
Visual Monocular Obstacle Avoidance for Small Unmanned Vehicles

Levente Kovács

MTA SZTAKI - Institute for Computer Science and Control

Hungarian Academy of Sciences, Kende u. 13-17, Budapest, Hungary

levente.kovacs@sztaki.mta.hu

Abstract

This paper presents and extensively evaluates a visual

obstacle avoidance method using frames of a single camera,

intended for application on small devices (ground or aerial

robots or even smartphones). It is based on image region

classification using so called relative focus maps, it does not

require a priori training, and it is applicable in both indoor

and outdoor environments, which we demonstrate through

evaluations using both simulated and real data.

1. Introduction

In this paper we present and evaluate a monocular obsta-

cle avoidance method, with the intended use on small un-

manned vehicles that are limited in the weight of the pay-

load they can carry, or by some other restriction (power,

length of flight, computation capabilities, etc.). The main

goal is to produce a usable solution that does not require ex-

tensive a priori training and the gathering of large training

datasets, and can be easily deployed on various micro robot

vehicles for indoor or outdoor use. The simulated and real

evaluations will show that the proposed approach produces

better detections and less false alarms than other methods,

resulting in a lower number of collisions.

For outdoor environments, in [11] a single camera obsta-

cle avoidance method was introduced for unmanned ground

vehicles using supervised learning to learn depth cues, di-

viding the images in stripes labeled according to their rel-

ative distance and using texture information, followed later

by [9], where single image based obstacle avoidance was

presented for unmanned aerial vehicles, using Markov Ran-

dom Field classification modeling the obstacles using color

and texture features, training the model for obstacle classes

with labeled images. In [2] a visual navigation solution was

described, following a path of images acquired in a training

phase, avoiding new obstacles using the camera and a range

scanner. In [4] a monocular visual approach was presented

for recognizing forest trails and navigating a quadrotor mi-

cro aerial vehicle in such an environment. The authors use

a Deep Learning approach to recognize trail directions, and

also provide a large training dataset. For water-based ve-

hicles, in [3] an autonomous watercraft obstacle avoidance

approach was presented using a single camera, extracting

optical flow to detect and track potential obstacles, based

on an occupancy grid approach (using GPS and inertial sen-

sors).

For indoor environments, in [12] a navigation framework

was presented using a single image for detecting stationary

objects and ultrasonic sensing to detect moving objects, us-

ing the difference between the current and expected image

for detecting stationary obstacles. [8] used low resolution

color segmentation and object detection (trained for 8 ob-

ject classes) for single camera obstacle avoidance. In [14]

obstacle avoidance was created using low resolution images

(for color segmentation) to find ground objects and a sonar

sensor for extracting depth information, while in [13] in-

door obstacle avoidance was produced using optical flow

extracted from image series (looking to balance left-right

flow quantity) for finding objects and estimating depth.

Although several methods exist that start from some sort

of extracted feature map of the captured image, e.g. texture-

or color-based segmentation, optical flow-based field seg-

mentation and stationary object detection, they are either

not suitable for conveying a sort of relative depth-like in-

formation (as the method that is the basis of the current ap-

proach does), or are simply not suited for situations where

the vehicle (or the camera) is allowed to move freely. E.g.,

optical flow based methods can be usable in indoor scenar-

ios on a ground-based robot for detecting stationary targets,

but they will not work on freely moving cameras, outdoors,

in an environment where not all obstacles are stationary.

Other approaches that work by feeding datasets specific to a

certain application scenario (parks, forests, etc.) into a ma-

chine learning framework have the drawback of only work-

ing in those specific use cases.

Compared to the above methods, the approach of this

paper also uses a single camera - without additional sensor

inputs - to detect obstacles to be avoided. However, this

method does not require any a priori training either for in-

59

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48295954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

door or outdoor scenarios, yet it is applicable in both en-

vironments. Since it does not target a specific scenario, it

can be more versatile than other approaches, easier to de-

ploy, and as it will be shown later, it can perform at accept-

able speeds to be usable even on lower capability vehicles

or devices. The approach is based on the region of interest

extraction method in [7], which uses local blind deconvo-

lution as a means to classify image regions relative to each

other (for a short overview see Sec. 2.1 below), producing a

feature map that inherently includes localized structural in-

formation of the processed images. As we will show later,

we will use these feature maps as the basis for the detec-

tion and avoidance of possible obstacles. The proposal of

using this region extraction method for salient region detec-

tion with the possibility of using it for obstacle avoidance

was first introduced in [6].

The main contributions of the present paper are the de-

velopment of a usable and deployable obstacle avoidance

method for various platforms (PC, Android smartphones

and as ROS - the Robot Operating System http://www.

ros.org - nodes), and the extensive quantitative evalua-

tions performed in both simulated and real life scenarios.

2. Visual Monocular Obstacle Avoidance

For detecting obstacle regions that we try to avoid, we

take the following steps:

1. Capture a current camera frame.

2. Downsize to 320 pixel column width (for faster com-

putation).

3. Extract the feature map.

4. Find the parts of the map - if there are any - that indi-

cate no obstacles.

5. Propose a movement direction towards the found re-

gion, or stop.

2.1. Feature map extraction

In [7] the authors describe a local deconvolution based

region classification approach, that has been originally in-

troduced for detecting focused image regions, but shown to

be usable for segmenting differently textured regions and to

produce saliency-like segmentations. The reason for such

capabilities is that the employed localized deconvolution

process combined with the inclusion of local contrast in-

formation produces a feature map that indirectly includes

important local structure information (i.e., sharpness, gra-

dients, variance, etc.). We base our obstacle avoidance ap-

proach on the latter properties of this method, using the

detected regions and the produced maps that generate a

weighted map of these regions as a base or processing for

trying to avoid them during navigation.

If g(r) = f (r)∗h(r), where g is the captured frame, f (r)
is a region (r) of the unknown original input image f that

is convolved with a h unknown blurring function, then we

Algorithm 1: Main steps of Dmap generation.

Input: gc: captured and resized camera frame

Output: d: generated feature map

Initialization:

• w← block size (e.g., 16, 32);

• s← step size (e.g., w/2);

• i← iteration count (e.g., 10−20);

• Convert gc to grayscale (g);

foreach w×w region of g do
Initialization:

• initialize f0 as a w×w uniform valued image (with

the mean of the region of g);

• initialize h0 as circular constant unity;

for i iterations do

estimate fk+1, update hk+1;

end

Calculate reconstruction error (Eq. 1);

Step to the next w×w region.

end

Classify the regions, generate d feature map.

can get an estimate for f in an iterative deconvolution pro-

cess fk+1(r) = fk(r)[hk(r)∗g/gk(r)] (with the estimation of

hk+1(r) having a similar form). Then, after some iterations,

a local reconstruction error can be calculated for the image

regions using the values of the last iteration as

E(g(r),gk(r)) = |arc sin
< g(r)−gk(r),g(r)>

|g(r)−gk(r)| · |g(r)|
| ·Cr(gr),

(1)

where Cr(gr) is an optional local contrast term. The ob-

tained error values are then used to classify the image re-

gions relative to each other and produce a feature map.

We will call the generated feature map of the above ap-

proach as Dmap for the remainder of this paper. Algorithm

1 shows the main steps of the method, while the second row

of Fig. 1 shows some example outputs.

2.2. Detecting obstacle regions

For extracting the above feature map, we run the decon-

volution process on 32× 32 image blocks that overlap by

half of their size, for 10 iterations, and map the obtained lo-

cal errors linearly into a 0− 255 grayscale image (M) with

the same size as the downscaled captured frame. Then,

we go over the obtained map and try to find a region Rm

with an minimal overall intensity. That is, if Bu, u ∈ Z

are non-overlapping blocks of M, and Ru, u ∈ Z, are the

sums of intensities below a threshold (20− 50%) in these

blocks: Ru = ∑i(Bu(i)|Bu(i) < ε), then we are looking for

the region Rm = minuRu. If we partition the M map into

3× 3 regions and find the minimal Rm among them (if it

exists), then we can propose a movement direction towards

60

Figure 1. First row: images from the MSRA dataset. Then, from

second to fifth rows: Dmap, HC, RC, SR outputs.

that region - i.e., NW, N, NE, E, SE, S, SW, W or Forward.

“Forward” stands for going straight ahead, and we do not

use a reverse (or backing up) movement since going in this

directions can be realized by some turns and then going

forward (also, this is a generally accepted behaviour, e.g.,

http://wiki.ros.org/move_base). If there is no Rm re-

gion satisfying the above conditions, stopping is proposed,

and to look for a way out by turning in some direction. Sit-

uations when such a region does not exist are when either

there is no intensity on the M map below the threshold, or if

there are such regions but their size is too small (in this case

smaller than 5% of the frame size).

When such a region Rm does not exist, that does not al-

ways mean there are only obstacles in the field of view of

the camera - since false detections can occur, as we will

show in Sec. 3. However, during navigation our goal is to

avoid collisions, thus in such situations we limit the robots’

movements to turns. We will describe how robot vehicles

could move according to the proposed directions in the fol-

lowing section.

Several approaches exist that have the goal of detecting

regions of interest in images (i.e., salient regions). For the

purpose of real life comparisons and evaluations, we se-

lected recent methods that have usable and available sources

and could be ported to different platforms. The chosen

methods are the well-performing Histogram Based Contrast

(HC) and the Region Based Contrast (RC) methods of [1],

and the Spectral Residual (SR) method of [5] (for a de-

tailed evaluation of these methods from a saliency perspec-

tive please visit http://mmcheng.net/salobj). Some ex-

amples of extracted regions using these methods are shown

in Fig. 1, over images from the Microsoft Research MSRA

Salient Object Database [10] (where the method used in this

paper is labeled as Dmap).

3. Evaluation

For evaluations, several versions of the Dmap, HC, RC

and SR methods were produced for PC (Windows and

Linux), Android and ROS. The ports were created starting

from M.-M. Cheng’s saliency algorithm C++ sources avail-

able at https://github.com/MingMingCheng/CmCode

for educational and research use. The subset of these

sources containing the HC, RC and SR methods that we

ported to Linux, Android and ROS are available online

(http://web.eee.sztaki.hu/˜kla/evw16.html). For

performance evaluations a ROS implementation was used

running in Gazebo (http://gazebosim.org) based virtual

environments with simulated robots, an Android implemen-

tation was used to perform evaluations in real environments

(indoors and outdoors) by a human holding the camera -

i.e., replacing the robot in this case. For computational time

evaluations a PC (Intel Core i7 930 quad-core 2.80 GHz), a

3DR Iris drone (https://3dr.com/kb/2014-iris) with

an ODROID-XU board with Cortex-A7 quad-core CPU at

1.2GHz and Android devices (Samsung SM-N9905 with

Qualcomm Krait 400/MSM 8974 quad-core 2.3 GHz, HTC

One X with ARM Cortex-A9 quad-core 1.5 GHz) were

used. These devices will have the labels PC, Iris, And1,

And2 in this section.

For the ROS implementation, first a simulation was cre-

ated with a TurtleBot (with a Kobuki base with a simulated

camera with 60 degree field of view, 640x480 resolution,

and clipping at 0.05 and 18.0 distances). The basis of the

simulated world was the MathWorks 3-room office world

from their “Virtual Machine with ROS Hydro and Gazebo

for Robotics System Toolbox”. An example overview shot

of the modified world is shown in Fig. 3. The methods

were implemented as ROS nodes (and tested on ROS Hy-

dro and Indigo releases), one node for processing the cam-

era frames, and another for moving the robot based on the

obtained movement direction proposals. A similar approach

has been followed for a quadrotor-based simulation, a view

of which is shown in Fig. 4.

Fig. 2 shows the diagram of the TurtleBot-based pro-

cessing node-chain in ROS, for taking the images of the

bot’s camera, processing the images, generating a motion

direction and sending the movement commands back to the

bot. The quadrotor-based simulation is very similar (with

differences in the camera source and the movement com-

mands sent to the simulated robot).

Fig. 3 shows a view of the simulated environment for the

TurtleBot-based evaluation. Some stationary obstacles have

been added on the floor for this simulation, which generate

collision events when the bot runs into them. Fig. 4 shows a

61

Figure 2. The diagram of the TurtleBot-based ROS simulation

node-chain for processing bot camera images, generating a move-

ment direction, and sending movement commands to the bot.

Figure 3. A view of the simulated world for the ROS TurtleBot

tests. The bottom room is labeled room1, the upper left room2 and

the upper right room3.

view of the simulated environment for the quadrotor-based

evaluation, where some of the ground obstacles have been

removed, and high pillar-like structures were added instead,

which also generate collision events when the quadrotor hits

them. Fig. 5 shows some example camera views from the

two simulations.

For the simulation tests with the TurtleBot, the bot was

positioned in one of the rooms (labeled as room1, room2

and room3) with the same starting position for all the meth-

ods, and was allowed to roam freely for approximately 500

steps. The quadrotor vehicle was tested in room1, always

placed at the same starting position and height, and was al-

lowed to move around freely. The primary goal of these

tests was to see if the methods can drive the bots around

by avoiding as many collisions as possible. The point is,

that if we have a method that can avoid obstacles without a

priori training and in various environments, then it can be

integrated into a full navigation chain and be the basis of a

Figure 4. A view of the simulated world for the ROS quadrotor

tests.

(a)

(b)
Figure 5. (a) Sample frames from the TurtleBot simulation. (b)

Sample frames from the quadrotor simulation.

full fledged goal-oriented movement control process.

The quadrotor vehicle was allowed to move in all possi-

ble directions, i.e. up-left, up, up-right, right, down-right,

down, down-left, left, forward and stop (directions denoted

by NW, N, NE, E, SE, S, SW, W, FWD, STOP). In the

case of the TurtleBot the following movement rules were

applied:

• If the proposed direction is Forward: move forward.

• If the proposed direction is STOP: turn left 30 degrees.

• If the proposed direction is W or E: turn left or right

15 degrees.

• Treat all other proposed directions (NW, NE, N, SW,

SE, S) as STOP.

For both simulated vehicles, if a real bump/obstacle hit

is signaled by the on-board sensors (bumpers, LIDAR, alti-

tude sensor), we treat it as a STOP signal, but count it as an

obstacle hit.

62

(a)

(b)

Figure 6. (a) The indoor test environment. (b) An top view of the

outdoor environment.

To evaluate performance, obstacle hits, or bumps, were

detected by using simulated sensors. For the TurtleBot 3

bumpers (left, center, right) were used to detect hits (by lis-

tening for events on /mobile_base/events/bumper). For

the quadrotor a simulated Hokuyo LIDAR sensor (180 de-

gree field of view, 1800 simulated beams) and the z-axis

data from /ground_truth_to_tf/pose were used to de-

tect horizontal bumps or vertical hits (when descending to

hit the ground). In all cases we counted the number and

type of actual moves, and the number of sensor-detected

collisions.

Real tests were performed with an Android-based smart-

phone, indoors in a large room with several obstacles, and

outdoors in a backyard parking lot with obstacles and veg-

etation. Fig. 6 shows an overall view of the indoor (a) and

outdoor (b) environments used for the real tests, while Figs.

7 and 8 show some example frames from these environ-

ments. In these environments the tests were performed by

holding an Android device in hand at approximately 1.5m

height, and moving/turning in the directions indicated by

the method running on the device. All indoor/outdoor tests

were performed by picking a method and starting from the

same initial position and performing 200 moves. In the in-

door/outdoor tests collisions were counted manually by the

human holding the device.

3.1. Results

For evaluating the performance of the method and com-

pare it with the others, we concentrated on how well the

methods can avoid collisions (i.e., how often do they hit an

obstacle in the same environment, during the same time pe-

riod), what is the ratio of “good” stop signals vs. all stops,

Figure 7. Sample frames from the indoor environment.

Figure 8. Sample frames from the outdoor environment.

Figure 9. Percentage of hitting obstacles from all the performed

moves of the TurtleBot in the 3 rooms of the simulated environ-

ment, for all methods.

including collisions (which can indicate whether a vehicle is

actually trying to avoid obstacles, or is just moving around

blindly in straight lines until hitting something).

Fig. 9 shows performance data of the Dmap method and

the compared methods in the rooms of the TurtleBot simu-

lated environment, specifically the ratio of obstacle hitting

moves over all the performed moves. This figure clearly

shows that the Dmap method hits obstacles less frequently,

averaging around 4-5%.

Fig. 10 shows the percentage of actual stop signals for

the TurtleBot simulation - i.e., when the respective algo-

rithm indicated the bot should stop because of a detected

obstacle - from all the stops, including hitting obstacles.

What this figure shows is that in the case of Dmap-based

movements a much higher ratio of stop signals is actually

indicated by the method. In the case of the RC method none

of its stops have been actually algorithm-indicated (i.e., they

were either collisions, or directions handled as stops - N, S,

etc.).

Fig. 11 shows, as an example, the distribution of bot

63

Figure 10. Percentage of real (algorithm-signaled) STOP signals

from all the stops (including obstacle hits) of the TurtleBot for all

simulated environments and methods.

Figure 11. Distributions (in percents) of TurtleBot movement di-

rections in the room3 segment of the simulated environment.

Figure 12. Percentage of hitting obstacles from all the performed

moves of the quadrotor in room1 of the simulated environment, for

all methods.

movement directions in one of the rooms of the simulation.

Here, the columns of the STOP signal encompass all other

signaled directions that are treated as stops for the TurtleBot

(i.e., NW, N, NE, SW, S, SE).

The same evaluations were performed for the quadro-

tor vehicle. Fig. 12 shows performance data of the Dmap

method and the compared methods in room1 of the quadro-

tor simulated environment, specifically the ratio of obstacle

hitting moves over all the performed moves. While in this

case the Dmap-based approach performs somewhat worse

than on the TurtleBot, it is still more than twice better than

the other methods.

Fig. 13 shows the percentage of generated stop signals

for the quadrotor simulation - i.e., when the respective al-

gorithm indicated the bot should stop because of a detected

obstacle - from all the stops, including obstacle collisions.

In this case, since the robot is allowed to move in every pos-

sible directions and only algorithm-indicated stops and col-

Figure 13. Percentage of real (algorithm-indicated) STOP signals

from all the stops (including obstacle hits) of the quadrotor for

room1 of the simulated environment and all the methods.

Figure 14. Distributions (in percents) of quadrotor movement di-

rections in the room1 of the simulated environment.

lisions are treated as stops, this figure shows that the HC and

the SR methods never noticed obstacles and only stopped

when colliding with something.

Fig. 14 shows, the distribution of quadrotor movement

directions in room1 of the simulation. As we can see in

the STOP columns of the methods, all methods did stop at

several occasions, but if we also look at Figs. 12 and 13 we

can see that only Dmap and RC did actually detect obstacles

and that the Dmap method’s performance was clearly better.

Following the ROS/Gazebo simulations, we also per-

formed real world evaluations in an indoor (office space

with placed obstacles) and an outdoor environment as

shown in Fig. 6. Figs. 7 and 8 show some example frames

that the device captured during the process.

In these cases we performed the same measurements as

in the case of the simulations. Fig. 15 (a) shows perfor-

mance data of the Dmap and the compared methods in the

indoor real environment, specifically the ratio of obstacle

hitting moves over all the performed moves. Fig. 15 (b)

shows the percentage of real STOP signals for the indoors

environment - i.e., when the respective algorithm indicated

the bot should stop because of a detected obstacle - from all

the stops, including obstacle hits.

Fig. 16 (a) shows performance data of the Dmap-based

approach and the compared methods in the outdoor real en-

vironment, specifically the ratio of obstacle hitting moves

over all the performed moves. Fig. 16 (b) shows the per-

centage of algorithm-indicated STOP signals for the out-

64

(a) (b)

Figure 15. (a) Percentage of hitting obstacles from all the per-

formed moves in the indoor environment, for all methods. (b)

Percentage of real (algorithm-signaled) STOP signals from all the

stops (including obstacle collisions) of the indoor environment and

all the methods.

(a) (b)

Figure 16. (a) Percentage of hitting obstacles from all the per-

formed moves in the outdoor environment, for all methods. (b)

Percentage of real (algorithm-signaled) STOP signals from all the

stops (including obstacle hits) of the outdoor environment and all

the methods.

door environment - i.e., when the respective algorithm in-

dicated the bot should stop because of a detected obstacle -

from all the stops, including obstacle hits.

As the result figures show, all the methods perform better

in an outdoor environment, which is especially true for the

Dmap approach, since the method is better suited to run

on images with varying textures than in environments with

large homogeneous surfaces. also, the indoor and outdoor

tests still support the usability and higher performance of

the Dmap-based approach.

Besides the collision-based measurements, we also tried

to visualize the paths the device followed by adhering to

the movement directions indicated by the different meth-

ods. The point of this visualization is to get an impression

about the overall capabilities of the methods, where we ex-

pect a better performing method to not get stuck in a small

area as opposed to lesser performing ones which might just

bounce around from obstacle to obstacle. Fig. 17 shows a

visual approximation (created by hand) of the moves per-

formed according to the respective compared methods in

the outdoor environment. When creating these figures, the

Figure 17. Visual approximations of the movement directions and

covered areas in the outdoor environment by all compared meth-

ods.

Figure 18. Example input frames (top row) from the outdoors tests,

and generated feature maps by the Dmap, HC, RC and SR methods

(second, third, fourth and fifth rows respectively).

movements were tracked by viewing the logged frames and

indicated movement directions and placing an arrow on the

approximate map of the environment to show the respective

movements. The visualizations support the previous numer-

ical evaluations in that the Dmap-based approach can be

a better basis for integration into a goal-guided navigation

framework. The figures show that some algorithms follow

a more straight path in obstacle free-regions, while others

make turns - the latter is a direct cause of occasional false

detections of the respective methods (however, for our pur-

poses false detections are still better than false negatives,

which result in collisions). As a visual example, Fig. 18

shows some example input frames from the outdoors envi-

ronment and the raw generated feature maps from all the

methods for these input frames.

As a final step of the evaluation process, Fig. 19 shows

average processing times for Dmap and the compared meth-

65

(a) (b)

Figure 19. (a) Average processing times for the Dmap method on a

PC, the Iris drone and two Android devices (described in the text).

(b) Average times for all methods on the PC and the And1 Android

device.

ods. First in Fig. 19 (a) the times of the Dmap approach

are shown on the above described devices. Since the run

times on the And1 device and the Iris drone were simi-

lar, and since the And2 device was much slower, in Fig.

19 (b) we only compared the methods on the PC and on

the And1 device as a reference. What these results indi-

cate is that although the Dmap-based method is slower than

the others, given its better overall performance it still could

be preferred. Especially so, since it still can run with 1+

frames per second on a 3 years old smartphone and a 2

year-old ODROID-XU board. The desired processing speed

on robots is dependent on the targeted application and the

movement speed of the robot, but our general goal is to

achieve 5-10 frames per second processing times with fur-

ther future improvements. Both the ROS and Android im-

plementations of Dmap support OpenMP, thus we expect

significant time improvements on newer multi-core devices.

4. Conclusions

In this paper we extensively evaluated a single cam-

era/image based obstacle avoidance method that does not

require extensive a priori training, can be used in various

environments, can be easily ported and deployed on differ-

ent platforms, is able to perform at practical speeds and has

a low enough collision ratio that supports its usability in real

life situations. Among our future plans is the implementa-

tion of the method - with the possibility of fusing the feature

map with other image features - as an integral part of a nav-

igation framework, for either supporting autonomous navi-

gation in a goal-oriented scenario, or free browsing naviga-

tion for area surveillance or visual odometry and mapping

applications.

Acknowledgements

This work has been partially supported by the Bosch

“ERNYŐ 13” project.

References

[1] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S.-

M. Hu. Global contrast based salient region detection. IEEE

TPAMI, 37(3):569–582, 2015.

[2] A. Cherubini and F. Chaumette. Visual navigation with ob-

stacle avoidance. In Proc. of IEEE/RSJ Intl. Conf. on Intelli-

gent Robots and Systems (IROS), pages 1503–1598, 2011.

[3] T. El-Gaaly, C. Tomaszewski, A. Valada, P. Velagapudi,

B. Kannan, and P. Scerri. Visual obstacle avoidance for

autonomous watercraft using smartphones. In Proc. of Au-

tonomous Robots and Multirobot Systems workshop (ARMS),

2013.

[4] A. Giusti, J. Guzzi, D. Ciresan, F.-L. He, J. P. Rodriguez,

F. Fontana, M. Faessler, C. Forster, J. Schmidhuber, G. D.

Caro, D. Scaramuzza, and L. Gambardella. A machine learn-

ing approach to visual perception of forest trails for mo-

bile robots. IEEE Robotics and Automation Letters, PP:1–7,

2015.

[5] X. Hou and L. Zhang. Saliency detection: A spectral residual

approach. In Proc. of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1–8, 2007.

[6] L. Kovács. Single image visual obstacle avoidance for low

power mobile sensing. In Proc. of Advanced Concepts for

Intelligent Vision Systems (ACIVS), pages 261–272, 2015.

[7] L. Kovács and T. Szirányi. Focus area extraction by blind de-

convolution for defining regions of interest. IEEE Tr. on Pat-

tern Analysis and Machine Intelligence, 29(6):1080–1085,

2007.

[8] S. Lenser and M. Veloso. Visual sonar: Fast obstacle avoid-

ance using monocular vision. In Proc. of IEEE/RSJ Intl.

Conf. on Intelligent Robots and Systems (IROS), 2013.

[9] I. Lenz, M. Gemici, and A. Saxena. Low-power parallel al-

gorithms for single image based obstacle avoidance in aerial

robots. In Proc. of IEEE Intl. Conf. on Intelligent Robots and

Systems (IROS), pages 772–779, 2012.

[10] T. Liu, J. Sun, N.-N. Zheng, X. Tang, and H.-Y. Shum.

Learning to detect a salient object. In Proc. of IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), pages

1–8, 2007.

[11] J. Michels, A. Saxena, and A. Y. Ng. High speed obstacle

avoidance using monocular vision and reinforcement learn-

ing. In Proc. of the 21st Intl. Conf. on Machine Learning

(ICML), pages 593–600, 2005.

[12] A. Oh, A. Kosaka, and A. Kak. Vision-based navigation of

mobile robot with obstacle avoidance by single camera vi-

sion and ultrasonic sensing. In Proc. of IEEE Intl. Conf.

on Intelligent Robots and Systems (IROS), pages 704–711,

1997.

[13] K. Souhila and A. Karim. Optical flow based robot obsta-

cle avoidance. International Journal of Advanced Robotic

Systems, 4(1):13–16, 2007.

[14] C. N. Viet and I. Marshall. Vision-based obstacle avoidance

for a small, low-cost robot. In Proc. of IEEE Intl. Conf. on

Advanced Robotics (ICAR), 2007.

66

