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Abstract. The One Click Cloud Orchestrator framework provides facilities to 

create and maintain virtual e-infrastructures, such as crowd or volunteer compu-

ting platforms, on various cloud systems. Complex service deployment and 

maintenance scenarios supported by such cloud orchestrators pose new chal-

lenges since software engineers and testers face (among others) the probe ef-

fect, the irreproducibility, the completeness problem, and also the large state-

space to be handled during the debugging phase.  In this paper, a highly auto-

mated debugging methodology, the ‘cloudified’ macrostep-by-macrostep con-

cept, is discussed focusing on the automatic generation of successive consistent 

global states for cloud based complex service deployment and maintenance 

processes. The paper outlines an on-demand crowd computing platform de-

ployment use case on an Infrastructure as a service (IaaS) cloud. The use case 

leverages on OCCO and its energy consumption evaluation is presented as one 

of top issues regarding e-infrastructure operation. 
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1 Introduction 

Infrastructure as a service (IaaS) cloud systems allow automated construction and 

maintenance of virtual infrastructures 1 applying the concept of virtual machines 

(VMs) as the fundamental building block. Thus, IaaS systems enable the creation, 

management and destruction of VMs but the current IaaS solutions barely manage 

multiple VMs or focus only on network management among multiple VMs. Recent 

research efforts were able to address and answer these issues with the cloud orchestra-

tor concept 23. On the other hand,  complex service deployment and maintenance 

scenarios of such cloud orchestrators still pose new challenges since software engi-

neers and testers must face (among others) the probe effect, the irreproducibility, the 
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completeness problem, and also the large state-space to be somehow handled during 

the debugging phase. 

For instance, it seems a given orchestrated cloud deployment scenario always gen-

erates correct results on a particular cloud platform or on a set of cloud platforms in 

hybrid and federated clouds (where the software engineers originally developed and 

deployed their services) but often fails on other cloud platforms operated by other 

IaaS  providers. Mostly, the reason for this behaviour is the varying relative speeds of 

deployment tasks together with the untested race conditions. The different timing 

conditions might be occurring more frequently on cloud-based platforms then on ded-

icated clusters or traditional supercomputers because of the different implementation 

of the underlying operating systems/communications layers and the unpredictable 

network traffic, CPU loads or other dynamical changes. The above described phe-

nomenon can be very crucial because one cannot ensure that the cloud based deploy-

ment always capture the same nodes with almost the same timing conditions in case 

of (re)deployment or VM failure. 

The only way to prove the cloud platform agnostic feature of complex deployment 

and maintenance strategies is to leverage on advanced systematic debugging methods 

in order to find the timing/architecture dependent failures in the designed deployment 

description and orchestrator. For this purpose I applied and also extended the 

macrostep-based systematic debugging methodology that has been introduced origi-

nally for message passing parallel programs developed in the P-GRADE graphical 

programming environment 4. The experimental prototype is designed for the One 

Click Cloud Orchestrator 5 (OCCO) framework and the presented work partly relies 

on the achievements related to the HARNESS metadebugger 6. Thus, the presented 

work attempts to overcome the limitation of existing debugging solutions 78910 and 

extend some advanced debugging methods from parallel and distributed systems to-

wards IaaS clouds.  

In this paper, a highly automated debugging methodology and an experimental 

toolset are discussed focusing on the automatic generation of successive consistent 

global states for cloud based complex service deployment and maintenance, called 

cloudified macrostep-by-macrostep. The second part of the paper outlines an on-

demand crowd computing platform deployment use case and example for OCCO with 

energy consumption evaluation on an IaaS cloud.  

2 Background: One Click Cloud Orchestrator 

This section gives a short overview of the OCCO components (see Fig. 1) that allow 

the creation and fault tolerant maintenance of virtual e-infrastructures, such as crowd 

computing platforms (see Section 5), capable of hosting various applications. In order 

to achieve its goals, OCCO contains two kinds of components: (i) end user oriented 

components, (ii) components focusing on the definition and inspection of ever-

evolving virtual e-infrastructures. 

The end user oriented components are the template store and the notification ser-

vice. With the template store, OCCO allows virtual e-infrastructure designers to cre-



 

 

ate such infrastructure descriptions that are easily customizable by end users (opera-

tors) and also capable to describe the peculiarities of virtual e-infrastructures at the 

same time. With the exception of the customization options, we will not discuss fur-

ther the details of the virtual e-infrastructure description as it is out of scope. The 

customization options are specified in the description as hints attached to the attrib-

utes that the user should be able to change. The other user oriented component of 

OCCO is the notification service, that plays crucial role after the infrastructure is 

customized by the user and its creation is requested from the virtual e-infrastructure 

management related components. The notification service enables automated reac-

tions to particular infrastructure maintenance related activities, e.g., when the infra-

structure first becomes available or when it has scaled to allow higher processing 

power or availability. 

 

Fig. 1. High level overview on OCCO virtual e-infrastructure management components 

The components actually managing the virtual e-infrastructures for the end user 

(see Fig. 1): (i) Automated Infrastructure Maintenance, (ii) Infrastructure Processor, 

(iii) Cloud Handler, (iv) VM Reshaper, and (v) Information Dispatcher. 

The Automated Infrastructure Maintenance component is responsible for under-

standing the customized deployment descriptors. But this component does not only 

provide the descriptor processing capabilities but it also offers dependency resolution 

(so the nodes of the particular instantiated infrastructures are instantiated in the proper 

order), scalability and error resilience rule evaluation and enactment. Therefore, the 

end user does not have to intervene in its infrastructure’s internal operations.  

The Infrastructure Processor component of OCCO is used to ensure that the defini-

tions of the infrastructure nodes are propagated to the VM Reshaper, which allows 

runtime reconfiguration of a virtual machine to meet a particular node description. In 

addition, the Infrastructure Processor sends such virtual machine requests to the 

Cloud Handler that ensures the intended role of the VMs after their creation. Next, the 



Cloud Handler is responsible of selecting a cloud infrastructure that will host a partic-

ular VM, and interfacing with the cloud infrastructure provider. 

Finally, the Information Dispatcher component allows the Automated Infrastruc-

ture Maintenance component to determine the current state of the e-infrastructure to 

be used during the scaling and error resolution rule evaluation process. 

The next sections will show how Infrastructure Processor component can be con-

trolled when the new macrostep based debugger is in action. 

3 Problems arising during orchestration 

The following diagram (see Fig. 2) illustrates a part of the OCCO in use; the Auto-

mated Infrastructure Maintenance, the Information Dispatcher, and the Infrastructure 

Processor together with the introduced cloudified macrostep debugger. In the exam-

ple, there is a 4-VM basic deployment with A, B, C, D nodes in the dependency graph 

defined in the Infrastructure Deployment Descriptor where node C is scalable accord-

ing to the user or performance/availability needs. Macrosteps 1-3 are the major phases 

of deployment (see the definition of macrosteps later) and Step 3’ shows a VM crash 

with automatic recovery in Macrostep 4 as a part of maintenance phase. Finally, in 

Macrostep 5 two more nodes are launched (also in the maintenance phase). 

 

Fig. 2. Selected OCCO components with the cloudified macrostep debugger in use   

It is easy to imagine a real-life situation when one has to take into consideration the 

large number of mostly concurrent notifications, particularly for synchronisation and 

information exchanging purposes,  that are required among the individual processes in 

the Infrastructure processor dealing with the (re)deployment of VMs individually in a 

more complex scenario. 

The following issues make debugging of cloud deployment and maintenance much 

more difficult than traditional sequential debugging: 



 

 

1. To address the problem of the large number of hierarchical deployment steps with 

dependencies and dynamic changes of the deployment, since the replacement of a 

node (due to a crashed or unreachable VM) may require e.g. VM reshaping of its 

neighbour VMs,  

2. The non-deterministic behaviour of cloud environment makes the actual behaviour 

of the deployment dependent on actual speed of the individual VM deployments 

due to the distinct CPU speeds, varying operating system and hypervisor effects, 

and unpredictable I/O and communication delays in the heterogeneous and ever-

changing cloud environment. It requires the OCCO distributed debugger to provide 

facilities to detect those situations, and to help the software developer somehow 

evaluate correctness properties based on the deployment specification for various 

possible execution timings during the debugging phase. It also required techniques 

to allow reproducible and coherent observation of such error situations. 

3. Constructing consistent global states must be also considered in general because 

the evaluation of erroneous situations depends on accurate observations. In general, 

the accurate observation can only be approximately achieved in any distributed 

system, by remote observation due to the absence of global system states. To solve 

this problem, OCCO distributed debugger provides strategies for the observation of 

consistent deployment and maintenance states leveraging on the cloudified 

macrostep-by-macrostep execution (see the details in Section 4). 

4. Probe-effect due to the observation and control mechanisms is a well-known phe-

nomenon: any observation may affect the system. Therefore, the OCCO debugger 

relies on techniques that give efficient control over occurring race conditions and 

time-dependent circumstances; the debugger is able to gain detailed information 

about the structure (dependencies) of deployment steps/inter-VM notifications.  

In order to handle these problems in different debugging sessions, I present the de-

scription for a novel, automatic generation of successive global consistent states, 

called cloudified macrostep based deployment execution in the next section.   

4 Solution: Cloudified macrostep based deployment 

The fundamental ideas of the further developed macrostep debugging methodology 

can be summarized by the following concepts:  

1. cloudified collective breakpoints,  

2. enhanced macrosteps,  

3. cloudified macrostep-by-macrostep deployment mode,  

4. deployment execution tree,  

In the rest of this section, these concepts are described as well as some implemen-

tation issues. 

The fundamental aim of cloudified macrostep-based deployment is the generation 

of consistent cuts (or global states) for orchestrated deployments and maintenance in 

OCCO. The idea of cloudified macrostep is based on the concept of collective break-



points; a collective breakpoint consists of a finite number of single breakpoints placed 

in different (deployment) processes, and the collective breakpoint is hit if all the 

breakpoints belonging the collective breakpoint are hit. 

Fig. 3 shows a complex, synthetic example for illustration purposes with several 

collective breakpoints such as NAR
1
1- NAS

1
2- NAS

1
3- NAR

1
4, which are placed on the 

inter-VM notification primitives related to sender (NAS), receiver (NAR) or alterna-

tive/collective receiver (NACR) methods in each VM deployment process in the In-

frastructure processor component of OCCO. These inter-VM notifications are typical-

ly synchronised actions, and indexed by the corresponding VM deployment process 

number (lower index) and a serial number (upper index) in Figure 3. The set (region) 

of executed lower level deployment steps between two consecutive collective break-

points is called a macrostep. A detailed generic definition of macrostep is given in 

1112. 

 

Fig. 3. Illustration for macrostep based execution of complex deployment with inter-VM notifi-

cations 

A single breakpoint of the collective breakpoint is called active if it was hit in a 

macrostep and its associated inter-VM notification can be completed (e.g. see NAS
2
2 

in Fig. 3). On the other hand, a breakpoint is called sleeping if it was hit in a collec-

tive breakpoint but its associated notification cannot be completed during the next 

macrostep thus, it will be a part of the next collective breakpoint. For example, a send 

instruction (NAS
2
1) of a given VM deployment process (VM1) wants to notify anoth-

er VM deployment process (VM4) synchronously, but it is communicating (engaged) 

with a 3
rd

 VM deployment process (VM3). That is why, the breakpoint placed at 

NAS
2

1 operation is a sleeping breakpoint and can be found in the next collective 



 

 

breakpoint. Similarly to this, NAR34’ is also a sleeping breakpoint, since it must wait 

for NAS
4

5 . 

Please note that in this example the VM4 crashed (or became unavailable) between 

M1 and M2, therefore the NAS
1
3- NAR

1
4 notification must be replicated in macrostep 

M2 with  NAS
2

3- NAR
2
4’ . 

The cloudified macrostep-by-macrostep deployment mode of orchestrated cloud 

service deployments can be defined as follows; in each macrostep every VM deploy-

ment process is forced to run until a collective breakpoint is hit. Thus, the boundaries 

of the macrosteps (see Fig. 3, M1, M2, …) are defined by a series of global breakpoint 

set, and the consecutive consistent global states of complex deployment are generated 

automatically. 

At replay, the progress of VM deployments is controlled by the stored collective 

breakpoints and the orchestrated deployment is automatically executed again 

macrostep-by-macrostep as in the original deployment phase.  

In order to ensure the correct replay, according to the original macrostep concept 

the debugger should store the history of collective breakpoints, the acceptance order 

of messages at alternative/collective receiver actions and the external input parame-

ters. 

 Additionally, in the cloud environment the debugger also stores the details about 

the events corresponding to reconfigurations; when e.g. a new VM is deployed, re-

leased or failed anywhere in the cloud as well as the versions of packages used for 

updating the VMs by the VM reshaper component in OCCO. To handle the dynamic, 

elastic and fault tolerant behaviour of OCCO based systems, the basic concept is the 

following. During the initialisation the macrostep debugger it places some so-called 

‘system breakpoints’ in the OCCO Infrastructure Processor (see Fig. 2) in order to 

detect all changes/reconfiguration of deployment in advance.  

At replay, the progress of deployment tasks are controlled by the stored collective 

breakpoints, reconfiguration events, and stored versions of external applied packages, 

then the deployment and maintenance are automatically executed again macrostep-by-

macrostep as in the original deployment phase. The debugger is also responsible for 

grabbing/releasing VMs with the help of Cloud Handler in OCCO (if it is needed). 

The deployment execution path is a graph whose nodes represent the boundaries of 

macrosteps (i.e. consistent global states) and the directed arcs indicates the possible 

macrosteps (i.e. the possible state transitions between consecutive global states). The 

deployment execution tree is a generalization of the deployment execution path; it 

contains all the possible deployment execution paths of an orchestrated deployment 

assuming that the non-determinism is inherited either at the notification actions at 

alternative/collective receiver side (NACR) or a random failure of an arbitrary set of 

VMs. Nodes of the deployment execution tree can be of four types: (i) Root node, (ii) 

Alternative nodes, (iii) Deterministic nodes, (iv) Termination node. 

Breakpoints can be placed at the nodes of the deployment execution tree. Such 

breakpoints are called deployment meta-breakpoints. The role of deployment meta-

breakpoints is analogous with the role of the breakpoints of sequential programs. A 

breakpoint in a sequential program means to run the program until the breakpoint is 

hit. Similarly, a deployment meta-breakpoint at a node of the deployment execution 



tree means to place the collective breakpoint belonging to that node and run the de-

ployment until the collective breakpoint is hit. Replay guarantees that the collective 

breakpoint will be hit and the deployment will be stopped at the requested node. 

Testing can be also supported by traversing exhaustively the deployment execution 

tree with all the possible execution paths in it. Therefore, the deployment execution 

tree represents a search space that should be explored completely using injections of 

various combinations of VM errors systematically. Accordingly, systematic testing 

and debugging of an orchestrated IaaS deployment require (i) generation of its de-

ployment execution tree (ii) exhaustive traverse of its deployment execution tree. 

With the help of the cloudified macrostep-by-macrostep concept both of these issues 

can be solved and implemented in a similar way as they have been implemented in 

DIWIDE 11. 

5 Experiments: Energy efficient crowd computing e-

infrastructure with OCCO  

This section addresses the testing of OCCO further and performing different analysis 

with an on-demand demonstration platform for crowd computing purposes. 

 

Fig. 4. OCCO complex test case: BOINC based crowd computing platform with cloud burst 

and science gateway 

The infrastructure template is aimed at providing a distributed computing infra-

structure (DCI) for crowd computing with a science gateway attached as a workflow-

based frontend. The DCI is implemented by a BOINC 13 based SZTAKI Desktop 

Grid 14 with a molecular docking simulator. As an extra functionality, the BOINC 

project is associated with a public IP address, therefore the home or PC lab computers 

from university campuses may also attach external BOINC clients to the server. Using 

automatically deployed and configured BOINC clients in VMs, the deployed compu-

tational resources are able to automatically join a BOINC project. The number of 



 

 

clients can be customized in the descriptor template. Computing jobs arrive to the 

BOINC project as work units (WUs) with the help of the gUSE science gateway and 

bridge 15 that are also automatically deployed additionally to the DCI. Overall, the 

demonstration system shows how a complete gateway, bridge together with a partly 

virtualized and operational BOINC e-infrastructure can be deployed on the SZTAKI 

cloud by OCCO and how the components attach to each other (see Fig. 4). 

The energy consumption is always an issue when one talks about crowd (or volun-

teer) computing involving resources from the enterprises/institutes or home users. 

SZTAKI Desktop Grid team performed measurements about the effect of crowd com-

puting applications on the power consumption of the cloud that hosts the BOINC 

server with its workers (clients) using One Click Cloud Orchestrator. 

The scenario addresses the use case when a given number of workunits of the ap-

plication are executed on a cloud environment in order to handle QoS related prob-

lems (e.g. the longtail effect) of the crowd computing applications 16. 

The experiments were carried out on the OpenNebula (version 4.2.0) based 

SZTAKI Cloud. The compute nodes in the cloud are heterogeneous (8 to 64 CPU core 

machines), interconnected with 4x10 GbE/48x1GbE switch, and a 32 TB high per-

formance iSCSI storage. The 1 or 2 RU high servers are built in a rack, and two inde-

pendent power sources serve the 24/7 operation of the cloud with one PowerWare 

9155 UPS and one PowerWare 9130 UPS. Both UPS devices provide high level mon-

itoring facilities that have been used during the experiment via SNMP. For gathering, 

aggregating, and visualising the monitored data from the UPS devices and from the 

cloud system itself the SZTAKI Desktop Grid team used Zabbix version 2.0.3. 

 

Fig. 5. Power consumption (red) and number of running BOINC clients (green) 

In the experiment 32 BOINC clients (with 1 virtual CPUs and 512 MB RAM for 

each client) have been launched through the EC2 interface of the cloud using OCCO. 

The clients attached to the BOINC server and executed continuously the application 

in a 4-hour timeframe. 

As it can be seen in Fig. 5 the 32 BOINC clients increased the average power con-

sumption from the 5325 Watt to the level of 5550 Watt. It means approximately 225 

Watt extra consumption for the 32 BOINC clients, i.e. 7 Watt per client. However, it 

is more interesting that the 32 clients caused only 4.2% increase in the overall power 



consumption contrary to the approximately 33% higher CPU utilisation of the entire 

cloud (including some overhead e.g. from the cloud hypervisor system); the number 

of CPU cores increased from the level 20s to the level of 80s from the available 182 

CPU cores shown on Fig. 6. 

 

Fig. 6. Total number of CPU cores in the cloud vs. used CPU cores 

6 Related and future work 

In general, cloud providers do not offer high level and advanced debugging facilities 

to their user that are similar to the described macrostep based concept. There are some 

related attempts for HPC applications 7 but the typical example is the remote cloud 

debugging 8 feature for Windows Azure Cloud Services 10 that can be considered the 

most basic functionality of all distributed debugger. Another example is the Cloud 

Debugger 9 from Google, where the creation of snapshots is allowed to the software 

engineers for Java applications but not for multiple, orchestrated VMs. 

Concerning the future work; the time and resource requirements of the exhaustive 

debugging can be decreased by magnitude of orders when debugger takes the ad-

vantage the large number of resources included in cloud environment by starting more 

(even hundreds) test scenarios at the same time with different deployment execution 

paths. However, due to the combinatorial explosion of the deployment execution tree 

the complete exhausted testing and the elimination of all defects of a real size cloud 

deployment scenario is still impossible even with simultaneous discovering of de-

ployment execution paths using large-scale cloud platforms. Hence, the debugging 

and testing phases must be stopped at a certain point, where the quality parameters of 

the deployment are reliable enough to release it as a beta or a final version. Including 

the widespread Rayleigh model in the proposed solution is a good candidate for the 

estimation of error density. 

 Moreover, to improve the efficiency of macrostep-based debugging methodology, 

two well-funded model checking techniques have been already introduced in parallel 

debugging, such as simulation of program by its coloured Petri-net model, and pro-

gram verification using temporal logic specification 12. The adaptation of these for-

mal methods into the OCCO debugger in order to steer the debugging session towards 



 

 

suspicious situations and detect bugs automatically would help significantly reduce 

the necessary user interactions.  
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