
Linked Data Enrichment with Self-Unfolding

URIs

Barnabás Szász *, Rita Fleiner**, András Micsik***
* University of Debrecen, Debrecen, Hungary

** Óbuda University, Budapest, Hungary
*** MTA, SZTAKI, Budapest, Hungary

bszasz@gmail.com, fleiner.rita@nik.uni-obuda.hu, micsik@sztaki.mta.hu

Abstract— Linked Data resources are identified by Uniform

Resource Identifiers. It is an important step in any Linked

Data project to define the conventions for URI assignments.

In some cases resources already have their natural

identifiers, or they can be inherited from previous

databases. However, there are cases when frequent

insertions of triple sets occur without any convenient way

for identification and grouping of them. In this paper we

elaborate on a mechanism that makes handling complex and

frequent insertions easier, and also provides the benefits of

simple authoring together with rich querying and reasoning

on the data. We show how to eliminate some of the time

consuming and error prone aspects of Linked Data

authoring by introducing the self-unfolding URI concept.

This solution generates RDF description to entities based on

information encoded in their URIs. For the generation of

these new RDF triples we propose templates that can be

implemented by SPARQL Insert queries.

I. INTRODUCTION

The principles of Linked Open Data are related to
publishing and interlinking structured data on the Web so
that computers can read it automatically. This method
enables data from different sources to be connected and
queried. The Linked Data concept - invented by Tim
Berners-Lee in 2006 – is based on the following four
principles [1]:

1. Use URIs as names for things

2. Use HTTP URIs, so that people can look up those

names

3. When someone looks up a URI, provide useful

information, using the standards (RDF, SPARQL)

4. Include links to other URIs, so that they can

discover more things
The 4th recommendation ensures the links within the

different datasets. The standard data model for Linked
Open Data is the Resource Description Framework
(RDF). In RDF data is structured in triples in the form of
subject, predicate and object, which is called a statement.
The predicate specifies how the subject and object are
related. The subject and the predicate are both URIs and
the object is a URI or a string literal. SPARQL is an RDF
query language, designed to retrieve and manipulate data
stored in RDF format. Linked Data builds links between
arbitrary things described in RDF. In RDF, URIs identify
any kind of object or concept.

Publishing Linked Data on Linked Data Platform [2]
demands certain best practices, e.g. to provide meaningful

URIs to identify entities. For human usage – especially for
manual entry – it is important to encode some semantics
in the URI structure. This can lead to redundancy in the
data, as the same information might be represented as
RDF triplets, describing the entity and in the URI as well.
If this redundancy cannot be avoided, some automated
mechanism should take care of the maintenance or the
consistency verification.

We propose the Self-unfolding Semantic URI concept:
these are URIs following a specific pattern and a template,
which describes the structure the entity should have. The
pattern of the appearing new resource URI identifies the
template that is used to generate a set of triples providing
basic semantic description of the resource, and thus
enabling better querying and reasoning for the new
resource. Let’s suppose a LOD dataset is given and there
is a mechanism (e.g. a trigger) monitoring the data. In case
of a special type of entity appears, the system generates
new RDF triples that are semantically derived from the
original ones.

Automatic Linked Data expansion can be categorized
by (i) the characteristics of the data that triggers the
automatic data generation, (ii) the method of the
generation, (iii) the structure of the new triples and (iv) the
mechanism supporting the automatism. The process is
indispensable for efficient data management of certain
types of LOD datasets. For example, a proper, re-usable
OWL-Time Interval description requires at least 7-8
triples, which is quite tedious and error-prone for manual
input.

The focus of this paper is the automatic expansion of
Linked Data sets, which is a special case of Linked Data
enrichment. We show how to eliminate the time
consuming steps of Linked Data authoring with
introducing the self-unfolding URIs, by generating RDF
description to entities based on information encoded in
their URI. In Section 2 we describe research fields that are
related to the topic. In Section 3 application and data
specific use cases are described where automatic
unfolding of URIs might be useful, while in Section 4
scenarios are presented that are independent from the
application area and the type of the data. Section 5 shows
examples for the implementation details of the
enrichment. Section 6 provides some conclusive remarks.

II. RELATED WORK

Enriching Linked Data is the process leveraging
implicit or hidden semantics built into a dataset and made
explicit by RDF tools. Previous studies in this field

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48295834?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

focused mainly on link generation to semantically related
resources, which in most cases means the automatic
insertion of owl:sameAs statements between instances of
different resources, (e.g. to DBpedia or to Geonames
datasets) [3] or between the corresponding concepts (e.g.
ontology classes or properties) [4]. The latter is the main
objective of ontology alignment [5] and schema alignment
[6]. Answering complex queries often requires accessing
and combining information from multiple datasets, which
can be achieved by federated query processing. Different
approaches to federated query processing over Linked
Data are analyzed in [7]. The authors study how different
design alternatives affect the performance and practicality
of query processing and define a benchmark for federated
query processing, comprising a selection of data sources
in various domains and representative queries.

Semantic Sensor Web is the combination of sensor and
Semantic Web technologies, where the encoding of sensor
descriptions and observation data with Semantic Web
languages enables more expressive representation,
advanced access, and formal analysis of sensor
information. Dynamic enrichment is a current research
topic in the field of linked sensor data streams. In [8]
authors propose the use of a Complex Event Processing
engine with a dynamic enrichment component that
expands the sensor information items before evaluating
them. The authors suggest a prototype to realize situation
awareness over large-scale and open web sensor networks.
For the core processing model of the enrichment a
relational query model is used.

Transforming sensor-based data into RDF and making
it available using HTTP requires the use of sensor data
related URIs. In [9] authors propose a URI-based
mechanism to identify and access Sensor Data coming
from sensor networks and they propose several URI
design to represent Time, Space and sensor identity
information in URIs. In [10] the most relevant challenges
of the Semantic Sensor Web are described, where the
integration and fusion of data coming from different
sensor networks (with varying qualities of service and
different throughput rates, geographical scales) and other
sources (e.g. static data or archived sensor data) is
emphasized.

Correndo, et al. [11] address the issue of representing
time entities (i.e. Instants and Intervals) as Linked Data,
and describe how to exploit topological temporal
relationships in order to increase the connectivity degree
within Linked Data sets. They present an approach to
describe temporal entities as reusable URIs that can be
adopted by data publishers as a temporal context to their
information resources. The approach identifies a set of
discrete temporal entities as relevant for a certain domain
(e.g. financial years for the public sector) and a RESTful
API is provided to dynamically create temporal entities.
Once a dynamic temporal URI is resolved, information is
provided to situate such URI in reference to the relevant
domain entities. The URI resolution employs simple
topological temporal reasoning in order to exploit the
qualitative relationships between entities.

III. USE CASES

This section highlights use cases for URI unfolding. We
have identified a temporal and a spatial use case and a
third one combining these.

A. OWL Time entities

There are multiple ways to model temporal information,
but probably the most used ontology for this purpose is
the OWL Time Ontology1. It provides basic constructs to
define and describe points and intervals bounded with a
start and endpoint in the temporal space. OWL Time
provides two approaches to describe a point of time: either
using the xsd:datetime datatype or using the
DateTimeDescription class. While the first one offers an
easy way to define a point of time by a well-structured
string, it lacks some of the features the
DateTimeDescription class provides: it uses seconds as
the default unit type and requires a full date and time
described. On the other hand, manually modeling and
maintaining DateTimeDescription entities are error prone
and tiring, because these require at least 7-8 triples in a
format that is really re-usable in a semantic sense. For
example, defining a time interval entity requires the
following triples:

ex:meetingInterval

 a time:Interval;

 time:hasBeginning ex:meetingStart;

 time:hasDurationDescription ex:meetingDuration.

ex:meetingStart

 a time:Instant;

 time:inDateTime ex:meetingStartDescription.

ex:meetingStartDescription

 a time:DateTimeDescription;

 time:dayOfWeek time:Monday;

 time:day "08";

 time:hour "08";

 time:minute "00";

 time:month "09";

 time:unitType time:unitMinute;

 time:year "2014".

ex:meetingDuration

 a time:DurationDescription;

 time:minutes 90.

In case the given LOD dataset contains lot of temporal
information, manually publishing all the necessary triplets
would be cumbersome. We suggest instead to use a self-
unfolding URI for the time entity and an attached template
to auto generate the required triplets based on the
information in the URI.

In the example above the URI of the interval entity
should contain all the data that is needed to generate the
corresponding triples. In our implementation the following
structure is suggested:

<http://example.org/data/Interval;year=2014;mo

nth=9;day=8;hour=8;minute=0;durationHour=1;durat

ionMinute=30>

B. Spatial entities

It is often necessary to specify locations for events or
files (e.g. photos). Geo-location can be easily captured and
represented by coordinates, so encoding latitude and
longitude in the location URI is a plausible method.
Additional information can be generated by connecting
related entities with the coordinates, like the country, city,
region, landmark nearby found in a geo database, like
GeoNames (www.geonames.org). With SPARQL Insert

1 http://www.w3.org/TR/owl-time/

http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Semantic_Web

queries, such enrichment can be scheduled or triggered by
the entry of a new instance of a geo-location.

The enriched geo-location data for a self-unfolding URI
could be the following:

@prefix geo:

<http://www.w3.org/2003/01/geo/wgs84_pos#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-

syntax-ns#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix gn: < http://sws.geonames.org/> .

<http://example.org/point;lat=47.158775;long=18.

88149>

 a geo:Point;

 geo:lat "47.158775";

 geo:long "18.88149";

 foaf:based_near gn:3048446>.

C. Measurement representation from Semantic Sensor

Networks

A Semantic Sensor Network publishes measurement
data in a predefined cadence. Such data could include the
location of the measurement, the exact time, the measured
value and the sensor ID. Each measurement event is
identified by a URI and represented by a set of triplets. In
[9] authors suggest models for URI structures to identify
and access Stream Data coming from sensor networks.
URI schema is proposed containing the sensor identifier,
the time of the measurement and the space information.
We go further and suggest putting the value of the
measurement also in the URI scheme. In this case the URI
containing the sensor ID, the time, the space and the
measurement information would be sent to the data
processing center, where the data enrichment would take
place. The data enrichment would use a template
containing extra information in RDF triplets about the
sensor geographical features, sensor type, measurement
interpretations and references. From the information
encoded in the URI with the help of the template the raw
results of the measurement and also some interpretations
and references of the measurement would be generated.
This way it becomes simple to query out-of-normal-range
events.

The following (highly simplified) example shows the
result of the generation of sensor observation RDF data
from the URI defining the measurement:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-

syntax-ns#> .

@prefix dul: <http://www.loa-

cnr.it/ontologies/DUL.owl#> .

@prefix ssn:

<http://purl.oclc.org/NET/ssnx/ssn#> .

<http://example.org/observation;instant=2015-01-

03T10-38-

43;lat=60.158775;long=24.88149;value=12.2>

a ssn:Observation;

ssn:observationResult "12.2";

ssn:observationResultTime

<http://example.org/instant;instant=2015-01-

03T10-38-43>;

dul:hasLocation

<http://example.org/point;lat=60.158775;long=24.

88149>.

IV. GENERALIZED SCENARIOS

In this section generalized Linked Data publishing
scenarios are described, where automatic enrichment can
play a useful role. We have identified three problem types
that are frequently present in Linked Data publishing and
where automatic data generation with self-unfolding URI
could give solution. These are Blank Node (Anonymous
Resources) Candidates, entities with composite keys in
URI and reasoning on information encoded in the URI.

A. Generating Blank Node entities from URIs

In some cases, the URI of a RDF entity is not important
or not used, for this reason the concept of Blank Node was
introduced. Blank nodes indicate the existence of a thing,
without using, or saying anything about the name of that
thing. The use of blank nodes is problematic. One
drawback is the locality of their scope, since it is not
possible to create RDF links to them from external Linked
Data sources. Another drawback is the difficulty to merge
data from different sources when blank nodes are used, as
there is no URI to serve as a common key. Because of this
there is a recommendation to avoid the use of blank nodes
[12], [13] and to name all resources in a data set using
URI references.

Our proposal is to encode the necessary information in
the URI of the Blank Node entity thus it becomes a named
entity and use automatic triplet generation based on URI
patterns and templates. This proposal is useful only if the
blank node contains information that can serve as primary
key. Otherwise identity generation cannot be avoided.

B. Modeling composite keys in URI

As URIs identify the entities, it is advisable to encode
the primary key information of the entity in its URI.
Entities without a single primary key candidate in RDF
have their own challenges. Composite keys identify such
entities, however defining a good and representative URI
with all keys included will result redundancy in the data,
since the keys should be encoded in the entities URI
syntactically and also as triplets semantically.

Our proposal to resolve this dilemma is to encode the
composite key values in the URI of such entities and use
automatic triplet generation based on URI patterns and
templates. It would provide mechanism to maintain the
redundancy of information encoded in the URI and the
paraphrased triplets in the same time the consistency of
the data would be ensured as well.

C. Reasoning on information encoded in URI

There are datasets where new triples have to be
generated according to specific rules. In [14] Polleres et
al. describe the problem when Linked Data sets contain
numerical properties and from these numerical properties
lot of implicit information could be expressed in the form
of simple mathematical equations. For example,
expressing simple conversions between different
currencies or functional dependencies between multiple
properties might be needed. As such equations are not
expressible in RDFS or OWL itself, the authors present an
approach in [14] to extend the RDFS and OWL languages
by attribute equations in order to enable the inclusion of
additional numerical knowledge in the reasoning
processes. Additionally, SPARQL Insert queries could
provide an expressive way to implement information

extraction encoded in URI. Our solution expresses the
new relationships determined by the specific rule in the
template and generates the new information using the data
from the entities URI and the template.

V. IMPLEMENTATION DETAILS

In this section the functional requirements are
described: the URI pattern definition, the corresponding
RDF templates and the structure of the SPARQL Insert
queries achieving the data generation.

A. URI Patterns

As the SPARQL language has limited expressiveness, it
is important to design the structure of the URIs in a way
that supports the processing by SPARQL Inserts and also
conforms to other best practices. In [15] there are 8 URI
design patterns describing how to assign identifiers within
a dataset, where all 8 patterns are widely used and tested
in the field. It should be noted that none of them is a good
candidate to apply for composite key modeling. From the
8 URI design patterns the closest one to our need is the
Hierarchical URI pattern, which can be applied when a
natural hierarchy exists within the set of resources (e.g.
/books/001/chapters/1). However, in the case of composite
key modeling the concept hierarchy does not always exist,
i.e. the parts of the key are often in coequal relationship.

Because of this we propose the use of Matrix URI
pattern2 as it can use multiple independent parameters of
the entity. A URI following this pattern starts with a base
part, followed by the type of the resource and then
optionally each part of the composite key:

<Base URI>/<type>[;<Property>=<Value>]

The example URIs in section 3 are in this proposed
structure.

B. Conceptual RDF Template

The purpose of using templates in the self-unfolding
URI process is to express rules, which determine the
generation of the new information based on the entity’s
URI. There is a constant challenge for Linked Data
consumers that the noise in the data can lead to fuzzy data
structures too. The aim of defining a template for a given
type of entity is to support the query consistency. Each
template implementation has to define the rules to extract
information from the URI and optionally rules to infer any
implicit relations or attribute values. The template
provides a URI pattern, and prescribes RDF triplets to be
generated based on the values extracted from the URI.
Following is the high level structure of such a template:

<URI> rdf:type <type with namespace>

[; <property> <value>|<related URI>] .

Related entities can be generated recursively applying
the same template. An example for a template generating
an OWL Time Instant entity can be the following:
<http://example.org/Instant;year={year};month={m

onth};day={day};hour={hour};minute={minute}>

=====>

<http://example.org/Instant;year={year};month={m

onth};day={day};hour={hour};minute={minute}>

 rdf:type time:Instant;
 time:inDateTime.

2 http://www.w3.org/DesignIssues/MatrixURIs.html

<http://example.org/DateTimeDescription;

year={year};month={month};day={day};hour={hour};

minute={minute}> .

<http://example.org/DateTimeDescription;

year={year};month={month};day={day};hour={hour};

minute={minute}>

 rdf:type time:DateTimeDescription ;
 time:hour "{hour}"^^xsd:nonNegativeInteger ;

 time:minute "{minute}"^^xsd:nonNegativeInteger;

 time:month "{month}"^^xsd:nonNegativeInteger ;

 time:day "{day}"^^xsd:nonNegativeInteger ;

 time:year "{year}"^^xsd:nonNegativeInteger .

C. Implementation with SPARQL Insert statements

SPARQL Insert operation can be utilized to implement
templates defined earlier. For each entity having a URI
matching the URI pattern a SPARQL Insert statement
produces the corresponding properties and objects or
attribute values. These update queries are the
implementation of the templates describing the entity.

As the proof of the concept we implemented templates
for generating time related data in order to represent
temporal information of university courses as Linked
Open Data. Entities providing temporal description of the
data are based on the OWL Time3 and TimeAggregates
Ontologies4 . The main difficulty we faced was to express
the time of recurring events, like lectures on every
Monday from 8 am till 9.30 am in the 2015 Fall semester.
The precise implementation of such information as Linked
Open Data needs the introduction of several additional
entities, hence the management of such information is
time consuming, error prone and tedious process without
automatization.

For the demonstration of our implementation let us
consider the following example in Turtle for the
description of the time of a specific course as an RDF
triple:

:c001 oloud:courseTime <http://lod.nik.uni-

obuda.hu/data/CourseTime;courseTerm=2015Fall;hou

r=10;minute=0;durationHour=1;durationMinute=30;d

ayofweek=2>.

The URI of the object part contains all necessary
information to generate the RDF triples needed for
describing the time of recurring events as Linked Open
Data in a proper way. The unfolding of this URI results 6
new LOD entities, each consisting of 3 new RDF triples
on average. Due to lack of space and complexity of the
SPARQL code and the generated data we omit the
presentation of implementation details here, but it is
available at [16].

One drawback of this method is the potential
inconsistency during the (slight) delay between an entity
was created and unfolded or deleted and the remaining
orphan related entities were removed. An entity is orphan
if there is no triplet where the entity is the object: <?s ?p
{Orphan URI}>. To completely remove an entity
represented by a URI pattern defined earlier in section 5,
all triplets containing the corresponding URI need to be
deleted. Altering or removing the original entity from the
triplestore needs to be reflected by the related entities too,

3 http://www.w3.org/TR/owl-time/
4 http://ontology.ihmc.us/temporalAggregates.owl#/

a garbage collection algorithm can look after the related
orphan entities. If an auto-generated entity is orphan, it
means the parent entity it was generated from no longer
exists, so it can be deleted as well as all the sibling entities
recursively, as shown in this example:

DELETE { ?orphan ?p ?v }

WHERE

 { ?orphan ?p1 ?v .

 OPTIONAL { ?parent ?p2 ?orphan. }

 FILTER (!BOUND(?parent))

 FILTER(STRSTARTS(STR(?orphan),

"http://example.org/point"))
 }

VI. CONCLUSION AND FUTURE WORK

In this paper we present a method for the handling of
re-occurring complex inserts in a dataset. The method
combines URI patterns with RDF templates to ensure that
the full RDF representation of the inserted new entity is
automatically generated.

We have demonstrated through scenarios and some
example use cases the importance of defining meaningful
URIs as well as detailed RDF description for a given
entity. By dereferencing these URIs, the results obtained
(e.g., in RDF) should also reflect the same information as
the information provided in the URI.

We think that the proposed URI structure may have a
wider use as a Linked Data pattern [15], since there is no
other pattern at the moment to deal with the specific
scenarios described in Section 4. Applying the self-
unfolding URIs eases the authoring and maintenance of
Linked Data especially in cases when simple, frequently
occurring concepts (such as date intervals) need to be
represented in a rather complex way. The suggested
mechanism also provides an elegant way to generate
standard URIs for frequent entity types.

Our proof of concept implementation was based on a
scheduled operation (e.g. once a day) for the recurring
entity generation. While this proved to be a simple
solution, there is a period of time when not all entities are
unfolded thus leading to data consistency issues. In future
work we plan to study consistency maintenance issues. It
is advised to maintain meta information about any auto-
generated data, in order to keep it in sync with the
manually created part. It can be a good practice to
maintain these in a separate graph, or in the case of Linked
Data Platform (LDP) [2] in the LDP Indirect Container so
all data can be viewed with or without the generated
information. Future work should include implementing
trigger type mechanism to capture changes within a
triplestore and to reduce the inconsistent period to a more
acceptable one.

Closely tied to the publication of Linked Data is the
specification of a standard read/write interface, which is
the goal of the Linked Data Platform. Such a platform

could provide a natural place to implement the self-
unfolding URI mechanism. In LDP a triplet would be sent
with POST to an LDP Indirect Container (LDP-IC) and
the platform could unfold the entity. In future work the
possibility of implementing the self-unfolding URI
mechanism in LDP is planned to be examined.

REFERENCES

[1] T. Berners-Lee: Linked data-design issues, 2006,
http://www.w3.org/DesignIssues/LinkedData.html

[2] Speicher, S., Arwe, J., & Malhotra, A. Linked Data Platform 1.0.
Working draft, w3c (Mar 2014).
http://www.w3.org/TR/2013/WD-ldp-20130730/

[3] Haslhofer, B., Momeni, E., Gay, M., & Simon, R. (2010,
September). Augmenting Europeana content with linked data
resources. In Proceedings of the 6th International Conference on
Semantic Systems (p. 40). ACM.

[4] Parundekar, R., Knoblock, C. A., & Ambite, J. L. (2010). Linking
and building ontologies of linked data. In The Semantic Web–
ISWC 2010 (pp. 598-614). Springer Berlin Heidelberg.

[5] Euzenat, J., and Shvaiko, P. Ontology matching. Springer-
Verlag New York, Inc., Secaucus, NJ USA, 2007.

[6] Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to
automatic schema matching. the VLDB Journal, 10(4), 334-350.

[7] Haase, P., Mathäß, T., & Ziller, M. (2010, September). An
evaluation of approaches to federated query processing over
linked data. In Proceedings of the 6th International Conference on
Semantic Systems (p. 5). ACM.

[8] Hasan, S., Curry, E., Banduk, M., & O'Riain, S. (2011). Toward
Situation Awareness for the Semantic Sensor Web: Complex
Event Processing with Dynamic Linked Data Enrichment. SSN,
839, 69-81.

[9] Sequeda, J. F., & Corcho, O. (2009). Linked stream data: A
position paper.

[10] Corcho, O., & García-Castro, R. (2010). Five challenges for the
semantic sensor web. Semantic Web-Interoperability, Usability,
Applicability, 1(1-2), 121-125.

[11] Correndo, G., Salvadores, M., Millard, I., & Shadbolt, N. (2010).
Linked timelines: Time representation and management in linked
data. In First International Workshop on Consuming Linked Data
(COLD 2010), Shanghai, China.

[12] Mallea, A., Arenas, M., Hogan, A., & Polleres, A. (2011). On
blank nodes. In The Semantic Web–ISWC 2011 (pp. 421-437).
Springer Berlin Heidelberg.

[13] Heath, T., Bizer, C.: Linked Data: Evolving theWeb into a Global
Data Space, vol. 1. Morgan & Claypool (2011)

[14] Polleres, A., Hogan, A., Delbru, R., & Umbrich, J. (2013). RDFS
and OWL reasoning for linked data. In Reasoning Web. Semantic
Technologies for Intelligent Data Access (pp. 91-149). Springer
Berlin Heidelberg.

[15] Dodds, L., & Davis, I. Linked Data patterns-a pattern catalogue
for modelling, publishing, and consuming Linked Data (2010).
http://patterns. dataincubator.org/book/.

[16] Szász, B., Fleiner, R., & Micsik, A.: Linked Data Enrichment
with Self-Unfolding URIs – examples, http://lod.nik.uni-
obuda.hu/unfolding/example.html

