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Nothing in the world can take the place of persistence. Talent will not;
nothing is more common than unsuccessful men with talent. Genius will
not; unrewarded genius is almost a proverb. Education will not; the world
if full of educated derelicts. Persistence and determination alone are om-
nipotent. The slogan ‘Press On’ has solved and always will solve the

problems of the human race.

—Calvin Coolidge
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Chapter 1

Introduction

In this thesis we study the behavior of supercurrent flows in mesoscopic superconduct-
ing rings, i.e., rings of finite circumference. Two classes of nonequilibrium behavior
will be considered: (i) the system is prepared in a nonequilibrium state and subse-
quently allowed to relax toward equilibrium, and (ii) the system is in contact with an
external driving force that does not allow the system to relax toward equilibrium. For
concreteness, we imagine that a solenoid penetrates the center of the ring, thereby
providing a driving mechanism. For example, if the solenoidal current varies linearly
with time, then by Faraday’s law of induction a time-independent electromotive force
will be induced in the ring,.

In Chap. 2 we consider the problem of the lifetime of persistent supercurrents.
Here, the system is prepared in a nonequilibrium state and subsequently relaxes to-
ward equilibrium. For the case of wires that are in the thermodynamic limit (i.e.,
not mesoscopic), this problem has been well studied [1, 2, 3, 4]. Although persistent
supercurrents have been observed to flow without decay for over a year, under certain
circumstances, e.g., for narrow rings at a temperature slightly below the supercon-
ducting transition temperature, the current can decay in a measurable amount of
time. The mechanism of current decay, in which energy is dissipated, is via a pro-
cess whereby thermal fluctuations carry the system over an energy barrier. These
processes are known as thermally activated phase-slip processes. Thus, it is ther-

mal fluctuations that are responsible for the dissipation of the kinetic energy of the



supercurrent. For the case of wires that are infinitely long, the dependence of the
rate of decay of a persistent current on the temperature and supercurrent has been
calculated [2, 3.

In the first part of Chap. 2 we extend the results for the temperature and current
dependence of the lifetime to include the dependence on the ring circumference. The
main result is that there are substantial length-dependent corrections that have a
stabilizing effect, i.e., the decay rate (the inverse of the lifetime) per unit length of the
sample, decreases as the length of the wire is reduced. In the second part of Chap. 2
we compare two distinct experimental situations: (i) the superconductor is driven by
a voltage source, and (ii) the superconductor is driven by a current source. For an
ensemble of systems driven by a voltage source, the solenoidal flux is the independent
variable, and for an ensemble of systems driven by a current source, the supercurrent is
the independent variable. For wires that are in the thermodynamiclimit, a distinction
need not be made between a voltage source and a current source [5]. However, we
shall see that for mesoscopic wires driven by a voltage source, the lifetimes of the
metastable states acquire substantial length-dependent corrections. By contrast, we
shall see that for mesoscopic wires driven by a current source, the lifetimes of the
metastable states do not acquire substantial length-dependent corrections. This is
an explicit example of the general result that for mesoscopic systems, i.e., systems
that are not in the thermodynamic limit, the choice of the ensemble is not free, but
depends on the experimental circumstances.

In Chap. 3 we present a method for the regularization of the determinants of
differential operators. In order to calculate the lifetime of a persistent current, it is
necessary to compute the ratio of determinants, with all zero eigenvalues removed,
of certain differential operators. The process of factoring the zero eigenvalues out of
the determinants involves a step known as regularization. As the eigenvalues of these
operators characterize the curvature of the free energy, the determinants are known
as fluctuation determinants. The need to calculate fluctuation determinants arises in

many scientific problems [6]. Consequently, powerful mathematical tools have been



invented that reduce the problem of the computation of the infinite product of all
the eigenvalues (i.e., the unregularized determinant) to that of finding the solutions
to a homogenous differential equation {7, 8, 9, 10]. In these techniques, it is only the
boundary values of the homogenous-equation solutions, and their derivatives, that are
required. However, in many cases of physical interest, such as the calculation of the
lifetime of persistent currents discussed in Chap. 2, it is the regularized determinant
that is needed. Usually, the regularization is carried out in an ad hoc way, either
by moving the location of the boundaries (e.g., see Refs. [11, 12]), or by perturbing
the operator (e.g., see Refs. {13, 14]). In Chap. 3 we present a systematic method of
regularization that allows the regularized determinant to be expressed in a form that
is no more complicated than the form for the unregularized determinant.

In the final chapter of this thesis, Chap. 4, we consider the problem of the dynamics
of the supercurrent near the critical current. In particular, we imagine that the system
is under the influence of an electric field of sufficient strength so that the current is
driven to the critical current, at which point the system becomes unstable. (We
shall see that this situation is readily obtainable as long as the temperature is not
too close to the superconducting transition temperature.) Once the system becomes
unstable, there are multiple metastable states that can compete for occupation. We
shall find that for ‘weak’ electric field strengths single phase-slip processes dominate
the dynamics, but as the field strength is increased, there is a crossover to double
phase-slip domination. In this problem, the important decay processes are from a
point of instability. This is in contrast to the problem of the lifetime of a persistent
current, where it is the decay from a point of metastability that is important. The
problem of the rate of decay from a metastable state is an old one, and the theoretical
approach is by now well known. By contrast, a theory for the decay from an unstable
state when mulitiple metastable states compete for occupation is not available. In the
final part of Chap. 4, a possible approach to this problem, inspired by the work of
Onsager and Machlup [15], and based on a path integral technique, will be presented.
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Chapter 2

Lifetime of Persistent Currents

2.1 Introduction

The physical situation under consideration is that of a narrow superconducting loop
of length L threaded by a magnetic flux which is possibly time dependent. The main
issue to be addressed is the lifetime of persistent currents in such systems, paying
particular attention to the length dependence.

The system is considered to be close to equilibrium if the supercurrent flowing
in the wire is much smaller than the critical supercurrent. In addition, what is
meant by mesoscopic is that the length L of the wire, when measured in units of
the superconducting fluctuation correlation length {(T'), where T is the temperature,
does not greatly exceed one. Finally, we will restrict our attention to narrow wires.
More specifically, if ¢ is the cross-sectional area, then the wire is considered to be
narrow if /o, the cross-sectional dimension, is much smaller than either ¢(T’) or the
temperature dependent magnetic penetration depth. This system is therefore termed
‘quasi-one-dimensional’.

The basic idea is that the current-carrying states of a quasi-one-dimensional
superconductor are metastable (see Ref. [1]). This is illustrated schematically in
Fig. 2.1. Hence, the central issue is the rate of transitions between two neighboring
metastable states, or, equivalently, the lifetime—the inverse of the transition rate—of
a metastable current-carrying state. This is a specific example of the generic problem

of the transition rate between two neighboring metastable states; an old problem,
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Figure 2.1: Schematic plot of the free-energy as a function of current.

appearing in many areas of science {2, 3]. For example, in the theory of chemical
reactions, a reaction is pictured as occuring via a transition between two metastable
free energy wells, separated by an energy barrier [4]. In the limit of large damping,
the rate for such a reaction is given by the well-known Arrhenius formula of chem-
ical reaction theory [5]. This relation expresses the rate of reaction in terms of two
quantities: the energy barrier separating the neighboring metastable states, and a
pre-exponential factor, sometimes referred to as the ‘attempt frequency’. The expres-
sion for the inverse of the lifetime of the supercurrent in a narrow superconducting
ring is the multi-dimensional generalization of the Arrhenius equation.

A direct consequence of the metastability of current-carrying states in narrow
wires is the concept of the intrinsic resistance of a superconductor [6, 7, 8,1]. If a
.wire carrying a supercurrent is isolated, the current will eventually decay. Therefore,

in order to maintain a constant current, energy must be supplied to the system; the



rate at which the energy must be supplied, divided by the square of the supercurrent,
is a measure of the intrinsic resistance. In other words, the resistance is due to
the fact that the system is in the superconducting state. When the resistance of a
narrow superconducting wire is measured as a function of temperature, it is found
that the resistive transition is not infinitely sharp. Rather, there is a certain range
of temperatures for which the resistance is reduced, but still not zero. The combined
theoretical work of Langer and Ambegaokar [7], and McCumber and Halperin [§],
collectively known as the LAMH theory, was successful in explaining the width (in
temperature) of the resistive transition. In the LAMH theory, the ratio L/¢ is assumed
to greatly exceed unity. In this chapter we extend the results of LAMH to the situation
in which €/L is not negligible.

There are two main results to be presented in this chapter. The first concerns the
lifetime, or alternatively, the rate of decay, of persistent currents. In this case, as the
length of the wire is reduced, we find algebraic (as opposed to exponential) length-
dependent corrections that tend to increase both the barrier heights and attempt
frequencies [9]. The former corrections tend to reduce the rate, per unit length of
the wire, at which transitions occur, whereas the latter will have the opposite effect.
Thus, there is a competition between these two tendencies. For cases of practical
interest, the barrier height contributions dominate, leaving the final result that as
the length of the wire is reduced, the decay rate (per unit length of the sample) will
decrease. The second main result concerns the distinction between the situation in
which the system is driven by a voltage source, versus that where the system is driven
by a current source. For the voltage source we find that there are algebraic length-
dependent corrections to both the barrier heights and attempt frequencies, with the
net result being dominated by the barrier height corrections. These results are the
same as those found for the lifetime of the persistent currents. By contrast, for the
current-source we find no algebraic length-dependent corrections. The difference in
behavior between a system driven by a voltage source versus that driven by a current

source, is a specific example of the general result that for mesoscopic systems, i.e.,




systems that are not in the thermodynamic limit, the choice of ensemble is not free,
but depends on the experimental circumstances.

This chapter is organized as follows. In the next section the theoretical model,
the Ginzburg-Landau theory of superconductivity, is introduced. Following that,
in Sec, 2.3, the central notion of the metastability of the current-carrying states is
explained. Presented in Secs. 2.4 and 2.5 the properties of the metastable and saddle-
point states, respectively. The length-dependence of the barrier heights is discussed
in Sec. 2.6, and in Sec. 2.7 the attempt frequencies are computed. The results of these
two sections are summarized in Sec. 2.8. The situations in which the superconductor
is driven by a voltage source and by a current source are discussed in Secs. 2.9 and

2.9, respectively. Finally, in Sec. 2.11 the conclusions of this chapter are summarized.

2.2 Theoretical Model

In this section the theoretical model used throughout this thesis will be presented.
The theoretical description is based on the Ginzburg-Landau (GL) theory of super-
conductivity, in which the superconductive state is described by a complex-valued,
| space- and time-dependent order parameter ¥ [10]. It is sometimes useful to think of
¥ as an ‘effective wavefunction’ for the superconducting electrons, representing, as it
does, the quantum mechanical coherence underlying the phenomenon of superconduc-
tivity. The precise relationship between the BCS theory [11], a microscopic quantum
mechanical theory, and the phenomenological GL theory, for temperatures close (but
not too close) to T, (the superconducting transition temperature) was established by
Gor’kov [12]. Throughout this thesis, it is assumed that the GL theory is adequate.
The basic idea of the GL approach is to apply Landau’s theory of second or-
der (i.e., continuous) phase transitions [13, 14] to superconductivity—a second order
phase transition in the abscence of a magnetic field. Thus, the order parameter ¥ is
considered to be a thermodynamic variable, and the free energy of the superconductor

F[¥] is expanded in powers of |¥| and its spatial gradient [V¥|. In the presence of a




magnetic field B =V x A, where A is the electromagnetic vector potential, the total
energy is a sum of F[¥] and the magnetic field energy, where the spatial gradient,
which is analogous to the momentum operator in quantum mechanics, is modified
to include the momentum (2e/fc)A of the electromagnetic field [15]. (Here e is the
electronic charge, & is Planck’s constant, and c is the speed of light.) The total free

energy can then be written as

F1#,A)= [ dr{)(V - (i2¢/h) AT - ol L) + —2ﬂ-|\I!(r)|‘}

+(8m)™! / dr(V x A)?, (2.1)

where r is a three-dimensional position vector, and a and § are expansion coeflicients.
The factor of 2e in eq. (2.1), rather than a factor of e, accounts for the pairing of
electrons into Cooper pairs [16]. The superconducting transition is manifested in the
sign of a, which is assumed to be temperature dependent. For temperatures higher
than T, a < 0, whereas for temperatures lower than T., a > 0. In the former case,
the homogeneous part of the free energy density, —a|¥|? + (8/2)|¥|*, has a single
local minimum at |¥| = 0. This reflects the notion that for these temperatures the
normal state (i.e., |¥| = 0) is energetically favorable. However, as T is reduced
through T, this single local minimum becomes a local maximum, and at the same
time, a one-parameter family of local minima at {¥| = \/cT/E evolve continuosly, i.e.,
a(T.) = 0. In other words, for temperatures below T, the superconducting state
(i.e., |¥| = m ) is energetically favorable. The original Ansatz of Ginzburg and
Landau was that a(T") « (T — T.), and the expansion coefficient # was assumed to
be independent of T (see below). In this thesis, we will always work in the regime
where T < T..

The celebrated Ginzburg-Landau equations for ¥ and A are obtained by requiring
that the variations (6 F[¥, A)/6¥ and 6 F[¥, A1/6A) of F|¥, A} with respect to ¥ and
A vanish. The conditions that §F/6% = 0 and éF/§A = 0 are known as stationarity



conditions, and they can be written as

(—iV — (2¢/hc) A)*T — ¥ + BT[] =0 (2.2)
V x (V x A) = (47/c)J, (2.3)

where the supercurrent density J is given by
Y = ;i’% [0°(V - (i2¢/8)A)®) - c.c] 2.4)

At this stage it is convenient to postpone the discussion of the boundary conditions
that the stationary configurations must satisfy. This issue is best dealt with at a
slightly later stage. Throughout this thesis, the vector potential A will be treated
as a parameter, rather than a dynamical variable. In other words, eqs. (2.2) and
(2.3) are not solved self-consistently. Thus, the conditions of stationarity for ¥ and
A reduce to a condition of stationarity for ¥ (which will depend parametrically on
A). For narrow wires, this approximation can be made reasonable (see Appendix A
of Ref. [7]). The basic idea is that due to the small cross-sectional area of the wire,
the magnetic field generated by the supercurrent does not significantly influence the
order parameter. In addition, the magnetic-field energy due to the supercurrent is
much smaller than the energy associated with the order parameter. Therefore, the
magnetic energy term in eq. (2.1) will be dropped, and F[¥, A] will be written as
F[v).

For the specific case of a narrow superconducting ring of cross-sectional area o and
circumference L, the integration in eq. (2.1) over the spatial coordinates perpendicular
to the longitudinal coordinate (denoted here by X) of the wire can be performed, with
the result that

Floj=o [ '1’/22 dX{|(0x — (i2e/he) Ax)UX)P — ol WX + Swx)1},  (29)

where Ax is the component of the vector potential in the longitudinal direction.
The requirement that the order parameter be single valued leads to the following
periodicity condition for W:

U(L + X) = ¥(X). (2.6)

10



It is convenient, both for notational simplicity and for the purpose of making the
physical meaning of the parameters in the equations transparent, to transform the
dimensionful variables in eq. (2.5) to dimensionless variables. This transformation

proceeds in two steps. First, ¥, A, and X are exchanged for ¢, A;, and z via

= \/E/—a\ll 2.7)
A, = (2¢e/heva) Ax, (2.8)
= JaX. (2.9)

<.

5]

Second, the two parameters « and S are exchanged for the more physically meaningful
variables £(T') and H,(T), via

{T) = 1/Va, (2.10)
H(T) = /2ra?/B. (2.11)

The quantity H.(T') is the thermodynamic critical field, so that H?/8x is the conden-
sation energy per unit volume, i.e., the energy difference between the higher-energy
normal state (|¥| = 0) and the lower-energy superconducting state (|¥| = \/aﬁ )-
Using the temperature dependence of a, i.e., « x T. — T, and the temperature in-
dependence of 3, from eqs. (2.10) and (2.11) we see that £(T) o« (T. — T)~'/? and
H,(T) « T, — T. For temperatures close to T,, the temperature regime in which
expect the GL theory is valid, both of these dependences are consistent with the
results from BCS theory. This justifies, a posteriori, Ginzburg and Landau’s original
Ansatz.

By using the transformations of eqgs. (2.7)-(2.11), the GL free energy given in

eq. (2.5) can be written in the form

FIJ) = (4) o H(TVET)FIG, A (212
Fibdd = [ {0 ~ AP - BEF + 31N, (@19
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where
L= L/ET). (2.14)

The periodicity condition (2.6) is unaffected by the above transformations so that

H(¢ + z) = ¥(z). (2.15)
Using eq. (2.4) for the supercurrent density J, the supercurrent I = oJ can be written
as
. Hle -
Iy} = ULk %J[i/)l, (2.16)
T
N B T
J] = ZW’ (0: —iAz)Y) — c.c], (2.17)

where the quantity J [1,(;] is the dimensionless supercurrent of state . Finally, the

equation of stationarity (2.2) becomes
(02 — ide)"(z,t) + P(x, 1) = Blz, )l(z, 1) = 0. (2.18)

At this stage it is convenient to discuss the boundary conditions associated with
the stationarity condition (2.18). Certainly, the requirement that 4 be single-valued
implies that 1 satisfy eq. (2.15). However, (2.18) is a second order differential equa-
tion, so that an additional boundary condition is required. This condition is de-
termined by the requirement that F' be stationary at the boundaries. To be more
explicit, the term (9, — A;)2% in eq. (2.18) is obtained by requiring that F[3}] be
stationary with respect to variations 819" of 1*; this procedure generates a term of the
form [(8, — A, )¥][0:6¢"], which when integrated by parts, generates the boundary
term 8¢5° (Bz—i/'i,)&li/fﬂ. This term can be made to vanish if (i) §3) satisfy eq. (2.15),
which implies that ) must also satisfy eq. (2.15), and if (ii)

(O — iA2) |14z = (0 — 1A2)D) (2.19)

Equation (2.19) is the so-called natural boundary condition, and is the additional
condition that was sought. Thus, the stationary states must satisfy the (differential)
eq. (2.18), subject to the periodicity conditions given in egs. (2.15) and (2.19).
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The form of the GL free energy given in eq. (2.13), and the form of the boundary
condition given in eq. (2.15), will be most useful in Chap. 4 where the dynamics of
the supercurrent is studied. However, in this chapter it is convenient to make one
final change of variables to eliminate the explicit dependence of the free energy on

the vector potential. Changing from ¥ to ¥, via
p=eif i Asg (2.20)
the free energy becomes

o= 1

and the boundary condition (2.15) becomes -

* do{|ab(@) ~ WP + S, (22)

(€ + ) = e®y(z), (2.22)
_ et 2
o= e dz A, (2.23)

where ® is a dimensionless measure of the magnetic flux through the ring. In addition,

the equation of stationarity (2.18) and the natural boundary condition (2.19) become
¥+~ il =0, (2.24)

P'(€+3) = (), (2.25)

where the prime denotes differentiation with respect to z. Finally, the dimensionless

supercurrent J given in eq. (2.17) becomes

T} = 90 — 9o°) (2.26)

Thus, the effect of the vector potential has been taken into account via a transforma-
tion that alters the boundary conditions from periodic [eq. (2.15)], to twisted periodic
[eq. (2.22)]. For most of this chapter ® is taken to be static; in Sections 2.9 and 2.10,
where the voltage and current sources are discussed, the flux ® is endowed with time

dependence.
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For the purposes of this chapter, there are two types of characteristic feautures on
the free energy landscape: local minima and saddle-points. The local minima corre-
spond to the metastable current-carrying states of the superconductor (see Sec. 2.3),
and the saddle-points correspond to the points of lowest free energy that connect two
neighboring metastable states (see Sec. 2.4). As will be seen in the following sections,
the lifetime of the persistent currents depends on the properties of these states. Both
classes of states make the free energy stationary, i.e., both classes of states satisfy
eqgs. (2.24)-(2.25). We will denote by 1. (the e stands for extremal) a stationary
state that is either a saddle-point or a metastable point, so that if e = m then the
state is metastable, and if ¢ = s the state is a saddle-point. In other words, ¥, is a
metastable state and 1, is a saddle-point state.

In order that the characteristics of the stationary states may be understood more
fully when they are introduced in Secs. 2.4 and 2.5, we discuss the stationarity con-
dition (2.24) in detail. By introducing a polar decomposition ¢(z) = f(z)e*®), the

stationarity condition (2.24) for 1 can be written in terms of f and ¢ as

B = 8V + £ -3+ @ =0, (227)

J = 8.f*¢)=0. (2.28)

The equations of stationarity, egs. (2.27) and (2.28), are analogous to the classical
equations of motion for a particle moving in two dimensions under the influence of a
radial potential. This mechanical analogy will prove to be a useful aid in the visual-
ization of the stationary states. In the analogy, f is interpreted as a radial coordinate,
¢ as an angular coordinate, and z as time. The quantity E is the mechanical energy
of the classical particle, and J is its angular momentum. Both of these quantities are
‘conserved’ in the sense of the mechanical analogy, i.e., they are independent of the
‘time’ z. The conservation of £ and J allows the stationary states to be determined
explicitly (see Secs. 2.4 and 2.5 and App. B). The conservation of J allows ¢ to be

eliminated from eqs. (2.27) and (2.28), leaving a second-order differential equation
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Figure 2.2: Effective potential V(f;J) as a function of f, for J =0.1.

for f that can be written in the form

/"= =8V(fi )
= =0 /2~ f*[a+ TP 2f?). (2.29)

The effective radial potential V(f;J) is pictured in Fig. 2.2. For J < 2/1/27 there are
two positive roots of —3;V(f; J) = 0, namely fo and fi. The radial force —9,V(f;J)
vanishes at these two points. If J > 2/4/27 then fo = f; and the two roots merge.

Their significance will be discussed in Sec. 2.4.

2.3 Metastability

The key idea, due to Little [6], is that the current-carrying states in a quasi-one-
dimensional superconductor are metastable. In other words, thermal fluctuations can

carry the system from one metastable current-carrying state, to another. This is
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illustrated schematically in Fig. 2.1. In order for a transition to occur, the system
must overcome an energy barrier that protects two neighboring metastable states
from one another. As the barrier heights protecting a particular state from current-
decreasing transitions are smaller than the barriers protecting from current-increasing
transitions, the current-decreasing transitions are more likely. Thus, on average, the
current decays with time, with the kinetic energy of the current being lost to the
environment in the form of heat. The current-altering processes are therefore dissi-
pative. The transition process requires that the superconducting condensate acquire
energy. This is possible because the condensate interacts with the phonons and quasi-
particles of the metal, which act as a heat bath [7]. Thus, the condensate can absorb
energy from these other degrees of freedom, thereby acquiring the energy required
to overcome the barrier. These transitions are usually referred to as ‘thermally ac-
tivated’ because the requisite energy is provided by the thermal bath (phonons and
quasiparticles).

The theoretical description of the thermally activated processes requires a dynam-
ical description of the condensate. This is provided by the time-dependent Ginzburg-

Landau theory (TDGL) {17, 18], which, in its simplest form, is relaxational dynamics:

ob(zt) _ _, 6F1d)
ot (=, 2)
= (ax - Ui:)ziz + '15 ha 1/;|¢|27 (230)

where F[4))] is given in eq. (2.13), and where the (dimensionless) time ¢ is measured

in units of the the Ginzburg-Landau time

h

oL = Ska(T. - T)’ 31

where kg is Boltzmann’s constant. The effect of the heat bath is taken into account
by adding to the right hand side of eq. (2.30) a space- and time-dependent Gaussian

noise term, #j(z, t), Dirac-delta correlated in both space and time with mean zero and
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variance 2D, where D is determined by the fluctuation-dissipation theorem and is

given by [8]
_ AmkgT
~ of(T)H(T)*

The resulting stochastic time-dependent Ginzburg-Landau (STDGL) equation can be

D (2.32)

written in the form . . o~
Bb(z,t) _ _,8F (b As]
at §¢*(z,1)

The stochastic time-dependent Ginzburg-Landau equation (2.33) is in the form

+ii(z, 1). (2.33)

of a Langevin equation. An alternative dynamical description can be achieved by
studying the associated Fokker-Planck equation for the probability density functional
P[¢] [3]. In this description, the dynamical equation for P[¢] is in the form of
a continuity equation, thereby allowing the identification of a probability current
(see App. C). Under conditions of steady-state (i.e., dP/dt = 0), there can be
a non-zero probability current through the saddle-point. The resulting probability
flux will determine the rate of transition from the associated metastable state. If
the barrier height—the difference in energy between the saddle-point state and the
associated metastable state—is much larger than the thermal energy kgT, then the
rate expression is of the Arrhenius type: an ‘attempt frequency’ pre-exponential factor
divided by the exponential of the ratio of the barrier height to kT (19, 20, 21]. In
our case, the expression for the rate I'_(;) at which current decreasing (increasing)

transitions occur can be written as [§]
g = Qy exp(—Us/ksT). (2.34)

This equation, for the specific case considered here, is derived in App. C. As the fluc-
tuation rate is proportional to £, for convenience in exhibiting the length-dependent
corrections to the rate, we have defined Iy to be the fluctuation rate per unit length.
The quantity U_(4) in eq. (2.34) is the energy barrier protecting the metastable state
from current decreasing (increasing) transitions. More specifically, U is the difference

in (free) energy between the transition (i.e., saddle-point) state, and the associated
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metastable state. The quantity (); is the so-called attempt frequency prefactor, and
depends on, among other things, the curvature of the free energy about the metastable
and saddle-point states. Both U and € will be discussed in detail in the following
sections.

For the situation in which £ >> 1, the barrier heights U, and their dependence on
current, were computed by Langer and Ambegaokar [7]. The main qualitative feature

- of their result is that the barriers are a decreasing function of the current, vanishing at
the critical current. (The behavior for currents near the critical current is the subject
of Chapter 4.) In this same limit, i.e., £ > 1, the attempt frequencies {2, and their
dependence on current, were first calculated by McCumber and Halperin [8], and
subsequently by Duru, Kleinert and Uiial [22]. Again, the main qualitative feauture
of both results is that  vanishes at the critical current.

In the present, we determine the length-dependent corrections to the barrier
heights and attempt frequencies. We find that as the length of the wire is reduced,
the barrier heights increase. This has the effect of decreasing I', the fluctuation rate
per unit length. On the other hand, as the length of the wire is reduced, the attempt
frequency prefactor acquires length-dependent corrections that tend to increase /€.
This has the effect of increasing I'. Thus, these two effects compete. As we shall
see, the effect due to the barrier heights is dominant, and so the final conclusion is
that as the length of the wire is reduced, the decay rate (per unit length of the wire)

decreases.

2.4 Metastable States

The fluctuation rates are determined by the properties of the two distinguishing
features on the free energy landscape: the local minima and the saddle-points. The
metastable states are the subject of this section. These states are a subset of the
simplest stationary states: uniformly twisted plane waves. These configurations have

a constant amplitude, either fo or fi (see Fig. 2.2), and a phase that is linearly
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proportional to z. In the mechanical analogy, the uniformly twisted plane waves
correspond to a particle executing circular motion with constant radius f or f;, and
a constant angular velocity. In addition, the mechanical energy E, is equal to either

V(fo,J) or V(f1,J). Denoting these states by ¥, they can be written as

'»bm(x; k, ¢m,0) = fmexp z¢m($) (2'35)
f:: = u(km)a (2.36)
() = bmo+knz, (2.37)

where u(¢q) = (1—¢?), and ¢, o is an arbitrary phase (which can be taken to be zero).
A useful visualization of these states can be achieved by constructing a parametric
plot of the real and imaginary parts of 1y, as a function of z. The resulting plot is
a helix with k., /27 loops, as shown schematically in Fig. 2.3.

The wavevector k,, characterizes the uniformly twisted states. The supercurrent

Jm = J [tm] is obtained by inserting eq. (2.35) into eq. (2.26), yielding
Tm(km) = km(1 — K2). (2.38)

Notice that J;, achieves a maximum value of J. = 2/v/27, the so-called critical
current, at the critical wavevector k. = 1/ V3. For a given Jn < J., there are two
values of k,, that satisfy this relation, one smaller than k., and the other larger. The
smaller of these determines fo, and the larger, f; (see Fig. 2.2).

The free energy Fn = Flthm] of the uniformly twisted states can also be ex-
pressed in terms of the wavevector k,,. The desired expression is obtained by inserting
eq. (2.35) into eq. (2.21), yielding

Fon(km) = —g(l - k)2 (2.39)
As a function of ky,, Fin(kw) has a point of inflection at k = k; for k < (>)k., the
curvature of Fy, is positive (negative). Thus, the metastable states are those uni-

formly twisted states for which & < k.. This implies that the mechanically stable
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Figure 2.3: Schematic parametric (in ) plot of the real and imaginary parts of state
tm. The simple circle represents the wire.
states (in the sense of the mechanical analogy) for which f, = f; are thermodynam-
ically unstable. Furthermore, the mechanically unstable states for which fi, = fo
are (thermodynamically) metastable. The stability of the uniformly twisted states is
treated in more detail in Sec. 4.5.

In the physical situation of a ring-shaped wire of circumference L = €£(t) (see
eq. (2.14)), threaded by a static magnetic flux i®/2e (see eq. (2.23)), the two (di-
mensionless) independent variables are £ and ®. Imposing the boundary condition of

eq. (2.22) relates k,, to both of these via
kol =2mn, + @, (2.40)

where n,, is an integer. Thus, once £ and ® are given, the properties of the metastable
states, i.e., their currents J;, and free-energies F,,, are completely determined. More-

over, these states are quantized, in a manner analogous to the quantization of angular
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momentum in quantum mechanics. In other words, for a system of finite length, there
are a fixed number of metastable states, in which the system can reside for extended
periods of time (illustrated schematically in Fig. 2.1). The duration of such stays are
what we intend to compute.

In the present chapter we focus on the decay of a metastable current-carrying
state. A useful visualization of this process can be obtained by referring to the helical
plot of ¥, shown in Fig. 2.3. In this representation, the decay of a metastable current
carrying state is associated with the loss of a loop of the helix. In order for this to
occur, the amplitude of ¥,, must vanish at some point in the sample. (Recall that the
boundary condition given in eq. (2.22) precludes the unwinding at the boundaries.)
The vanishing of |1,| implies that the phase of the order parameter becomes undefined
at the point at which |,| = 0. In this way, the total phase-difference can change by
an integral multiple of 2x. In this chapter, we will only consider phase changes of 2.
These processes are often referred to as ‘phase-slip’ processes. Physically, a phase-slip
is associated with the creation of a region of normal (i.e., nonsuperconducting) metal,
and is therefore dissipative. More specifically, the kinetic energy of the condensate is
lost to the environment (quasi-particles and phonons), and is dissipated as thermal
energy (i.e., heat). In order to fully understand the phase-slip piocess, we now need

to turn our attention to the transition states.

2.5 Transition States

The transition states are the points of lowest free energy connecting two neighbor-
ing metastable states. In other words, these states are saddle-points of F and are
characterized by the existence of a single ‘downhill’ direction in function space—the
reaction coordinate. One way to picture a current-altering transition is to view the
system point as (mainly) executing small random excursions about a metastable state
¥m. Occasionally however, the fluctuating environment can supply enough energy so

that it is possible for the system to explore the neighborhood of the saddle-point, and
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thus make the transition to a neighboring local minimum of F.

The saddle-point states are obtained by solving the stationary equations (2.27)
and (2.28). In contrast to the metastable states, which have a constant amplitude, the
saddle-point states have an amplitude that varies with z. Referring to the mechanical
analogy (see Fig. 2.2), the saddle-point trajectories have a mechanical energy F <
V(fo,J). Thus, f,, the amplitude of the saddle-point state, is bounded below by ¢,
and above by b. As the boundary conditions require that f,(—£/2) = f,(£/2), the
radial motion must be periodic, with period £. As an example, suppose that at ‘time’
z = —£/2, the radius of the mechanical particleis b. Then, at ‘time’ z = 0, the particle
radius will have reached the turning point, and f, = c. At this point, the radius will
continue to increase again until reaching the other turning point at f, = &. Tﬁ&se
. trajectories are sometimes referred to as bounce (or instanton) solutions [23, 24].
Here, we will only consider trajectories that ‘bounce’ once.

The conservation of E and J allows ¢, to be determined by quadratures, with the

result that (see App. B)

Va(x; kyy m, 2o, $s0) = fs(z) expidy(z), (2.41)
fu(@) = 22 + 3mA(K) + m Adks)sn(/Ak)/2 (@ — zallm),  (242)
82(c) = oo + Tullm) [ do'f (&), (2.43)
where
Js = T [¢s] (2.44)

is the dimensionless supercurrent of the saddle-point state [see eq. }2.26)]. The func-
tion sn in eq. (2.42) is a Jacobi elliptic function [25, 26], A(q) = (1 — 3¢?) and
my = (1 — m). As with the metastable states, it is useful to construct a parametric
plot of the real and imaginary parts of ¥, as a function of z (see Fig. 2.4). In this
figure we can see that the helix is in the process of losing a loop. However, as the
amplitude of |1),] is not zero, the phase-slip has not yet occured.

The states 1, depend on four constants of integration: k,, m, zq, and ¢,0. The

position zq locates the point at which |(z)| achieves its minimum value; due to the
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Figure 2.4: Schematic parametric (in z) plot of the real and imaginary parts of state
¥,. The simple circle represents the wire,

assumed translational invariance of the wire this point is arbitrary, and can be set to
zero. The constant ¢, is an arbitrary phase-reference; due to the U(1) symmetry of
the integrand of F, this phase is arbitrary, and can also be set to zero. These two
symmetries, translational and gauge, are however, important. They each give rise
to a Goldstone mode [27], and this will be important when we consider the attempt
frequency in Sec. 2.7. The constant %, is an effective wavevector, and m is related to
the mechanical energy E, of eq. (2.27); both of these will be discussed below.

The relationship between the constants k, and m and the independent variables
£ and ® is obtained by requiring that i, satisfy the boundary condition given in
eq. (2.22), which gives

: U(k,, m) = \/8/A(k,) K (m), (2.45)

?s(£/2; ky,m) = ® + 27n,, (2.46)
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in which K is the complete elliptic integral of the first kind [26], and n, is an integer.
In the limit that m — 1, 2K(m) — In(16/m,), so that eq. (2.45) reduces to

my & Tlé exp(—/A(%:)/2£). (2.47)

Thus, if the exponent of eq. (2.47) is much lafger than one, ignoring terms of order
m, is valid. As we are interested in possible algebraic length-dependent corrections
to the lifetime of the current-carrying states, we will assume that m; < 1. This
condition requires that l\/-A_(k_.)/E R 1; this condition is violated if k, is too close to
1/v/3. Therefore, we are restricted to near-equilibrium regime where the current 7,

is far from the critical current. In the limit that m — 1, eq. (2.46) reduces to

k.l + 2x(k,) = 27n, + @, (2.48)

x(q) = arctan /A(q)/2¢% (2.49)

Thus, as we found previously (in Sec. 2.4) for the metastable states, the saddle-point
states are quantized. Notice that eq. (2.48) differs from the corresponding equation
for ky, eq. (2.40), by the term 2x(k,). Thus, the parameter £k, is interpreted as an
~ effective wavevector.

The free energy F, = F[i),] of the saddle-point states is given by (28]
_2K(m) [c“ b2l + (2+m _bi ]

fa(ks,m) = -+ ™

a? |2 6 Jm?
26%¢?  2(1 + m)b?
E(m) [ — ey and B (2.50)
and the current J, [see eq. (2.44)] is given by
J.(k,,m) = abe/V?2, (2.51)

where E(m) is the complete elliptic integral of the second kind [26]. The three
constants a, b, and c are pictured in Fig. 2.2, and are defined in terms of terms of m
and k, in App. B. In the limit that m — 1, eqs. (2.50) and (2.51) reduce considerably,
yielding the forms

Fo(k,) = —g(l - k)2 + g\/2A(k,) (2.52)
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and

Ta(ks) = ky(1 — K2). (2.53)
Thus, in this limit, the free energy and the current of the saddle-point states are com-
pletely determined by k, and ¢, with k, being the effective wavevector characterizing
¥s.

In order to compute the barrier heights and attempt frequencies, it is necessary
to make the connection between a given metastable state and its associated saddle-
point states. This connection is made in the following way. The key notion is that
all states, by virtue of the boundary condition given in eq. (2.22), have the same
phase (modulo 27). Suppose that the metastable state 1, under consideration has
a wavevector k,, = ®/f [see eq. (2.40)]. Then the saddle-point state t; protecting
¥y, from current-reducing fluctuations will have a current J,”, and hence wavevector
k7, that is slightly smaller than k,. On the other hand, the saddle-point state ¥}
protecting t,, from current-increasing fluctuations will have a current J.t, and hence
wavevector k}, that is slightly larger than k,. Thus, &k can be obtained by setting
n, = 0 in eq. (2.48), and equating this expression with that from eq. (2.40). This
gives k,‘é + 2x(k7) = kmf. As k} is slightly larger than k,,, we have that n, = 1,
and so k}€ + 2x(k}) — 27 = k¢. These two expressions can be combined into the
compact form

kml = kX4 2x (k%) — (7 £ 7), (2.54)

up to terms of order m;. Equation (2.54) gives k, in terms of k,; we seek k, in terms

of k.. Inverting eq. (2.54) gives, to second order in ¢7},
-2 2\/-2-Xﬂ:(km)

u(km)\/ A(kn)

x£(q) = 2x(q) — (m £ 7). (2.56)

kE = ki — £ (k) — € + O3, (2.55)

This relationship is central. It is the length-dependence of the relationship between
k. and k¥ that gives rise to the algebraic length-dependences of the barrier heights

and attempt frequencies.

25




Finally, the main results of this section, for the particular case of a saddle-point
protecting a metastable state from a current-decreasing transition, are summarized
visually in Fig. 2.5. In this figure, the amplitude and phase of a metastable state (dot-
ted curves) and its associated (current-decreasing) saddle-point state (solid curves)
are plotted as a function of z. Here we see that f, is reduced over a spatial region
of width O(€) around zy, which in this case is zero. This reduction in f, means that
the phase ¢, must wind more rapidly in this region. However, in order to compensate
for this, i.e., in order that k,—the slope of ¢, in the outer regions—satisfy eq. (2.48),
the phase must wind less rapidly in the region over which |t,(z)| varies. This implies

that k, < k,,, as can be seen in Fig. 2.5.

2.6 Barrier Heights

The barrier heights are determined by the difference in free energy between the

metastable and saddle-point states, i.e.,
U = D™ kgT(F(ps) — Fltpm]) = D' ksTAF. (2.57)

Although F,, and F, are given in egs. (2.39) and (2.50), respectively, we seek the
barrier heights protecting a given metastable state 1/, from current-altering transi-
tions. Thus, we are required to determine the relationship between a given state ¥y,
and its associated saddle-points. This was accomplished in the previous section [see
eq. (2.55)], where we restricted our attention to the nearest-neighbor saddle-points.

Combining egs. (2.55), (2.39) and (2.50), we find

AFy = AFO 40 aAF + 087, (2.58)
N %,/M(km)-2x¢(km)kmu(k,,.), (2.59)
AFY = xa(km)Alkn), (2.60)

where AF,y(-) is the barrier height associated with current increasing (decreasing)

transitions. Although only the O(€~!) correction to the barrier is exhibited, it is
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Figure 2.5: |¢,| and ¢, as a function of z for a saddle-point associated with a current
decreasing transition. The dotted lines are the corresponding amplitude and phase
for the associated metastable state.

straightforward to compute the subsequent (algebraic) corrections. In order to com-
pute the n'* order correction, it is necessary to find k, as a function of ki, to the
(n + 1)** order, as the free energies F,, and F, are proportional to £ [see eqgs. (2.39)
and (2.50))].

Evidently, the barrier heights are increased relative to their infinite-length value.
In the small current limit, i.e., when k., — 0, we find that AF} — =% thus, the
corrections can be numerically significant. At first sight, it is not obvious that, in the

m = 1 approximation [see eq. (2.47)], any nonexponential length-dependent correc-
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tions should arise. One might expect that, due to the fact that the spatial variati