which Sn[Cn] <K D, can be motivated in the 

following way. The first ingredient in the motivation is that the dynamics of tp is 

relaxational, i.e., in the abscence of noise ^ obeys 

[see eq. (4.10)]. In other words, the dynamical equation (4.50) can only take the 

system 'downhill' in energy. The second ingredient is the prescence of the Eckhaus 

instability. That is, after encountering this instability (i.e., if Q(t) > K„), there are 

unstable directions in function space with a component e~xqnX (see Sec. 4.5). Thus, the 

dynamical equation (4.50), in spite of the abscence of a stochastic noise source, can 

carry the system from the unstable state, ^o = y 1 — Qo(t)2, to the stable state, rj>n = 

J\ — Q-n{t)2e~iqnX. Therefore, in principle, a zero-action path can be constructed 

by integrating eq. (4.50) with the initial condition V>(x,0) = V»o(z). In practice, 

however, the initial condition must have a component in the unstable direction, so 

that V>(z,0) = ij>o{x) + ti>n{x)- The configuration ipn<e(x,t) generated from this initial 

condition will not, in general, make S stationary. However, if e < 1, then 5[V>„,e] < 1, 

and, as S > 0, the configuration T/>„)(, will be almost stationary. Then, if c can be 

made small enough, 5[^n,«] can be made much less than D. 

The above discussion is neither rigorous, nor a proof, that in the late-time regime 

5[Cn] < D. Rather, it is intended to simply make this notion plausible. In App. F, 

where a two-mode dynamical system that exhibits the crossover effect is constructed, 

numerical evidence is presented (see Tables F.2 and F.3) that shows that in the 

late-time regime the minimum value of the thermodynamic action (for the two-mode 

dynamical system) is much smaller than D. This result adds weight to the above 
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discussion. 

If we accept the above arguments that in the late-time regime 5[£n] 4C D, then we 

are led to the conclusion that in the late time regime Pw(n, T) = Pw{n) is determined 

entirely by the pre-exponential factor. In other words, the probability of a type-n 

phase slip relative to a type-m phase-slip is given by 

Pu{n,r) V„ /det'Lm 

P^nTT) = ^ V d e t ^ ' (4-51) 

In this late time regime, we also expect that I/>„(T) are the only states which may be 

appreciably occupied (since D <^ 1), so that the normalization condition becomes 

£ A , ( n ) = l, (4.52) 
n 

where the sum extends over those integers n for which |Qn(r)| < «i. Equations (4.51) 

and (4.52) provide a complete prescription for the theoretical determination of the 

probability of a type-n process, as a function of the external field. 

From equation (4.51) we see that the relative probability of a type-n process versus 

a type-m process is determined by the relative curvature of the thermodynamic action 

about the entire space-time paths £n and £m. The implication of eq. (4.51) is that 

if the curvature of the thermodynamic action about the entire space-time path £„ 

is smaller than the curvature about the path (m, i.e., det'Ln < det'Lm, then the 

probability of a type-n process is greater than that of a type-m process. A smaller 

curvature implies larger fluctuations. Thus, those paths £„ that allow fluctuations 

more freedom are associated with the more likely processes. 

In the problem of the decay rate from a metastable state, the attempt frequency 

prefactor depends on the relative curvature of the free energy about the metastable 

state and its associated saddle-point state (see Chap. 2). In other words, it is the 

fluctuations about particular points in configuration space that are important. By 

contrast, in the problem of the decay from an unstable state it is the fluctuations about 

the entire space-time paths (denoted here by („) that minimize the thermodynamic 

action that are important. Thus, the result for the decay from an unstable state is 
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analogous to the Arrhenius expression for the decay rate from a metastable if we take 

the barrier height in the Arrhenius expression to be zero. This is appealing because 

in the decay from an unstable state there is no energy barrier. 

The calculation of the ratio of determinants det'i/m/det'Ln is a formidable prob

lem. The operators L are matrix partial differential operators. For such operators we 

know of no expression, analogous to eq. (2.66), that allows the ratio of determinants 

to be expressed in terms of solutions to the corresponding homogeneous equations. 

Therefore, I have not been able to compute the ratio of determinants that is required 

for the computation of eq. (4.51). 

4.7 Summary 

In this chapter we have investigated the dynamics of the supercurrent in a quasi-one-

dimensional ring of circumference L under the influence of a static electromotive force. 

The electric field (associated with the emf) causes the supercurrent to increase to the 

critical current, at which point the system becomes locally unstable. By numerically 

integrating the stochastic time-dependent Ginzburg-Landau equation, we found that 

there is a crossover from a situation in which single phase-slip processes dominate the 

dynamics to a situation in which double phase-slip processes dominate. 

In Sec. 4.5 we analyzed the linear stability properties of the Eckhaus instability, 

paying particular attention to the growth rates Ai and A2 for the mode amplitudes a\ 

and a2 that correspond to the occurence of single and double phase-slips, respectively. 

We found that, although the system becomes unstable with respect to fluctuations of 

ai first, A2 increases more rapidly with time than does A%. Thus, if the field is 'weak' 

then di can grow to dominance before a2 ever has a chance to grow. But if the field is 

stronger, then a\ has less of a head start, and the fact that A2 increases more rapidly 

with time than Ai means that it is possible for a2 to dominate. 

The results contained in the first part of the chapter motivated us to search for a 

systematic approach to the problem of the decay from an unstable state when mul-
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tiple metastable states compete for occupation. Using a path integral approach, we 

obtained a formula for the relative probability of a single phase-slip process versus 

a double phase-slip process. In this formula the relative probability is determined 

entirely by the pre-exponential factor, i.e., the ratio of determinants of fluctuation 

operators (which in this case are matrix partial differential operators). The interpre

tation is that it is the relative size of the fluctuations about the entire space-time 

paths of least action that are important. 
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Appendix A 

Overview of Superconductivity 

For completeness, in this appendix a brief overview of superconductivity will be given, 

with an emphasis on those aspects that are relevant in this thesis. Particularly useful 

general references are [1, 2, 3]. In 1911, H. K. Onnes discovered that mercury, when 

cooled below 4.2K, loses all measurable resistance to the flow of electrical current [4]. 

Although the vanishing of the electrical resistance is at first sight the most striking 

signature of a superconductor, it is not a characteristic feature. In 1911, when Onnes 

discovered superconductivity, he also observed that the superconducting state could 

be destroyed by a sufficiently strong magnetic field, usually denoted by Hc. However, 

the details of the response of the superconductor to fields smaller than the critical field 

Hc were elusive. In 1933, W. Meissner and R. Ochsenfeld (MO) made a very important 

discovery [5]. They observed that if they cooled a mono-crystal of tin, immersed in 

a magnetic field smaller than Hc, to a temperature lower than the superconducting 

transition temperature, the magnetic field was expelled from the interior of the crystal. 

This experimental result was a clear indication that a superconductor is more than 

just a perfect conductor (i.e., a metal with no resistance). This can be seen by first 

considering the theory of electrodynamics, in which the curl of the electric field is 

related to the time rate of change of the magnetic field. Now, for a perfect conductor 

that carries no current, the electric field in the specimen must be zero, (otherwise, 

according to Ohm's law, an infinite current would flow). This implies that for a 

perfect conductor, it is only the change in magnetic field that is zero. But the MO 
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experiment showed that the magnetic field itself is zero. 

The Meisser-Ochsenfeld effect goes further. It also implies that the superconduct

ing state is a state of thermodynamic equilibrium. More specifically, if the material 

is first cooled below the superconducting transition temperature in the abscence of 

a magnetic field, and then the field is turned on, the magnetic field will be screened 

from the interior, as in the case of a perfect conductor. On the other hand, the same 

final state is achieved if the magnetic is first turned on, and then the material is 

cooled, in contrast to the case of a perfect conductor. This implies that regardless of 

the manner in which the temperature and magnetic field are changed, the final state 

of the system depends only on the final values of temperature and magnetic field. As 

we shall see, the notion that the superconducting state is a state of thermodynamic 

equilibrium has profound implications. 

In order to explain the Meissner-Ochsenfeld effect, F. London and H. London, 

in 1935, developed a phenomenological theory of the electrodynamics of supercon

ductors [6, 7]. The London's utilized the notion of two fluids (an idea originally 

introduced by C. Gorter and H. Casimir [8]): a 'normal-fluid' that is dissipative, 

i.e., it requires a constant input of energy from an external source in order to flow, 

and a 'superfluid' that is not dissipative, i.e., it can flow freely. According to the 

London theory, the perfect diamagnetism (i.e., the expulsion of the magnetic field) 

observed by Meissner and Ochsenfeld is a consequence of screening supercurrents that 

flow in a thin layer bounded by the surface of the material. As a consequence, the 

magnetic field penetrates only a small distance into the material. The distance of 

this penetration is known as the magnetic penetration depth, usually denoted by A, 

the temperature dependence of which is measurable. The Londons showed that the 

number density na of the (postulated) superelectrons is inversely proportional to the 

magnetic penetration depth. Thus, from the measured temperature dependence of 

the penetration depth, they were able to deduce the temperature dependence of the 

superelectron density. For temperatures at, and above, the superconducting transi

tion temperature, the density is zero, but as the temperature is reduced below the 
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transition temperature the number density increases continuously. We will return to 

this idea shortly. 

In 1950, V. Ginzburg and L. Landau [9] developed a phenomenological theory of 

superconductivity based on Landau's general theory of continuous phase transtions [10], 

which was developed in 1937. The concept of an order parameter—a quantity that 

is zero in the disordered phase, and becomes nonzero in a continuous manner as the 

system orders—is central in Landau's general theory. In the ordered phase, it is some

times useful to view the order parameter as a thermodynamic variable. Thus, from 

this viewpoint, the number density of superelectrons introduced in the London theory 

seems like a natural order parameter. However, the order parameter introduced by 

Ginzburg and Landau is a complex-valued function, usually denoted by ty, so that 

the modulus squared of the order parameter is proportional to the number density 

of superconducting electrons, i.e., n, oc \ty\2. The idea of Ginzburg and Landau was 

to consider the order parameter ty to be an 'effective wavefunction' of the supercon

ducting electrons, so that by analogy with quantum mechanics, it is taken to be a 

complex-valued function. 

The theory of Ginzburg and Landau is based on an expansion of the free energy 

of the superconductor in powers of the square of the modulus, and the square of the 

gradients of the modulus, of ty. (The mathematical details are provided in Sec. 2.2.) 

The idea is that for temperatures close to the transition temperature, the number 

density of superconducting electrons is small compared to the number of normal elec

trons, so that a truncation of the power series expansion is valid. Thus, a description 

based on the GL theory is valid only for temperatures that are not too far below the 

transition temperature. In addition, if the temperature is too close to the transition, 

then the root-mean-square value of the fluctuations of the order parameter become 

of the same size as the average value of the order parameter, and the concept of a 

well-defined order parameter is no longer valid. The temperature that defines this 

upper limit is given by the Ginzburg criterion [11]. 

The Ginzburg-Landau theory introduces a a new characteristic length, in addition 
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to the magnetic penetration depth. This length, the fluctuation correlation length 

(also known as the temperature-dependent coherence length), usually denoted by (, 

represents the length-scale over which the order parameter can vary without an undue 

cost in energy. In addition, the correlation of the order parameter between two points 

in space decreases exponentially with the separation, with the scale of the decrease 

set by the correlation length. (This is the reason for the nomenclature.) Thus, ( sets 

the scale of a statistically independent subunit of the system. 

Using the Ginzburg-Landau theory, A. Abrikosov [12], in 1957, showed that there 

is an important distinction between systems for which the magnetic penetration depth 

is smaller than the temperature-dependent coherence length, (these are known as 

type-I superconductors), and systems for which the inequality is reversed (these are 

known as type-II superconductors). Prior to Abrikosov's work, all superconductors 

were believed to be of type-I. In fact, it is only for type-II superconductors (A •< f) 

that the London theory, which assumes a local relationship between the current and 

vector potential, is valid. A non-local generalization of the London theory, motivated 

by experimental evidence, was introduced in 1953 by A. Pippard [13]. In 1967, the 

flux lattice predicted by Abrikosov for type-II superconductors was observed experi

mentally. Abrikosov's result is important not only because of the specific insight that 

it provides to our understanding of the physical behaviour of superconductors, but 

the result also illustrates the predictive power of the GL theory, one of the pillars in 

the theory of superconductivity. 

In the same year (1957) that Abrikosov predicted the existence of type-II super

conductors, J. Bardeen, L. Cooper, and J. R. Schrieffer developed the so-called BCS 

theory of superconductivity [14]. The groundwork for their theory was laid by Cooper 

in 1956, when he showed that if two electrons, in the presence of a filled Fermi sea 

of electrons, interact attractively, then no matter how weak this attraction, the two 

electrons will form a bound state [15]. This bound state is known as a Cooper pair. 

Ordinarily, by virtue of their like electric charge, two electrons repel one another. 

However, lattice vibrations (the quanta of which are phonons) can mediate an at-
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tractive interaction. The isotope effect, discovered in 1950, was used as evidence for 

phonon-mediated attraction. The BCS theory is based on a model Hamiltonian in 

which two electrons that are within roughly a Debye energy of the Fermi surface 

attract one another. Using the pairing concept as a guide, Schrieffer constructed a 

variational ground state wavefunction for this model Hamiltonian. 

The BCS theory has proved remarkably successful. Not only did the theory explain 

known facts, but the theory also made new predictions. For example, the ratio of 

the energy gap (essentially the binding energy of a Cooper pair) to the transition 

temperature is predicted to be a universal constant, at least for the so-called weak 

coupling superconductors for which this ratio is not too large. This prediction was 

subsequently verified experimentally. Thus, the BCS theory stands as a second pillar 

of the theory of superconductivity. 

In 1959, L. Gor'kov bridged the gap between the Ginzburg-Landau and BCS 

theories [16]. For temperatures close to the transition temperature, Gor'kov derived 

the GL theory from the BCS theory. In this thesis, our description will be based on 

the GL theory as it is more suited to the particular problems that we shall consider. 
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A p p e n d i x B 

Derivation of Saddle-Point Solution 

In this appendix we derive the saddle-point solution ipa. The most straightforward 

approach is to begin with the expression for E given in (2.27), but with <f> replaced 

by J IP, so that 

£ = (/ ' )2
 + / 2 - I / 4 + / - 2 J 2 = 0. (B.l) 

Rearranging this expression, and defining xo to be the point at which / vanishes, we 

find that / is given by 

f(X) , df =x-xp, (B.2) 
•to-D) y/E-2V{f;J) 

where V(f; J ) = / 2 / 2 - / 4 / 4 + J 2 / 2 / 2 . Defining u(f) = f2, eq. (B.2) can be written 

as 
[f{X)2 , du = X - = ^ . (B.3) 
Jf(xa)> ^ U 3 - 2u2 + 2Eu - 2J2 -v/2 

[•/(*) du _x — x0 

//(xo)' y/u3 - 2u2 + 2Eu - 2J2 ~ y/2 

As it now stands, / apparently depends on the four constants J,E,x0,f(xo). No

tice, however, that /(xo) and XQ are not independent; the freedom to choose one of 

these will be useful in what follows. We are with the situation in which V(/i; J)<E< 

V(fol J ) , so that the denominator of eq. (B.3) can be written as yj(u — a2)(u — b2)(u — c2), 

where the constants a, b, and c (see Fig. 2.2) satisfy 

a2 + 62 + c2 = 2, (B.4) 

a262-ra2c2 + 62c2 = IE, (B.5) 

a W = 2J2. (B.6) 
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Thus, a, b, and c are completely determined by E and J . If we use our freedom to 

choose f(x0) = c, then eq. (B.3) may be integrated to give u(x) = / 2(x) [1]: 

/2(x) = c2 + (62 - c 2 ) s n ( ^ = ^ ( s - «0)|m) (B.7) 

where m = (b2 — c2)l(a2 — c2). Thus, the parameter m, which appears naturally, can 

be used instead of E to characterize / . In addition, k„, which will turn out to be the 

effective wavevector of Vv, can be used instead of J provided we make the definitions 

a2 = «(*.) + im,A(6 s) , (B.8) 

b2 = u(ka)-^miA(ka), (B.9) 

c2 = 262 + i m i A ( 6 s ) , (B.10) 

in which u{q) = l-q2 and A(q) = 1 - 3g2. Combining eqs. (B.7), (B.8)-(B.10) yields 

the desired result, eq. (2.41), for rpa. 
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Appendix C 

Derivation of Fluctuation Rate Formula 

In this appendix we discuss the derivation of the formula for the fluctuation rate. The 

following discussion follows the derivation given reference [1]. Other useful references 

are [2, 3, 4, 5]. We start by assuming that the system is described by an energy 

F[$\ [see eq. (2.13)] and exhibits metastability, i.e., F possesses both local minima 

and saddle-points. Furthermore, we assume that the barrier heights U (see Sec. 2.3) 

are much larger than the thermal energy ksT, i.e., the kinetics is governed by the 

behavior of the metastable states. Although we present the derivation for the specific 

case of a superconductor, the situation is rather generic, and the following discussion 

also applies to many problems that exhibit metastability. 

The starting point in the derivation of the general expresion for the fluctuation 

rates is the stochastic time-dependent Ginzburg-Landau (STDGL) equation given in 

eq. (2.33), which for completeness is reproduced here: 

where T is given in Sec. 2.2. (Throughout this appendix, the notation of Chap. 2 will 

be used.) The topography of the free-energy is such that T possesses two types of 

stationary points: (i) metastable points, i.e., locally stable; and (ii) saddle-points, i.e., 

unstable in one direction in function space, (a direction that is sometimes referred to 

as the reaction coordinate). The system spends most of the time in the neighborhood 

of of a metastable state. However, as a consequence of the interaction with the 

thermal bath, (improbable) fluctuations occur that carry the system into another 
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metastable state. The most probable route for such a transition passes through the 

saddle-point. Consequently, if one considers a nonequilibrium steady-state ensemble 

of systems, the fluctuation rate can be computed by calculating the probability flux 

through the saddle-point. The flux is computed by (functionally) integrating the 

probability current, in the direction of the reaction coordinate, over all directions in 

function space perpendicular to the reaction coordinate. 

The first step in determining the probability flux through the saddle-point is to 

convert from the Langevin description of eq. (C.l), to the Fokker-Planck equation for 

P[# 

This equation is in the form of a continuity equation for P, thus the bracketed term 

on the right-hand-side is interpreted as the probability current. We are interested in 

the probability flux which flows through the saddle-point. It is therefore convenient 

to make a coordinate transformation from tp to principal-axis coordinates (denoted 

by c„) having their origin at the saddle-point state xj>a. Thus, we can write 

l W , + Ec*(*)W:), (C3) 
n>0 

where the normal modes (,„ are the eigenfunctions (with associated eigenvalues {Xan} 

arranged in increasing order) of the fluctuation operator La, associated with the 

second variation of T about state i>a [see eq. (2.62)]. As La is Hermitian, the £„ form 

a complete set of orthogonal functions. Due to the fact that %}>, is a saddle-point, A,o 

is negative, i.e., (o is the reaction coordinate. In addition, due to the translational 

and global phase symmetries of the free energy, there are two zero-modes, Ci and £2, 

i.e., A,i = A,2 = 0. 

As the transformation from the rp coordinates to the c„ coordinates is orthogonal 

(see previous paragraph), the component of the probability current in the c„ direction 

is given by 
dT dP 

Jn = ~P + D~; n > 0 , (C.4) 
OCn OCn 
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where D is the strength of the noise source [see eq. (2.32)]. We now assume that 

the probability current only flows in the co (i.e., unstable) direction, so that J\ ^ 0, 

while all other components vanish. (Our convention is that moving in the negative Co 

direction will return the system to the original metastable state, i.e., Jo is positive.) 

We can therefore determine P in terms of Jo by solving eq. (C.4) with n = 0, with 

the result that 

P = -D-iJoe-*13 Fdce*'0, (C.5) 
Jo 

= -D-'Joe-W I* dc exp [(f, + \ £ A,„c2 )/D] , (C.6) 
Jo l n>0 

where in obtaining the second line in eq. (C.6) we have expanded the free energy 

appearing in the integrand, viz., T « Ta + (l/2)En>oA%^L, where Ta is the di

mensionless free energy of the saddle-point state. This expansion is justified because 

D < 1 . Our expression for P given in eq. (C.6) must also satisfy eq. (C.4) for values 

of n other than zero. Therefore, we must have that 

Jo = AT exp [(f, + ± £ A..c2)/D], (C.7) 
n>l 

where jV is a normalization constant which will be determined by the requirement that 

the probability P be normalized to unity. Notice that in the exponent of eq. (C.7), 

the sum does not include n = 0; this is a consequence of our steady state assumption 

dP/dt = -dJo/dco = 0, i.e., J0 must be independent of CQ. Inserting eq. (C.7) into 

eq. (C.6), we see that P can be written as 

P = -D~x>Ie-TID r dc exp[(2£>)-lAj0c
2] (C.8) 

Jo 

The dominant contribution to the normalization will come from the neighborhood 

of the metastable state (since £ ) < 1 ) . Thus, for the purposes of computing J\f, we 

can expand T appearing in eq. (C.8) about the metastable state, i.e., T w Tm + 

(1/2) £„>, Amn6
2, where Amn; n > 1 are the eigenvalues of Lm, bm are the principal-

axis coordinates, and ^"m is the free energy of the saddle-point state. Then setting 
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co = —oo, we get 

/ 
UdbnPKD-Wl 
n>l 

Dir 

2X sO 

1/2 

n 
n>l 

2Dir 11/2 

where the 'volume factor' 

V i s / * i . 

(C.9) 

(CIO) 

is a consequence of the integration over 6%, the coordinate associated with the zero 

eigenvalue AmJ. (The calculation of this quantity will be discussed below.) Equating 

(C.9) to unity gives Af. The probability current given in eq. (C.7) is thus completely 

determined, allowing us to calculate the fluctuation rate ^P, given by the flux of 

probability in the direction of the reaction coordinate, i.e., 

£T= [UdcnJo. 
J n>0 

(C.ll) 

Utilizing the results of eqs. (C.7) and (C.9), the integrals in eq. (C.ll) can be per

formed, giving 

£T = M 
det'L 

where 

and 

det'L, 

_ n ~ 2 A 

*L e-(^-:Fm)/Z) 

det'L„ 
det'Z, n ~ 3 * . 

(C.12) 

(C.13) 

V,n = /<&„; n = l ,2 (C.14) 

are the 'volume' factors associated with the translational and global phase symmetries 

of F. Finally, due to the fact that t is measured in units of TGL, eq. (C.12) must be 

multiplied by TQI. Equation (C.12) is the same as eq. (2.36) of Ref. [5]. 

The volume factors given in eqs. (CIO) and (C.14) are computed in the following 

way. As the computation of the V" factors proceeds along precisely the same lines as 

that of the Vm factor, it is sufficient to focus on V„. The zero mode responsible for 

this factor is a consequence of the global phase symmetry of T, which is manifested 

by the fact that dtpm/d<l>mto is an eigenvector of Lm with zero eigenvalue. We therefore 
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expect that the variations in the coordinate 61 are related to variations in <f>m,o. To 

establish this relationship, we first expand V> about ipm: 

V> = V>m + E U m n , (C.15) 
n>l 

where £TO„ are the normalized eigenvectors of Lm, and rl>m is given in eq. (2.35). Thus, 

a variation of ip in the &i direction can be written as 

Slpl = rffclCml- (C.16) 

On the other hand, the variation S^, a consequence of altering <j>m,o by A^m,o, is 

given by 

^ = A ^ , o ^ . (C.17) 
o<pm,o 

If we equate eq. (C.16) and eq. (C.17), and use the fact that Cmi = 30ro/d^m,o/A/'m, 

w h e r e jVm = f dx \dtl>m/d(f>mfi\
2, we get 

din = AfmA<t>m%0. (C.18) 

The integration over 61 in eq. (C.10) can thus be converted to an integration over 

^m,o, which extends from 0 to 2%, thus giving 

Vl=jVn2x. (C.19) 

The factors V' and V2 can be computed in a similar manner, with the results that 

V.1 = A / > , (C.20) 

V2 = A%4 (C.21) 

where AC = / dx | % / % , o | \ and M2 = / dx \d^a/dx0\
2, and ip, is given in eq. (2.41). 
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Appendix D 

Regularization via Operator Perturbation 

In this appendix I will describe the perturbation procedure devised in order to com

pute the ratio R = det'L,/det'Lm, which arises in the computation of the fluctuation 

rate [see eqs. (2.34), (2.62), and (2.61)]. The primes indicate that zero modes are 

not included in the determinant. The computation uses, as its basis, Forman's equa

tion [1]: 

R = 
detL, det [M + NYa(£/2)] 

det[M + NYm(£/2)Y 
(D.l) 

de t l m 

for the quotient of determinants R, including all eigenvalues. In eq. (D.l), the M 

and N matrices encode the twisted periodic boundary conditions for ij> and iff' given 

in (2.22) and (2.25). These matrices are not unique, but a convenient choice is 

-M = 

.«* 0 0 

0 

0 

o • 

0 

0 

e-'». 

, N = 

l O O O " 

0 1 0 0 

0 0 1 0 

.0 0 0 1. 

(D.2) 
0 

0 0 

0 0 

In Forman's notation the boundary conditions given in eqs. (2.22) and (2.25) are 

written in the form 

M 
ty(-£/2) 

ty'(-£/2) 
+ N 

ty{£/2) 

l$'(f/2)J 
(D.3) 

where ty(x) = [ip(x),i>'(x)]T, and 0 = [0,0]?. The Ye matrix is the so-called fun

damental matrix, and is defined to have the property that, for any (complex two-

component) solution (g(x) of the so-called Jacobi accessory equation (i.e., the homo-
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geneous equation Le fe = 0), one has 

a— 
where the prime denotes differentiation with respect to x. Notice that, by definition, 

Ye(—£/2) is the (4 x 4) identity matrix. The computation of Ye is at the heart of 

the calculation of R, and hence R. The prescription for constructing % is as follows. 

First construct an auxiliary matrix He(x), in which the t'th column of He is the vector 

[»7e,i,dxve,i]
T, where {ne),}

4
=1 is a set of linearly independent solutions to the Jacobi 

accessory equation. Then Ye is given by 

Ye(x) = Ht{x)H;\-£l2). (D.5) 

Thus, the computation of R has been reduced to the problem of finding the sets 

{«e,«}4
=i of linearly independent solutions of the accessory equation. 

The source of the difficulty in computing the fluctuation rate £T (see eq. (2.64)), 

is that, due to the presence of zero modes, we cannot directly apply Forman's equa

tion (D.l) (see Sec. 2.7). More specifically, one or more of the ne,,- satisfies the bound

ary conditions defined by M and N; these solutions are therefore eigenvectors of Le 

with an eigenvalue of zero. It is these solutions that are responsible for the vanish

ing of detLe. A regularization procedure is therefore required in order that we may 

compute R = det'L,/det'Lm. The procedure to be presented in this appendix uses 

Forman's equation (D.l) as its basis. 

The regularization procedure consists of perturbing the operators Le(ke) by trans

forming the wavevector 6e - • 6e = ke+6ke, but leaving the boundary conditions fixed. 

Thus, under this transformation, Le(ke) —» Le(ke) = Le. The homogenous solutions 

will then be characterized by 6e, but the boundary conditions, not having been altered 

by the regularization, will still only depend on 6e. Thus, the culprit homogenous so

lution (i.e., the zero mode) will no longer satisfy the boundary conditions, and hence 

will no longer be an eigenfunction. Therefore, what were once zero eigenvalues, will 

now become nonzero with a size proportional to the strength 5ke of the perturbation. 

GM/2) 
CM/2) J 

(D.4) 
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If Ske <K 1, these pseudo-zero eigenvalues can be calculated using standard first-order 

perturbation theory. 

If we denote by dt (dm = 1, and da = 2) the degeneracy of the zero modes of Le 

then we expect that for Ske < l w e shall find detLe oc (Ske)
d°. At the same time, the 

pseudo-zero eigenvalues, denoted by Ae),-; * = l,d«, will each be proportional to Ske. 

In this notation, R is given by 

g - H m f i ^ ^ . (D.6) 

i=i 

We can now use Forman's equation (D.l) to compute det La/det Lm, so that 

The computation of R using eq. (D.7) requires that we construct the fundamental 

matrix Ye for the perturbed operators Le. However, as will be shown explicitly, since 

the analytic dependence of the n,.,,- on 6e is known, construction of Yt is trivial once 

Ye has been determined. Thus, the utility of this regularization scheme depends on 

knowing the explicit form for the ne,,\ In the following two subsections I will show 

how the above strategy is implemented, first for Lm, which is the simpler (and hence 

more transparent) of the two cases, and then for La. 

D.l det'Lm 

The first step is to construct the auxiliary matrix Hm(x) from a set of four linearly 

independent solutions (denoted by {nm,«}Li); and their derivatives with respect to 

x, of the accessory equation Lmrj = 0. In this case it is straightforward to solve the 

accessory equation, with the result that 

texp(t6x) 
"m,i(z) = 

—texp(—ikx) 
(D.8) 
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*W(z) = 

Vm,3(X) = 

VmAX) = 

(D.9) 

(D.10) 

(D.ll) 

(—6 + iu(6)x) exp(tfcx) 

(—6 — tu(6)x)exp(—t'6x) 

(2w cosh(2wx) — t26 sinh(2wx)) exp(t6x) 

(2w cosh(2wx) +1'26 sinh(wx)) exp(-t'6x) 

(2w sinh(2wx) - %26 cosh(2wx)) exp(t6x) 

(2w sinh(2wx) +126 cosh(2wx)) exp(-t'6x) 

where u(q) = 1 — q2, u = w(6) = JA(k)/2, and for notational convenience 6 = 6m. 

Notice that nm,,- depends only on the constant 6; the constant 0m,o has been set to 

0. Also, [Vm,i,v'm,t]T 1S the only solution that satisfies the boundary condition (D.3). 

Thus, as expected, Lm has a single zero mode nm,i, so that dm is indeed unity. 

The choice of the nm.i is not unique. The above form is particulary convenient 

in that the factors which multiply the exponentials can be written as the sum of 

symmetric functions (<rm|t(x) and a'm ,(x)) and antisymmetric functions (amij(x) and 

<x'm,i(x))' s o ^ a t 

nm,i(x) = 

?'m„M = 

(D.12) 

(D.13) 

(am,,(x) + <rm,,(x))exp(t6x) 

« . , , (* ) + <AX)) exp(-t6x) 

«Ax) + <Ax))eMikx) 

feW + ^m,i(*))exp(-»*a;) 

Using the symmetry/antisymmetry properties of r/mi,-, and eq. (D.5), we can write 

%,(f/2) as 

%U,(f/2) = 6 . j ^ - r 2 e ^ / 2 E ^ . , ( ^ / 2 ) ^ ! , , ( - ^ / 2 ) , 
«=i 

%» (̂//2) = ^ e - ^ + 2e-'^2i:«;,X//2)%(-</2), 
«=i 

%,a(</2) = 63,e^+2^/^aL„(</2)%(-</2), 
t= i 

^,4,(^/2) = ^ e - ^ + 2 e - ^ / 2 ^ a ^ , ( f / 2 ) ^ ; L ( - ^ / 2 ) , 

(D.14) 

(D.15) 

(D.16) 

(D.17) 
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where £y is the Kronecker symbol, and Ym,ij is the (», j) element of Ym. This form 

for Ym(£/2) is useful because it is readily seen that the first term in each of the above 

expressions yields -M. Thus, det[M + NYm(£/2)] is given by the determinant of the 

matrix formed from the second terms in eq. (D.14); that this determinant is zero can 

be readily deduced by inserting the explicit forms for the am,,- and o ,̂,- into (D.14), 

and performing elementary row additions, which preserve the determinant. 

We now turn to the issue of regularization, which, as we have just seen, is borne 

out of necessity. As described above, the regularization consists of transforming 

6 -• 6 = 6 + Sk in Ym but keeping the matrix M = diag{eike, e~ike, eiH, e~ikt} fixed. 

In other words, we are regularizing the operator keeping the boundary conditions 

fixed. Replacing 6 by 6 in eq. (D.14), and expanding to 0(6k), we find: 

\M + NYm(£/2)} = emAj + 2eikt/2J2am,i(£/2)H-]ij{-£/2), (D.18) 

[M + NYm(£/2)} = emv + 2e-ike'2J2a*mti(£/2)H-yj(-£/2), (D.19) 
:=i 

[M + NYm(£/2)]3j = em,3j + 2eike<2£)a'mii{£/2)H-]ij(-£/2), (D.20) 
«=i 

[M + NYm(£/2)]4j = tmAj+2e-iktt2£:<*'mAt/2)Hm]ij{-£/2), (D.21) 
1 = 1 

where emia = 66%[expt(6^/2 + %-)]'+*. In eqs. (D.18)-(D.21), the second terms in 

the right-hand-sides can be evaluated at 6, rather than 6; evaluating these terms at 6 

will introduce corrections to det[M + NYm(£/2)] which are of order 6k2, and will not 

contribute when we take the limit 6k -+ 0. Using eqs. (D.18)-(D.21), and undertaking 

some algebra, it is found, to leading order in 6k, that 

det[M + NYm{£/2)] = -86kku{k) A"x(6) [&inh(w(6)^)]2. (D.22) 

The next task is to calculate the formerly-zero eigenvalue AmiJ. As 66 4C1 we have 

that Lm « Lm(k) + 6k(dLm(k)/dk), and so Am)l can be calculated using standard 

first-order perturbation theory, i.e., 

(l|l)Am,i = 6k(l\dLm/dk\l), 
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= -6646f, (D.23) 

where (x|l) = nm,i(x)i and ( | ) denotes inner product, e.g. 

f f /2 
(l\l) = J_t/2dxVltl(x)r,m,r(x), (D.24) 

with n*,,i = [Vm,vVm,i]. Dividing eq. (D.22) by eq. (D.23) we finally obtain 

Hm <MM + JVT%(f/2)] = 2(i|i)tl(jb)A-l(ib)&inh2(a;(ib)/). (D.25) 

To complete the calculation we must compute V„, the factor that results from in

tegrating over the collective coordinate associated with the gauge symmetry. In ap

pendix C it is shown that 

XL =2,r( l | l ) . (D.26) 

Combining eqs. (D.25) and (D.26) we finally obtain the result that 

| d e t , y / 2 = *-'„(&) A-'(6)6inh=(w(6X). (D.27) 

We must now turn our attention to the computation of det'Z,,. 

D.2 det'L* 

As for the metastable states, the first step is to find a linearly independent set of 

solutions {n,,i}4_i to the homogeneous equation Lan — 0. Then the ith column of the 

auxiliary matrix is given by the (four-component) vector [%,,;, n3ti]
T, the prime as usual 

denoting differentation with respect to x. Whereas it was straightforward to find a 

set {nmi,-}, the same is not true for {?,,;}. However, this problem is greatly facilitated, 

in fact becoming algorithmic, by Jacobi's theorem [2]. (See also Chap. 3 for a specific 

example). This theorem states that a linearly independent set of solutions to the 

homogeneous equation La[ipa]ri = 0 can be obtained by computing the derivatives 

of x[>a [c.f. eq. [2.41)] with respect to the constants of integration (6 s ,m,x0 , ^,,o). 

Hereafter, for notational simplicity, 6S = 6. Rather than differentiate with respect 
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to 6, it is more convenient to differentiate with respect to w(6) = w. The linearly 

independent set of solutions is taken to be: n,,i = — dXoipa, na<2 = d^ij),, n,,3 = dmip„ 

and na,4 = dwij)a. As the final result is independent of the quantities x,,o and <j>»,o, 

they can be set to zero once the corresponding n's have been computed. With these 

definitions, n , j and n,,2 are the zero modes (i.e., da = 2). This can be checked 

explicitly, or else it can be deduced from the fact that Tty,] is independent of both 

Xo and ,̂,@; this independence represents the symmetries of translation and gauge-

invariance. Although it is possible to write down the explicit forms for the i/-,.;, it 

is more efficient to proceed by defining, as in the case of nm,i, symmetric functions 

(<y»,i(x) and o-'ai(x)) and antisymmetric functions (a,,;(x) and a,t,(x)) so that 

%,,,(z) = 

<, (* ) = 

(D.28) 

(D.29) 

(«,,<(%) + a3<i(x))expi<f>a(x) 

(<>;,,•(«) + <f(r))exp - t ^ ( x ) 

« , k ) + < , W ) e x p t ^ ( x ) 

« , . ( x ) + < ( x ) ) e x p - t ^ ( x ) 

The symmetric and antisymmetric functions can be identified from the fact that 

/ „ / r , . / y , # , # , # " are symmetric, and / ^ / ^ / Z , & , # % < & « : antisymmetric. 

In this notation, the superscript denotes partial differential, e.g., / " = dfa/dm. 

By exploiting the symmetry and antisymmetry properties of the «„,,-, and using 

eq. (D.5), the fundamental matrix Ya((£/2) can be written in the form 

4 

%.„(//2) = 6 u ^ ' - r 2 e ^ W 2 ) ^ a . . , ( ^ / 2 ) % ( - ^ / 2 ) , 
(=i 

%,%(</2) = ^e-'^'+2e-^('/2)E«:,(^/2)%(-^/2), 
i = i 

^,(//2) = ^^'+2^'( ' /2)Ea:,W2)%(-^/2), 
i=i 

^,4,(//2) = & , e - ^ ^ + 2 e - ^ ( ' / 2 ) E a ^ ( ^ / 2 ) ^ ( - ^ / 2 ) , 

(D.30) 

(D.31) 

(D.32) 

(D.33) 
i = i 

where A<f>a = (f>a{£/2) - <f>a(-£/2). Notice, that as was the case for Ym(£/2), it is only 

the antisymmetric functions Q3)I- and a,,- that enter into the expression for Ya{£/2). 
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In addition, the first term in each of the four above expressions is seen to equal to 

—M. Thus, det[Af + NYa(£/2)] is given by the determinant of the second terms of 

eqs. (D.30)-(D.33); that this determinant is zero can be readily deduced by performing 

elementary row additions, which preserve the determinant. 

We now turn to the regularization, which is carried out by transforming u —» 

w + 6u = u in Ya (but not in M). In the introductory section of this appendix, the 

regularization was described as consisting of transforming 6,; the transformation of 

w is equivalent because u depends only on 6„, and not on any of the other three 

constants m, xo, or <f>3lo Transforming u —• Co, and retaining terms to leading order 

in 6w, we find 

[M + NYa\£l2))xi = ^ + 2e'^^2> ^ ^ . ( ^ 2 ) ^ M / 2 ) , (D.34) 
(=1 

[M + NY:(£/2)h = e2j + 2e-i*M2)J2a:ii(t/2)Hjj(-£/2), (D.35) 
i= i 

[M + NY:(£/2)h: = e3j + 2ei*MvJ2a3ti(£/2)Ha-}j(-£/2), (D.36) 
;= i 

[M + NY:(£/2)]Aj = e<j-r2e-i*-WJTa';<i(£/2)Hjj(-t/2), (D.37) 
«=i 

where t.# = A/wA^exp \/=T(^(//2) + »)]'"+1 and A # = ^ (^ (^ /2 ) - ^ ( - ^ /2 ) ) . 

Using eqs. (D.34)-(D.37) and certain properties of elliptic functions we find 

det[M + WY,W2)] = us ( *fffi - W T O - jt ~ f ) - *TM!M ) 
I /5 -ft- J; J 

_(/^r-/r^) 
(tirf? - #rf?) 
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_ , ,2128 [1 - u(k)K(m)}2[A(k) - (1 + M2)u(k)K(rnV 
~ ~Su,ir [6U(6)A(6)P ^ ' 3 8 ) 

where J, = 6 u(k) is the (dimensionless) space independent supercurrent of the saddle-

point state, and K(m) is the complete elliptic integral of the first kind. The first line 

of eq. (D.38) is generally valid, and the second line is obtained by ignoring terms of 

order m% in all terms except K(m), which diverges logarithmically as mi —• 0. 
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The next step is to compute the product of the eigenvalues A,j and A,)2. In this 

case, as we have a two-fold degeneracy (da = 2) we must use first order degenerate 

perturbation theory, so that 

A . A , , = ^ " ^ - f f " > ' (D.39) 

where {x\i) = n,,,-, and L\ {j — (i\dLa/du}\j). The computation of the product A,,iA,,2 

given in eq. (D.39) is rather tedious, and after a significant amount of algebraic 

manipulation it is found, to leading order in mi, that 

n<i|t)A,,,- = -6w 2 m 2 ^^%l - u(k)K(m)}[A(k) - (1 + U2)u(k)K(m)). (D.40) 
«=i 9 J(k)2 

Combining eqs. (D.38) and (D.40) we finally obtain 

^ d=t[M + ^ W / 2 ) ] ^ _ ^ , ^ ^ M ^ W - 1 ) , (D.41) 
*"~° A4,,A3,2 m2A(6)5 

The right hand side of eq. (D.41) can be expressed completely in terms of £ and 6 

by using the fact that when m% «C 1, we have that 16m% sa exp(—£JA(k)/2) [c.f. 

eq (2.47)]. Notice that eq. (D.41) has the opposite sign to that of eq. (D.25). This 

sign difference is a signature of the instability of state x/ja, and a consequence of the 

fact that the spectrum of L, has one negative eigenvalue (i.e., ij>a is a saddle-point). 

The remaining task is to include the product V]V2 of volume factors. As shown 

in appendix C, Vj = £Afi and V2 = 2njV2 so that when these are combined with 

eq. (D.41) the normalization factors cancel out, as in the case of the metastable state, 

and we finally obtain 

Idet'L,!1'2 4 {u{k)K{m) - 1) 
yWyW % m2A(6)s 

(D.42) 
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Appendix E 

Functional Determinant for #4 Potential 

In this appendix we give details of the calculation of the functional determinant of 

eq. (3.42). The motivation for studying an operator of this type is that it arises 

in the investigation of fluctuations about the instanton in one-dimensional quantum 

mechanics with the potential V(x) = \x2 — ^x4 [1]. The instanton satisfies the 

equation —x + V'(x) = 0, which may be integrated once to give \x2 — V{x) — E, 

where E is a constant. Solutions to this equation are those of a classical particle of 

unit mass and energy E moving in the potential —V(x). Bounded motion is allowed 

for E < 0, corresponding to the existence of real instantons. 

Let the values of x at which the particle in this mechanical analogy has zero 

velocity be denoted by a and /? (0 < a < £). Then -V(a) = -V(/3) = E, which 

implies a2 + P2 = 2 and E = —a2/32/4. The once-integrated equation of motion now 

reads 

( * ) -
Ifx'-oW-*2) (E.1) 

which implies that 

I , , dX = - - U f - f o ) (E.2) 
h yj(x2 - a2)(P2 - x2) V2 

where to is the time at which the particle was at x = /?. This may be integrated in 

terms of elliptic functions [2]: 

xc(t\ t0,m) = j3dn(u\m), (E.3) 
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where « = fi(t—to)jy/2 and m = l-(a 2 / /? 2) . The subscript 'c' denotes "classical" and 

simply indicates that this is a solution of the classical equation of motion 6S/6x(t) = 

0, where S[x] = /a
6 dt fix2 + V(x)| is the action. The physical significance of the 

integration constant to is clear: because the particle can start at any x (a < x < /?), 

the time at which it reaches /? (defined to be t0) is arbitrary. The constant m, on 

the other hand, is directly related to the energy of the particle, since E = —(1 — 

m)/2(2 — m)2. An alternative to m, which also specifies the energy of the particle, is 

the period T defined by 

I ' _ I' . "* CM) 
2 \/2 Jo ^(zz - a2)(/?2 - x2) 

= ( V ^ ) 1 / 2 *(m)> (E-6) 
where A"(m) is the complete elliptic integral of the first kind [2]. 

We are interested in evaluating the expression (3.40), and therefore need to de

termine the values of the functions y\ and y2 at the endpoints a and b. These two 

functions are solutions of the homogeneous differential equation Lh = 0, where 

L6(t -1') = 
6x(t)6x{t') 

x=xc 

-— + l -3x 2 ( f ;< 0 ) m) 6{t -1') (E.7) 

Using the explicit form for xc given by eq. (E.3) we obtain eq. (3.42). But two 

independent solutions of Lh = 0 can be found by differentiating xc with respect to to 

and m [3], so we define j/i and y2 by: 

„ l ( ( ; ( o , m ) s »S( |^2) (E.8) 

„(„*,,„,) S ^ f ^ (E.9) 
It is a straightforward exercise in elliptic functions to find from eq. (E.3) that: 

yi{t;t0,Tn) = —^=-sn(u|m)cn(u|m), (E.10) 

yi{t;t0,m) = ^ - d n ( u | m ) { c n 2 H m ) - s n 2 ( t x | m ) } . (E.ll) 
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One can now check using (E.6) that t/i(a) = 3/1(6) and that yi(a) = yi(b) for any 

initial and final times satisfying b — a = T. Therefore, since y\ is a solution of Lh = 0 

satisfying the correct boundary conditions, it is the zero mode for this problem, as 

expected. 

A slightly longer calculation of the same type gives 

y2{t; t0, m) = — dn(u|m) - j u r n — - 2 ^ _ i + y j sn(u|m)cn(u|m) 

psn\u\m)dn{u\m) . 

20^) ' (E"12) 

where E(u\m) is the elliptic integral of the second kind. Using the periodicity of the 

elliptic functions 

y2(b)-y2(a) ' ' " < " = " - * " " ^ ^ - 1 

» i ( « ) • -f'^-a+IHIw}" 
_ mV/J - -iSzsL m-^A-m 

as j82 = 2(2 — m) - 1 . Here E(m) is the complete elliptic integral of the second kind. 

The Wronskian det H{t) is a constant, and so can be calculated for any convenient 

t. Choosing t = to, which implies u = 0 and so yi(t0) = 0, we have 

dettf(t) = y3(*o)yi(*o)-!li(to)!fe(fo) --mm 
- - ( 2 ^ 5 - ( E - 1 4 ) 

Substituting eqs. (E.13) and (E.14) into eq. (3.40), and taking into account the extra 

minus sign which comes about because the operator (3.42) is minus the definition of 

operators as given in the text, gives eq. (3.43). 

Following the discussion of the most natural form for L given in Sec. 3.2, we take 

it to be the second functional derivative of the action for the harmonic oscillator with 

the potential V(x) = |x 2 . Then 

L = - ^ + 1 (E.15) 
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Choosing yi(t) = e* and y2(t) = e-< to be the two independent solutions of the 

homogeneous equation Lh = 0, 

rcosh(6 — a) sinh(b-a)' 
r(&) = . . . . . - (E.16) 

L smh(o - a) cosh(6 - a). 
Using the same periodic boundary conditions which gave (3.40), 

det(M + NY(b)) = 2-Yu(b)-Yn(b) 

= 2 ( 1 - cosh T) (E.17) 

= -4sinh2([2-m]1 / 2 /C(m)). (E.18) 

Dividing (3.43) by (E.18) gives the required expression for 

1 de t ' I 
(E.19) 

<9i|tfi> det 6 ' 

As a check on the results let us look at the limit E —> 0_, i.e., m —» 1 or T —• oo. 

In this case K(m) ~ \ ln(l - m), which from eq. (E.6) gives m ~ 1 — 16e~T. Using 

E(m) —• 1 as m —» 1, we have 

£ K T & " T - - (E-20) 
Since from (E.17), det £, eT as T -» oo, 

1 d e t ^ = 1 (E.21) 

r - ~ (y,|yi) detL 16 

The sign is the expected one: the zero mode that has been extracted, yi, has a 

single node, which leads us to deduce that L has only one eigenfunction with a negative 

eigenvalue; all the other eigenvalues are non-negative. The signs of eqs. (E.18) and 

(E.20) are not those that we might naively expect, but these signs have no meaning 

separately — both the magnitude and sign of these terms can be changed at will by 

the replacement M —» AM, Af —» XN, where A is any real number. 

The ratio (E.21) agrees with the calculation of Ref. [1]. To see this we note that 

a —> 0,/? —* \/2 as m —• 1, hence the instanton becomes 

xc(t;t0,m = 1) = \/2sech(< - t0) (E.22) 
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which implies that 

yi(t;t0,m = l) = \/2sech{t-t0)tanh(t-t0), (E.23) 

lim(;,,W = i (E.24) 
1 —K» O 

Combining eqs. (E.21) and (E.24) gives eq. (3.44), as required. 
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Appendix F 

Two-Mode Dynamical System 

Our aim is to construct a two-mode dynamical system (DS) that exhibits the crossover-

effect. The primary motivation for constructing the reduced DS is that the ideas pre

sented in the Sec. 4.6 are more easily tested in this simpler system. In particular, by 

solving the Fokker-Planck equation for the reduced DS, we will be able to visualize the 

flow of probability away from the unstable state and accumulate around the neigh

boring metastable states. In addition, for the two-mode system it is computationally 

feasible to minimize the thermodynamic action. We shall provide numerical evidence 

to support the conjecture in Sec. 4.6 that in the late-time regime the minimum value 

of the action is much smaller than D. Finally, the notion that the thermodynamic 

action is not relevant to determining the relative final occupation probabilities of the 

competing metastable states leads to the conclusion that the important quantity is 

the ratio of fluctuation determinants (see eq. (4.51)). In other words, in order to 

compute the relative probability of a single phase-slip versus a double phase-slip, it 

is necessary to compute the ratio of fluctuation determinants. For the full dynami

cal system, i.e., the STDGL, the fluctuation operators are matrix partial differential 

operators. Computing the determinants of these operators is a formidable problem. 

As the fluctuation operators for the reduced DS are matrix ordinary differential op

erators, the hope is that the ratio of the determinants for these operators can be 

computed. Although the calculation for the reduced DS is simpler than the corre

sponding calculation for the full DS, it is still a difficult problem, and one that is not 
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yet solved. 

We now proceed with the construction of the reduced dynamical system. The 

two-mode DS must satisfy two main requirements. First, the fixed-point structure, 

and the linear stability properties of the fixed points, must be the same as that of the 

original DS given in eq. (4.10). Second, the two-mode DS must exhibit the crossover 

effect. These two requirements are independent of one another. For example, one 

might be able to construct a DS for which the fixed-point structure and linear stability 

properties are the same as the STDGL, yet does not exhibit the crossover effect. 

The construction of the two-mode DS proceeds in two stages. First, as we are 

interested in reproducing the crossover from single phase-slip domination to double, 

we truncate the expansion of eq. (4.30) at n = 2, so that 

2 

4>{x,t)= £ a n ( t>x P ( - t 9 n x) . (F.i) 
n=-2 

As discussed in Sec. 4.5, the modes with a positive wavevector, in this case labelled 

by n < 0, are necessary in order that the approximate system have the same linear 

stability properties as the original TDGL. In general, the an(t) are complex-valued 

time-dependent functions. However, as our goal is the construction of the simplest 

possible system, we will take the 6„ to be real. This Ansatz cannot be justified 

rigorously. However, if we consider the time-dependent Ginzburg-Landau equation 

in the abscence of noise, then if the mode amplitudes a„(0) are real, then at a later 

time they will remain so, i.e., an(t) will be real. This is discussed in Ref. [1], and I 

have also checked this numerically. Now, the noise in the stochastic time-dependent 

GL equation will cause the complex components of the an(t) to be nonzero; it is for 

this reason that we are not rigorously justified in making this Ansatz. 

At this stage we have a system with five real degrees of freedom. The second step is 

to reduce this five-dimensional system to a two-dimensional DS. This is accomplished 

by introducing the following Ansatz: 

So = AoY[(l-a2JAl) (F.2) 

n = l 
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3-1 = (/o,ifli - fo,2al)aQ/Ao (F.3) 

a_2 = (/o,202 - /o,i«i)aoMo, (F.4) 

where An = An(t) = Jl — Qn(t)
2 and /0,„ is given in eq. (4.32). The two-mode 

DS, with a\ and a2 as the dynamical variables, is generated by inserting eqs. (F.l) 

and (F.2) - (F.4) into eq. (4.10), multiplying by £-leiqmX (where m = 1 or 2), and 

integrating from 0 to L The resulting DS can be written in the form 

dajdt = ffB(a(0,6(0) + Vn(t) (n = 1,2), (F.5) 

where nn(t) is a Gaussian random variable, Dirac-delta correlated in time, Kronecker-

delta correlated in n, with mean zero, and variance D/£. The variance of nn(t) is half 

of the variance of fj(t) because we are taking the an to be real. Hereafter, boldface 

quantities will denote two-component real vectors; e.g. a(i) = [ai(t),a2(t)]
T. 

The Ansatz given in eqs. (F.2)-(F.4) can be motivated in the following way. First, 

it was specifically chosen so that the two-mode DS would have the same fixed-point 

structure and linear stability properties as the original equation. The solution of the 

linearized TDGL, given in eq. (4.31), was used to determine the form of the Ansatz for 

at and a2 < 1; i.e. to first order in a„ (where n = 1 or 2), a0 = A0i and a-n = fo,nan-

In addition to this, we require that when an = ±An, the mode amplitudes oto, o_i, 

and a_2 vanish. The proportionality of a0 to 1 — a2//!2, and the fact that a_„ oc do, 

ensures that this requirement is satisfied. There are still two terms, those of the form 

—/o,na
2, that have not been explained. If these terms are absent, the two-mode DS 

does not exhibit the crossover effect, even though this DS has the appropriate fixed 

point structure and linear stability properties. These terms are therefore required if 

the two-mode DS is to exhibit the crossover effect. 

Further justification for this Ansatz, based on numerical evidence, can be given. 

In particular, we can numerically integrate the STDGL equation (4.10), thereby gen

erating a time-dependent configuration ^>(x, t). Using eq. (4.30), we can compute the 

mode amplitudes an(t). The numerically computed amplitudes an(t); n = 0 , - 1 , - 2 

can then be compared with the an(t) that are given in eqs. (F.2)-(F.4), and which are 
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completely determined from the two modes o% and <z2. In this way it can be verified 

that the a„(t) have the same qualitative features as the amplitudes an(t) that were 

obtained from the original STDGL. 

The vector g, the components of which are polynomials in at and a2, and which 

defines the two-mode DS, has the following properties. First, g vanishes at the points 

a<±n>(*) = ±An(t) 
& , i 

Sn,2 
(n = 0,1,2), (F.6) 

where, as in the previous section, An(t) = \ / l — Qn{t)2' Thus, the states aSn\t) are 

fixed points of the two-mode system, and are associated with the fixed points t/fn. In 

addition, dgn/dan\a(o)^) = Aj)Tl, so that for a„ < 1, we have an(t) oc eA«."'. Thus, 

for K2 > Qo(t) > Ki, state a*°)(i) is unstable with respect to fluctuations of a\, and 

for Qo(t) > K2, &^°\t) is unstable with respect to fluctuations of both a\ and a2. 

Furthermore, dgn/dan\&(Xm)^ < 0 (where m = 1 or 2) and so states a(=")(f) and 

a(
±m)(f) are metastable. In other words, the two-mode DS has the same fixed point 

structure as the original STDGL given in eq. (4.10), and the linear stability properties 

of state a(°)(f), defined by the growth rates Ajn , are also the same. 

To see that the DS given in eq. (F.5) exhibits the crossover effect, we numerically 

integrate eq. (F.5) using a simple Euler differencing scheme. That is, time is dis-

cretized into units of size ht, and the continuous variables an{t) are approximated by 

their values an<j = an(tj) at the discrete points tj = jht. The evolution equation (F.5) 

then becomes 
anJ+\-an"j=gn(aj,kj) + ^ (F.7) 

where kj = k0 + jwht/£, and nn,i is a Gaussian random variable with mean zero, 

Kronecker-delta correlated in n and j , and with variance D/£. As in Sec. 4.2, the 

factor of h-t2 is introduced so that nniJ- and rjn{t) have the same dimensions. Armed 

with this numerical algorithm, we now proceed in the same way as in Sec. 4.4. That 

is, for a given w, we integrate (F.5) N times, with an initial condition a(0) = a°(0), 

and 6(0) < «i. We then count the number of times, Nn, that the system ends up in 
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w 

0.00001 

0.00005 

0.0001 

0.0005 

0.001 

0.003 

0.005 

0.007 

0.01 

P-x 

0.58 

0.60 

0.63 

0.46 

0.41 

0.26 

0.14 

0.02 

0 

Px 

0.42 

0.39 

0.33 

0.30 

0.30 

0.14 

0.02 

o. 
0 

P-2 

0 

0 

0 

0 

0 

0.13 

0.40 

0.56 

0.58 

Pi 

0 

0.01 

0.04 

0.24 

0.29 

0.47 

0.44 

0.42 

0:42 

Table F.l: Probabilities Pn that the system ends up in state a("\ Parameters: 
W = 100, D = 0.001, 60 = 0.58, and ht = 0.2 

state aW((). For N = 100 and D = 10 - 3 , the probabilities Pn = Nn/N are given 

in Table F.l as a function of w. A comparison of these results with those of Fig. 4.3 

shows that indeed that the approximate two mode DS exhibits the same qualitative 

behavior as the original STDGL. One interesting feature of the results of Table F.l 

is the asymettry between a(n)(<) and a ( -n)(*). 

A useful way to visualize the dynamics is to construct a two-dimensional para

metric (in time) plot, with \a\(t)\ as the ordinate and \a2(t)\ as the abscissa. Plotted 

in Fig. F.l are 10 such graphs. In this case u = 0.001, so that a mixture of single 

and double phase-slips occur (see Table F.l). 

We can now develop a picture of the time development of the probability density 

P(ai,a2>t), where P{a\,a2,t)da\da2 is the probability that at time t the system is 

in (to within da\ and da2) state (ai,a2). To do so, consider an ensemble of systems, 

the dynamics of which are governed by eq. (F.5), and for which all of the members 

of the ensemble are initially in state a^°\t). Thus, at t = 0, the initial condition is 
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Figure F.l: Ten parametric plots of |ai(t)| and |<z2(f)|. There are 7 single and 3 double 
phase-slips. Parameter: ht = 0.2. 

that P(ai,a2 ,0) = 6(ai)6(a2). (The normalization condition is that, at any time t, 

fdaida2P(ai,a2,t) = 1.) As the system begins to evolve, the probability distribu

tion will spread out. As long as sS°^(t) remains stable, i.e., as long as Qo(t) < «i, 

the density P(ai,a2,t) will remain localized about dS°)(t). However, once the Eck

haus instability is encountered, P(ai,a2,t) will begin to spread out, flowing away 

from a<°>(<). For intermediate times, the states lying 'between' a<°>(<) and sS±n\t) 

will be occupied appreciably. However, as time progresses, P(a\,a2,t) will begin to 

accumulate about a*±n)(<). We can estimate, from the characteristic time <* given in 

eq. (4.39), that this accumulation of the probability will occur for times > 0(yj£/u)). 

The description in the preceding paragraph can be made more concrete if we con

sider the Fokker-Planck (FP) equation associated with the Langevin equation (F.5), 

which governs the time-development of the probability density P(a\,a2,t). The pur-
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I i 
# 

^ A % ^ ^ 

j n 

^ A ^ ^ ' & 

Figure F.2: Temporal sequence of P(ai ,a2) . Dark (light) regions are areas of high 
(low) probability. The earliest (latest) time is shown in the upper left (bottom right) 
plot. Parameters: w = 0.001, D = 0.1, ht = 0.0005, Na = 32 

pose of studying this equation is to confirm the picture of the dynamics of the prob

ability density that was described in the preceding paragraph. The FP equation for 

the two-mode DS associated with eq. (F.5) is 

ap = _ 2 _9_ 
dt tx dan 

9nP-
DdP 

2£dan 
(F.8) 

and is in the form of a continuity equation. The term in brackets on the right-

hand-side of eq. (F.8) is therefore interpreted as the probability current, which we 

will denote by Jn(axi<i2,t). As discussed in the preceding paragraph, if the prob

ability is initially peaked at [0,0], we expect it will flow to the four fixed points: 

a(*i)(() and sS±2^(t). In the numerical simulations of the two-mode DS the transi

tion to a metastable state a^±n'(<) always occurs within a time short enough so that 
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An{t) = Jl — Qn(t)
2 < 1. Thus, the domain of P can be taken to be a square, 

centered at (0,0), and with sides of length 2a, where a > 1. With this restriction to 

a finite domain, the dynamical equation (F.8) must be supplemented by boundary 

conditions. These are determined by the requirement that the dynamics preserve the 

normalization of the probability, i.e, at any time t, fdaida2dP/dt = 0. As, from 

eq. (F.8), dP/dt = - £ „ djn/dan, this condition can be satisfied by requiring that 

the probability flux out of the square be zero, i.e., 

Ji(±a,a2) = 0 

Jb(oi,±a) = 0. (F.9) 

This condition is sufficient, but not necessary. Equations (F.8) and (F.9), together 

with an initial condition, completely determine the dynamics of P(ai,a2,t) within 

the square of area 4a2 and centered at (0,0). 

The numerical integration of the FP equation proceeds as follows. First, we con

struct a square lattice, centered at (0,0), the points of the lattice being separated by 

a distance ha. Time is also discretized in units of size ht. Then, f(@i, a2, t) is approx

imated by its values Px,yj = P{xha,yha,jht) = Px<yj (where x, y and j are integers) 

on the 'space'-time lattice. The partial derivatives with respect to {a„} are approx

imated by space-centered finite differences, e.g., dP/dai = (Px+i,yj — Px-i,y,j)/2ha, 

and d2P/da2 = {Px+x,y,j + Px-x,y,i-2Px,y,j)/2ha. The partial time-derivative dP/dt is 

approximated by the forward difference {Px,y,j+x — Px,y,j)/ht. On the discrete lattice, 

the boundary conditions are determined by the conservation of probability, i.e., 

l ] " ( & . v J + : - & w ) A = 0, (F.10) 
X=-Na 

E (Px,yJ+x - Px,y<j)/ht = 0, (F.ll) 
V=-Na 

where the discrete form of the right-hand-side of eq. (F.8) is used to replace the 

forward (time) difference, and A7,, = a/ha. This requirement determines the discrete 

form of the boundary condition, i.e., the values of P just outside the domain of P 
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are determined by the values of P inside the domain, thereby allowing the finite-

differences to be computed at the boundaries. 

The results of a numerical integration of the FP equation are shown in Fig. F.2. 

In this case w = 0.001, and D = 0.1. The noise strength was chosen for numerical 

reasons. The convective derivative gndP/dan, when computed numerically, causes 

stability problems. However, these can be obviated by introducing an artificial vis

cosity [2] or, equivalently we can use.a relatively large value of D, such as 0.1. Shown 

in this figure is a temporal sequence of two-dimensional plots of P{a\,a2)\ the hori

zontal axis is ai, and the vertical axis is a2. Time increases first from left to right, 

and then from top to bottom. At the earliest time k(t) = 0.58, and at the latest 

time k(t) = 0.64. The dark regions represent areas of high probability, and the light 

regions represent areas of low probability. Thus, we see that the probability that is 

initially peaked about (0,0), flows away from this point, and accumulates about the 

four fixed-points a^±n^(<). This result illustrates in concrete terms the dynamics of 

the probability density for a dynamical system that exhibits the crossover effect, and 

is consistent with the picture discussed in Sec. 4.6. 

We now turn our attention to the time-dependence of the minimum value of the 

thermodynamic action S. The derivation of S in the preceding section for the STDGL 

equation can be applied with essentially no modification to the two-mode DS given 

in eq. (F.5). Thus, the thermodynamic action S[ai,a2] for the two-mode DS is given 

by 

5[ai, a2] = £ f *[«» - *.(», &(<))]'. (F.12) 
n = l J o 

In the small D regime, the configurations that dominate the path integral are those 

that minimize S, subject to the appropriate boundary conditions, which for a type-m 

process are given by 

o„(0) = 0, (F.13) 

O„(T) = sgn(n) 6n,mAn(T), (F.14) 

where £„,„, is the Kronecker delta, and sgn(n) is +1 if n > 0, and — 1 if n < 0. 
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The first step in the minimization of the thermodynamic action is to regard 

5[ai,a2] as a multivariable function, with a finite number of degrees of freedom. 

This situation can be achieved if we construct the thermodynamic action S for the 

discrete two-mode DS (F.7): 

*({**» = E E ht{an'i+\~an"-gn<j)\ (F.15) 
n=l ; = 0 n* 

where NTht = r and gnj = gn(on(tj), kj). The variables an>0 and a„,jvr are not dynam

ical variables; instead, they are determined by the boundary conditions (F.13). [5 can 

also be obtained by performing an Euler discretization of the integrand of 5[ai,a2] 

given in (F.12).] Regarding the thermodyanic action as a multivariable function is 

advantageous because finding the minimum of S is an example of an (unconstrained) 

optimization problem. Such problems arise in many contexts of science and engi

neering, and so much effort has been devoted to their solution [3]. I have used a 

relaxational method based on a limited-memory quasi-Newton method, which is ad

vantageous for large-scale problems; the computer code was provided by the Nocedal 

group at Northwestern University [4]. The essential feauture of the results is that the 

minimum value of S is a monotonically decreasing of T, achieving very small values 

in the late-time regime (see Sec. 4.6). To illustrate this, listed in Tables F.2 and F.3 

are the minimum values of S (denoted by En) as a function of T, for w = 0.001. The 

parameter n determines the specific form of the boundary conditions given in (F.13). 

The results in Tables F.2 and F.3 support the conjecture made in Sec. 4.6 that 

in the late-time regime the minimum value of the thermodynamic action is much 

smaller than D. Thus, according to the results of Tables F.2 and F.3, in the small 

noise regime, the probabilities are determined entirely by the determinants of the 

fluctuation operators Ln. In this case, the Ln are 2 x 2 matrix ordinary differential 

operators, in contrast to those of the previous section, where the fluctuation operators 

Ln were 2 x 2 matrix partial differential operators. Thus, according to (4.51) and 
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T 

70 

80 

90 

100 

110 

120 

130 

140 

150 

6(r) 

0.65 

0.66 

0.67 

0.68 

0.69 

0.70 

0.71 

0.72 

0.73 

E-i 

1.3 x 10-3 

6.8 x 10"4 

3.4 x !O~4 

1.7 x !O~4 

8.0 x 10-5 

3.5 x 10-5 

1.5 x 10~5 

7.6 x 10-6 

5.3 x 10-* 

& 

1.7 x 10"3 

8.7 x 10-4 

4.5 x !O~4 

2.3 x !O~4 

1.2 x lO~4 

5.9 x 10-5 

3.1 x 10-5 

1.8 x 10"5 

1.3 x 10"5 

Table F.2: Minimum value of S for n = ± 1 . Parameters: w = 0.001, k0 = 0.58, and 
ht = 0.4 

T 

70 

80 

90 

100 

110 

120 

130 

140 

6(r) 

0.65 

0.66 

0.67 

0.68 

0.69 

0.70 

0.71 

0.72 

E-2 

6.1 x 10-3 

2.8 x 10~3 

1.1 x 10"3 

4.0 x lO~4 

1.1 x 10-4 

2.8 x 10-5 

4.0 x 10-* 

4.7 x 10~7 

E2 

7.4 x 10"3 

3.3 x 10-3 

1.3 x 10"3 

4.1 x 10-" 

1.1 x !O~4 

2.4 x 10_s 

4.6 x 10~6 

1.2 x 10~6 

Table F.3: Minimum value of S for n = ±2. Parameters: w = 0.001, 60 = 0.58, and 
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(4.52), 

£ $ - S < " - - ± M * (F-l6) 
and 

£(P_ B (w) + Pn(W)) = l, (F.17) 
n = l 

where Pn is the probability that, in the late-time regime, the metastable state a(") 

(see eq. (F.6)) is occupied. The abscence of the V factors is a reflection of the lack of 

zero modes of the Ln, i.e., the integrand of S depends explicitly on time, and there 

are no internal symmetries in the a\,a2 plane. 

In principle, eqs. (F.16) and (F.17) provide a closed form expression for the de

termination of the probability of a single or double phase-slip process. In practice, I 

have not yet been able to obtain consistent results. My approach has been to com

pute directly the determinant of Ln, where Ln is the matrix of second order partial 

derivatives of S, evaluated at the path of least action. 
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