
Minimal Sufficient Information about the

Scientific Workflows to Create Reproducible

Experiment

Anna Bánáti
3
, Péter Kacsuk

1,2
, Miklós Kozlovszky

1,3

1 MTA SZTAKI, H-1518 Budapest, Pf. 63., Hungary
2 University of Westminster, 115 New Cavendish Street, London W1W 6UW
3 Óbuda University, John von Neumann Faculty of Informatics, Biotech Lab

Bécsi str. 96/b., H-1034, Budapest, Hungary

peter.kacsuk@sztaki.mta.hu

{banati.anna, kozlovszky.miklos}@nik.uni-obuda.hu

Abstract — The reproducibility of an in-silico experiment is

a great challenge because of the parallel and distributed

environment and the complexity of the scientific workflows.

In order to solve such problems on one hand provenance

data has to be captured about the dataflow, the ancestry of

the results and the environment of the execution, on the

other hand description data has to be collected from the

scientist and stored about the essential details, the types and

samples of input/output data, and the operation of the

experiment. The ultimate goal of our work is to propose a

minimal dataset for recording and reporting scientific

workflow based experiment, which will facilitate the

reproducibility of such experiments, the public repositories

and enable to share and reuse the scientific result. One part

of the dataset can be filled in manually by the scientist,

certain part can be filled in automatically by the system and

other part can be filled in from provenance data.

I. INTRODUCTION

In large computational challenges (scientific)
workflows have emerged as a widely accepted solution for
performing in-silico experiments. In general these in-silico
experiments consist of series of particularly data and
compute intensive jobs, (called scientific workflow), and
in most cases their executions require parallel and
distributed infrastructure (super/hypercomputers, grids,
clusters, clouds).

An essential part of the scientific method is that
researchers can repeat and reproduce the experiments of
others and test the outcomes themselves even in a
different environment. Different users for different
purposes may be interested in reproducing the workflow,
for example the authors of workflow in order to prove
their results, readers or other scientists in order to reuse
results or reviewers in order to verify the correctness of
the results [1]. Additionally, nowadays scientific
workflow repositories are available and in this way the
scientists can share their results with each other and even
they can reuse the existing workflows to create new ones.

The implementation of the reproducible and reusable
scientific workflows is not an easy task and many
obstacles have to be removed toward the goal. Three main
components play important role:

1. The scientific workflow management system
(SWfMS) should support the scientist with automatic

provenance data collection about the environment of
execution and about the data production process. In our
previous work [2] we determined the four level of the
provenance, and the different utilizations of the captured
data in the different levels. Capturing provenance data
during the running time of the workflow is crucial to
create reproducible workflows.

2. The scientists should carefully design the
workflow (for example with special attention for
modularity and robustness of the code [3]) and give a
description about the operation of experiment, the input
and output data, even they should show samples. [4], [5].

3. The dependencies of the workflow execution
should be eliminated. A workflow execution may depend
on volatile third party resources and services; special
hardware or software elements which are available only in
a few and special infrastructure; deadlines, which cannot
be accomplished on every infrastructure or it can be based
on non-deterministic computation which apply for
example random generated values [2].

Our goal is to support and facilitate the work of the
scientist by the scientific workflow management system
(SWfMS) to create a well-documented and reproducible
scientific workflow. The basic idea of our work is given
by MIAME which describes the Minimum Information
About a Microarray Experiment that is needed to enable
the interpretation of the results of the experiment
unambiguously and potentially to reproduce the
experiment. [6], [7]. We collected and categorized the
minimal sufficient information into seven different
datasets, which target different problems to solve.
Accordingly, one of the types of data serves the
documentation of experiment and helps to share it in a
scientific workflow repository. Other type of data
describes the data dependency and the process of data
product and it is necessary for the proving and verification
of the workflow. There are data which are needed to the
repeatability or reproducibility of workflows in different
infrastructure and environment. Finally we collected
information to help identifying the critical points of the
execution which reduce the possibility of reproducibility
or even arrest it.

The datasets are created in the different phases of the
scientific workflow lifecycle [8], [9] and originate from
three different sources. The scientist can give information
when to design the abstract model, when to get the results

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SZTAKI Publication Repository

https://core.ac.uk/display/48295787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

or after the results are published. Other information can be
gained from provenance database and there is information
which can be generated automatically by the system.

With the help of our proposal we wish to solve the
following problems:

• how to create a detailed description about
scientific experiment;

• which minimal information is necessary to be
collected from the scientists about their
experiments to achieve a reproducible
workflow;

• which minimal information is necessary from
provenance to reproduce the experiments;

• which data and information can be generated
automatically by the SWfMS in order to
implement a reproducible scientific
workflow;

• which jobs at which point do not meet the
requirements of independencies.

The rest of the paper is organized as follows. In the next
section, we present the background of the workflow

reproducibility and the connected work of the research
field. In Section 3. We define the seven datasets and give
an overview of their purposes. The next two section deal
with the datasets belonged to the jobs and their
dependencies and finally we summarize our conclusions
and reveal the possibility of future research direction.

II. BACKGROUND AND RELATED WORKS

Currently the reproducibility of scientific workflows is
a burning problem which the scientists and the system
developers have to face with and have to find solutions.
Many researchers investigate this issue, analyze the
requirements of reproducibility and deal with the
implementation of tools or frameworks which facilitates
reproducibility of the workflow.

The researchers agree on the importance of the careful
design [10], [11], [12], [13], [14], for example the modular
design and programming, the detailed description of the
workflow, the input/output data examples, and consequent
annotations [3]. In addition the careful design includes the
careful usage of volatile third parties or special local
services. In these cases two solutions exist, but

TABLE I.
OVERVIEW TABLE ABOUT THE NECESSARY DATASETS

 filled in by the scientist filled in from Provenance db.

automatically

generated by the

system

general description of

experiment

title, topic, author(s), date, institute, laboratory, description,

publication details, experiences, comment

number of ex-submission,

number of failure, duration

of execution, statistical data

based on previous execution

workflow ID,

detailed description of

workflow

abstract wf model (DAG) , wf version, parents, used

parameter set, requirements (resources, libraries, applications

with version number), place of input/output data files or

storage), types of input/output data, constraints, deadlines,

dependencies, etc..

wf version, parents,

statistical data about

previous execution,

timestamps, resource usage,

failure rate, etc..

num of job, num

of i/o port; num

of entry/exit job

detailed description of

infrastructure

infrastructure, OS, middleware, required resources, number of

VM, etc.

detailed description of

environment

authentication parameters, required libraries, compilers,

functions,

start/end time of execution,

statistical data based on the

actual or previous execution,

resource usage (CPU, RAM,

DISK, stb),

detailed description of job

input/output data, types of input/output data, volume of

input/output data, example input/output data, place of

input/output data, required application and its details, version

number of app., dependencies, constrain, etc..

parents, statistical data about

previous execution,

num of i/o ports,

predecessors,

successors, etc..

detailed description of the

environment of the job
type of code,

time stamps (exec&wait

time), resource usage, failure

rate, etc..

compiler,

required

libraries

dependency dataset it is automatically generated by the system based on the response of scientist

reproducibility is uninsurable: 1. taking a digital copy of
the entire environment using a system virtual
machine/hardware virtualization approach 2. capturing
and storing metadata about the code and environment that
allows it to be recreated later [3]. In [4], [5], [15] the
authors give further “best practice” and draw attention for
the phenomena of workflow decay [4], which means that
year by year the ability and success of the re-execution of
any workflow significantly reduces.

Consequently we can declare that the reasons are
revealed from the problem but the solution is not trivial,
cannot be implemented in every cases and most of all the
workflow management systems do not force yet the user
to make a reproducible workflow.

VisTrail, ReproZip or PROB [16], [17], [18] are all
available tools that assist the researchers and scientist to
create reproducible workflows. VisTrail [16], [19]
provides help for creating detailed descriptions not only
about the scientific experiment but also about the links for
input data, applications and visualized output which
always harmonizes with the actually applied input data,
filter or other parameters while ReproZip [17] creates a
self-contained reproducible package by stitching together
the detailed provenance information and the
environmental parameters. These tools can be used in
many cases, but do not pay attention for example the
volatile third party services or non-deterministic
applications.

Currently the Research Object (RO) approach [20] is
the main direction in this research field. RO defines an
extendable model, which aggregates a number of
resources in a core or unit, namely: a workflow template;
workflow runs obtained by enacting the workflow
template; other artifacts which can be of different kinds;
annotations describing the aforementioned elements and
their relationships. Accordingly to RO the authors in [21]
also investigate the requirement of reproducibility and the
required information to achieve it. They created
ontologies, which help to uniform these data. These
ontologies can help our work too in order to implement a
more general solution.

Gesing at al. in [22] describe the approach targeting
various workflow systems and building a single user
interface for editing and monitoring workflows under
consideration of aspects such as optimization and
provenance of data. Their goal is to ease the use of
workflows for scientists and other researchers. They
designed a new user interface and its supporting
infrastructure which makes it possible to discover existing
workflows, modifying them as necessary, and to execute
them in a flexible, scalable manner on diverse underlying
workflow engines.

III. DATASETS

We defined seven types of datasets which contain the
necessary and sufficient information about the experiment.
An overview table summarizes the seven datasets and
shows some examples about the stored data. (Table 1.)
Data collected into different datasets target different
problems to solve.

We present one sample table of the seven datasets about
the Detailed Description of Environmental of Job in
Appendix A. We highlighted the rows which can affect
the reproducibility of the workflow.

One part of the collected information of these datasets
originates from the user, who creates the workflow. In the
design phase the user establishes the abstract workflow
model, defines the jobs, determines the input/output ports,
specifies the input data and so on. Simultaneously, in
order to achieve the reproducibility of workflow the user
has to create the appropriate documentation about the
experiment in a specific way, form and order. Such
information is for example some personal data (name,
date, etc), the description of experiment (title, topic, goal,
etc.), the samples about the necessary input, partial and
output data, special hardware, application or service
requirements and so on.

There are provenance data too in the datasets which
have to be captured by the SWfMS in running time. For
example the version number and the variation of a given
workflow, the number of submissions, the used data or
parameter set during the previous executions, the
makespan of execution or the number and types of failures
occurred in running time. Information like these can be
also crucial when the results of experiment have to be
reproduced in a later time or in a different environment.

The third type of information is generated automatically
by the system after the workflow is submitted, in the
instantiation phase of the workflow lifecycle. This
information can be obtained from the users too, but
simpler, faster and even more precise and trusty if it is
automated (for example workflow and job IDs, number of
ports etc). There exists such information too, which is
created manually by the user at the beginning, but since
the datasets and the database continuously grow and more
and more data are collected, the system could “learn”
certain information and fill in automatically the
appropriate entries of datasets.

A. General Description of Workflow (GDW).

This dataset contains general information about the
scientific experiment such as title; author’s name and its
profile; the date; the institute’s name and address, where
the experiment is conducted and so on. In addition,
general description of the experiment and data samples is
also very important to be documented and stored. Most of
the information originated from the users and it is
necessary to create well-documented workflows, which
will be reusable and understandable even after years.
Certain entries are created in the design phase and others
after the execution or later (for example publication
details). However there exist information which is
generated automatically by the SWfMS, such as
Experiment ID, which is a unique identifier (expID)
referred to the given workflow.

B. Detailed Description of Workflow (DDW)

The specification of the workflow is stored in the
DDW. The experiment is modelled with an acyclic
directed graph (DAG) (figure 1.) which is the most
important part of this documentation in a graphical
manner too. In addition detailed information can be found
in this dataset about the workflow (version number, parent
workflows, required parameter set), the input/output data
(number, type, amount, location, access method) the
optional constraints or deadlines or other requirements.
Automatically generated information is for example the
number of input/output ports, the number of jobs, the
number of entry/exit tasks

C. Detailed Description of Infrastructure (DDI).

If the goal is to repeat or reproduce the workflow
execution on a different infrastructure, we have to store
the descriptors and parameters of the infrastructure, the
middleware and the operating systems in details too.

D. Detailed Description of Environment (DDE).

If the goal is to repeat or reproduce the workflow
execution in a later time, we have to store the detailed
environmental parameters. In this dataset the following
data can be found: the environmental variables and
parameters; the circumstances of the execution; the state
descriptors of the used resources; the time stamps; the
required libraries, applications, data and services (with
their exhaustive descriptions such as location, access
method, version number etc.). This information can be
captured during execution and can be stored as
provenance data in a provenance database. The fields of
this dataset filled in from this database.

IV. DATESETS FOR JOBS

Every job has two datasets, the Detailed Description of
Job (DDJ) and the Detailed Description of Environment of
Job (DDEJ). Data in DDJ was collected on the basis of
two aspects: the first one helps understand the operation of
a given job. The second one helps follow the
computational process and partial or final results. DDEJ
stores information about the environmental parameters of
the execution, which serves the reproducibility. The
number of DDJs (and also DDEJ) is equal to the number
of jobs in the whole workflow.

A. Detailed Description of Job (DDJ)

The jobs in the abstract workflow model are organized
into levels. The predecessors of any job are in lower level,
the successors of a job are in upper level. This precedency
appears in the naming convention of the job ID, which is
referred to the exp ID and the sequence number of a level
and the sequence number of a job in the given level. The
entry job has not any input port or predecessor job, the
exit job has not any output port or successor job.

Also in this case certain entries originate from the user
(general description, job’s name, sample input/output data,
location and access method of input/output data, special
hardware/application/service requirements etc.) and others
are generated automatically by the system (job ID,
predecessor and successor jobs, number of input/output
ports, resource requirements).

B. Detailed Description of Environment of Job (DDEJ)

Provenance data can be used to fill in the most fields,
such as type and number of failures; failure rate; start/end

time of execution, waiting time, used resources, statistical
data about previous executions and so on. The rest of
necessary information can be generated automatically by
the SWfMS such as type of code, compiler, resource
requirements, virtual machine requirements and its state
descriptors and so on.

V. DEPENDENCY DATASET

In the instantiation phase of the workflow lifecycle, the

SWfMS can examine the dependencies of the submitted

workflow. With help of the given results together with

the information gained from the user the system can

create a so called Dependency Dataset, which will store

all the jobs which depend on any external circumstances

and may not be reproducible. In our previous paper [2]

we showed, that the rate of reproducibility of a scientific

workflow can be computed with the help of which the

reproducible parts of workflow can be determined. From

this dataset, after viewing the results the user – before

finally submits his workflow – can think over the model,

he can modify it and can eliminate certain dependencies

or he can decide to apply extra provenance or

virtualization tools to preserve the workflow.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we investigated the necessary and
sufficient information about scientific workflows to make
them reproducible. We defined seven minimal datasets to
achieve our goal. These datasets target the documentation
of the experiment, the verification of workflows, the
reproducibility and the reusability of workflows. The
datasets - related to the whole workflow and to the
particular jobs - are filled in from three different sources:
the scientist, the system and the provenance database.
These datasets among others contain detailed information
about the operation of the experiment; description and
samples about input, partial and output data; and
environmental descriptors. In addition we specified
another dataset about jobs depending on external
conditions or non-deterministic factors, which can affect
or even prevent the reproducibility or reusability of
workflows. Based on this dataset our goal is to determine
the probability of reproducing workflow whether in a later
time it will give the same results.

The goal of the defined datasets is to propose a general
solution to support the user by the SWfMSs in creating
reproducible workflows. The dashboard approach
described in [22] aims to convince the researchers to start
using workflows extensively hiding the technical aspect of
workflows. Our future work is to support this concept
with our minimal sufficient information concept helping
the scientist to create reproducible workflow in an easy
way.

REFERENCES

[1] D. Koop, E. Santos, P. Mates, T.Vo Huy, P Bonnet, B. Bauer,
M.Troyer, D.N. Williams, J.E. Tohline, J. Freire, C.T. Silva, „A
Provenance-Based Infrastructure to Support the Life Cycle of
Executable Papers”, Internatioonal Conference on Computational
Science, ICCS 2011.

[2] A. Banati, P. Kacsuk, M. Kozlovszky, M. Four level provenance
support to achieve portable reproducibility of scientific
workflows. In Information and Communication Technology,

Electronics and Microelectronics (MIPRO), 2015 38th
International Convention on (pp. 241-244). IEEE.

[3] A. Davison, „Automated Capture of Experiment Context for
Easier Reproducibility in Computational Research”, Computing in
Science & Engineering, vol 14/ 4, pp. 48–56, july. 2012

[4] J. Zhao, J. M. Gomez-Perez, K. Belhajjame, G. Klyne, E. Garcia-
Cuesta, A. Garrido, K. Hettne, M. Roos, D. De Roure, és C.
Goble, „Why workflows break—Understanding and combating
decay in Taverna workflows”, in E-Science (e-Science), 2012
IEEE 8th International Conference on, 2012, o. 1–9.

[5] K. M. Hettne, K. Wolstencroft, K. Belhajjame, C. A. Goble, E.
Mina, H. Dharuri, D. De Roure, L. Verdes-Montenegro, J.
Garrido, és M. Roos, „Best Practices for Workflow Design: How
to Prevent Workflow Decay.”, in SWAT4LS, 2012

[6] http://fged.org/projects/miame/

[7] A. Brazma, P. Hingamp, J. Quackenbush, G. Sherlock, P.
Spellman, C. Stoeckert, M. Vingron, M. Minimum information
about a microarray experiment (MIAME)—toward standards for
microarray data. Nature genetics, 29(4), 365-371., 2011

[8] E. Kail, A. Bánáti, K. Karóczkai P. Kacsuk, M. Kozlovszky,
Dynamic workflow support in gUSE. In Information and
Communication Technology, Electronics and Microelectronics
(MIPRO), 2014 37th International Convention on (pp. 354-359).
IEEE.

[9] B. Ludäscher, I. Altintas, S. Bowers, J. Cummings, T. Critchlow,
E. Deelman, D. D. Roure, J. Freire, C. Goble, és M. Jones,
„Scientific process automation and workflow management”,
Scientific Data Management: Challenges, Existing Technology,
and Deployment, Computational Science Series, o 476–508, 2009

[10] P. Missier, S. Woodman, H. Hiden, és P. Watson, „Provenance
and data differencing for workflow reproducibility analysis”,
Concurrency and Computation: Practice and Experience, 2013

[11] R. D. Peng, „Reproducible Research in Computational Science”,
Science, köt. 334, sz. 6060, o. 1226–1227, dec. 2011

[12] J. P. Mesirov, „Accessible Reproducible Research”, Science, köt.
327, sz. 5964, o. 415–416, jan. 2010.

[13] D. De Roure, K. Belhajjame, P. Missier, J. M. Gómez-Pérez, R.
Palma, J. E. Ruiz, K. Hettne, M. Roos, G. Klyne, C. Goble, és
others, „Towards the preservation of scientific workflows”, in
Procs. of the 8th International Conference on Preservation of
Digital Objects (iPRES 2011). ACM, 2011.

[14] S. Woodman, H. Hiden, P. Watson, és P. Missier, „Achieving
reproducibility by combining provenance with service and
workflow versioning”, in Proceedings of the 6th workshop on
Workflows in support of large-scale science, 2011, o. 127–136.

[15] P. Groth, E. Deelman, G. Juve, G. Mehta, és B. Berriman,
„Pipeline-centric provenance model”, in Proceedings of the 4th
Workshop on Workflows in Support of Large-Scale Science,
2009, o. 4

[16] J. Freire, D. Koop, F. S. Chirigati, és C. T. Silva, „Reproducibility
Using VisTrails”, 2014. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download doi:10.1.1.369.9566

[17] F. S. Chirigati, D. Shasha, és J. Freire, „ReproZip: Using
Provenance to Support Computational Reproducibility.”, in TaPP,
2013.

[18] V. Korolev, A. Joshi, V. Korolev, M. A. Grasso, A. Joshi, M. A.
Grasso, D. Dalvi, S. Das, V. Korolev, Y. Yesha, és others,
„PROB: A tool for Tracking Provenance and Reproducibility of
Big Data Experiments.”, Reproduce’14. HPCA 2014, köt. 11, o.
264–286, 2014.

[19] D. Koop, J. Freire, és C. T. Silva, „Enabling Reproducible Science
with VisTrails”, arXiv preprint arXiv:1309.1784J. Cheney, A.
Finkelstein, B. Ludäscher, és S. Vansummeren, „Principles of
provenance (dagstuhl seminar 12091)”, Dagstuhl Reports, köt. 2,
sz. 2, 2012

[20] O. Belhajjame, K. Corcho, D. Garijo, J. Zhao, P. Missier, D. R.
Newman, R. Palma, S. Bechhofer, G. C. Esteban, J. M. Gomez-
Perez, G. Klyne, K. Page, M. Roos, J. E. Ruiz, S. Soiland-Reyes,
L. Verdes-Montenegro, D. De Roure, and C. Goble. Workflow-
centric research objects: First class citizens in scholarly discourse.
In Proceedings of the ESWC2012 Workshop on the Future of
Scholarly Communication in the Semantic Web, 2012.

[21] K. Belhajjame, J. Zhao, D. Garijo, M. Gamble, K. Hettne, R.
Palma, E. Mina, O. Corcho, J. M. Gómez-Pérez, S. Bechhofer G.
Klyne C. Goble, Using a suite of ontologies for preserving
workflow-centric research objects. Web Semantics: Science,
Services and Agents on the World Wide Web. 2015

APPENDIX A
DETAILED ENVIRONMENTAL DESCRIPTION OF A JOB (DEDJ)

type of code
Ontologi

term (OT)

compiler OT opt auto

number of necessary library text
the next fields depend on

answer

location of lib1 text

required application OT
the next fields depend on

answer

location of app (access path) text

access method of app OT

number of input port text
automatically, the next

fields depend on answer

arrival time of input on port1 text from prov

amount of received data on port1 text from prov

transfer time on this edge text from prov

transfer method OT

CPU requirements text from prov

RAM requirements text from prov

Disk requirements text from prov

number of VM requirements text
the next fields depend on

answer

Type of VM1 OT

OS on VM1 OT

CPU requirements of VM1 text

RAM requirements of VM1 text

Disk requirements of VM1 text

Number of Application on VM1 text
the next fields depend on

answer

number of special hardware

demand
text

the next fields depend on

answer

type of special hardware1 OT

method of access this hw OT

type of authentication to access this

hw
OT

number of third party service OT
the next fields depend on

answer

type of this service OT

method of access this service OT

type of authentication to this

service

third party data demand yes/no

method of access this data

amount of this data

execution time (makespan) from prov

start time from prov

waiting time in a queue from prov

deadline of execution text

http://fged.org/projects/miame/

[22] S. Gesing, M. Atkinson, R. Filgueira, I. Taylor, A. Jones, W.
Stankovski, C. S. Liew, A. Spinuso, G. Terstyanszky and P.
Kacsuk, Workflows in a dashboard: a new generation of usability.

In proceedings of 9th Workshop on Workflows in Support of
Large-Scale Science (WORKS), pp. 82-93. IEEE. 20144

