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Abstract. Two recent retinal blood vessel (RBV) segmentation algorithms were 
evaluated on fundus images taken of healthy retinas and retinas affected by 
retinal vein occlusion (RVO) in a pilot study intended to lead firstly towards a 
joint disease-specific segmentation algorithm evaluation effort, and secondly, to 
setting up a comprehensive RBV segmentation palette and knowledge-base. In 
the pilot study, overall fractal properties of segmented RBV networks were 
computed and compared. For segmentation, the aforementioned two algorithms 
were used. Based on our results, the fractal properties of the identified RBV 
networks are seen as promising in quantifying the pathological stages and the 
types of RVO. Our results suggest that both considered segmentation algorithms 
lead to usable RBV segmentations. 

Keywords: Computer-aided medical diagnosis systems. Retinal blood vessel 
segmentation algorithms; Retinal vein occlusion; Fractal analysis;  

1   Introduction 

The shape and the morphological characteristics of patients’ retinal vascular networks 
– as seen via some viewing device by ophthalmologists, or as imaged using various
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imaging modalities with ophthalmic diagnostic devices during examinations – convey 
a wealth of eye- and sight-related diagnostic information, as well as general 
diagnostic information to ophthalmologists about their patients [1] and [2].  

This information can be extracted, processed and utilized by computer-based 
diagnosis and measurement systems to produce quantitative diagnostic data that 
facilitate the medical diagnosis [3]. Nowadays, the quantitative analysis of the retinal 
vascular networks is mostly carried out by multi-stage diagnosis software – [4] and 
[5] – incorporated in computer-based diagnosis and measurement systems. The 
identification – i.e., segmentation – of the retinal vascular network is carried out in 
one of the first stages of the analysis.  

Improving blood vessel segmentation methods used for the purpose is a prime 
target of intensive research and experimentation. The invested research effort is 
indicated by the large number of publications by the members of the medical imaging 
community [6]. Some concrete retinal blood vessel (RBV) segmentation methods and 
their diagnostic utility will be touched upon in Subsection 1.2. 

In the present paper, certain overall fractal properties of vascular networks found – 
and imaged in vivo with fundus cameras – in healthy retinas and in retinas with vein 
occlusion are computed and compared. Fractal analysis concepts and fractal-based 
approaches used in the characterisation of retinal vascular networks are touched upon 
in Subsections 1.3 and 1.4, respectively.  

For the identification of the branching image regions – within the images taken 
with the fundus cameras – corresponding to the retinal vascular networks, i.e., to 
produce the vascular binary maps, or in other words, for the RBV segmentation, the 
algorithms outlined in Subsections 2.1 and 2.2, respectively, were used. 

Many known pathologies change the morphological characteristics of the retinal 
vascular networks considerably, see e.g., [7] through [9], [35] and [39]. One of these 
is the retinal vein occlusion (RVO) disease. RVO is a frequent cause of visual loss, 
particularly amongst older people. RVO retinas were chosen – for the purpose of this 
evaluation –as an archetype of the vascular morphological change. RVO is briefly 
described and categorised in Subsection 1.1.  

The evaluation presented herein should be seen as part of a comprehensive disease-
specific vascular segmentation algorithm evaluation effort that is expected to establish 
a disease-specific RBV segmentation palette and a related knowledge-base. This 
specialized palette will enhance and will be used in conjunction with the generic RBV 
segmentation methods known from the literature. 

1.1 Retinal vein occlusion 

Retinal vein occlusion (RVO) is an important cause of visual loss among older adults 
throughout the world [10]. This condition is the second most common cause of vision 
loss amongst the cases directly related to some retinal vascular disease (with diabetic 
retinopathy being the most common one).  

RVO is classified according to where the obstruction appears. Obstruction of the 
retinal vein at the optic nerve is referred to as central RVO, while obstruction at a 
branch of the retinal vein is referred to as branch RVO. These forms have many 



differences and many commonalities in their pathogenesis and in their clinical 
presentation [11].  

Despite many proposed medical interventions, there are no treatments known to 
reopen occluded retinal veins in the clinical practice [12]. Treatments are, therefore, 
aimed at the secondary, vision-threatening complications of this condition. These 
complications include macular edema, retinal neovascularization, and anterior seg-
ment neovascularization. 

1.2   Retinal Blood Vessel Segmentation Methods 

Automatic identification and analysis of retinal vasculature, see e.g., [13] through 
[18], can assist medical personnel with repeatable quantification of vascular features 
[19] and [20], lesion detection [21] and [22], establishing links between retinal and 
cerebral vasculature [23], and modelling the variability of clinical judgement [24]. 
Unsupervised methods known from the literature are based on matched filters [25], 
grouping of edge pixels [26], adaptive thresholding [27], vessel tracking [28] and 
morphological techniques [7], [29], [30] and [46].  

Further methods are cited in Subsections 2.1 and 2.2 in conjunction with the 
concrete RBV segmentation methods used herein. 

1.3 Fractal analysis concepts  

In fractal analysis, the box-dimension – computed via the box-counting – is the most 
common method used to estimate the fractal dimension. The lower and upper box-
counting dimensions of a subset, respectively, are defined in [50]1 as follows:  
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If the lower and upper box-counting dimensions are equal, then their common 
value is referred to as the box-counting dimension of F and is denoted with 
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where N (F) can be of the following: (i) the smallest number of closed “balls” (i.e., 
disks, spheres) of radius  > 0 that cover F; (ii) the smallest number of cubes of side  
that cover F; (iii) the number of -mesh cubes that intersect F; (iv) the smallest 

1 There are numerous examples and applications related to fractal analysis in the cited book. 
The book features numerous instructive figures and diagrams that help to grasp the meaning of 
fractal analysis concepts and methodology. 



number of sets of diameter at most  that cover F; (v) the largest number of disjoint 
“balls” of radius  with centres in F.  

In practice, the fractal analysis relies on the experimental and methodological 
parameters related to diversity of objects, homogeneity of the image acquisition, types 
of images considered, whether further processing is required, or not. 

1.4 Fractal Properties of the Retinal Vascular Networks 

The morphogenesis of the human retinal vascular network can be modelled as a 
diffusion-limited aggregation process [31]. The structures produced by such processes 
appear in apparently unrelated areas. In many cases, these areas are connected only by 
the common diffusion processes working in the background.  

The diffusion-limited aggregation processes tend to build up branching structures 
exhibiting fractal characteristics (e.g., self-similarity at low resolutions) [32]. Accord-
ing to investigations reported in [31] and [33], the fractal dimension of the vascular 
network in a healthy human retina is about 1.7. 

Among the morphological methods utilized in ophthalmic measurements and 
diagnosis for detecting and segmenting the vascular network of the human retina – 
these include the methods referred to in Subsection 1.2 – various fractal-based 
methods were also applied for the purpose, e.g., [34] and [35]. Such methods were 
used in the detection, the description and the diagnosis of various vascular and non-
vascular pathological conditions, see [35] and [36].  

Despite the agreement concerning the fractal dimension of healthy retinas, there is 
no consensus regarding the fractal dimensions of vascular networks in human retinas 
affected by particular pathological disorders, see [35] through [38]. 

The human retinal vascular network was also found to have a multifractal 
morphological structure [22] and [39]. Similarly to the wider known fractal analysis, 
multifractal analysis was applied to the assessment of the branching geometry and the 
pattern complexity, and for quantifying and detecting retinal vascular diseases and 
symptoms [8] and [37]. 

2 Segmentation methods evaluated in this study 

As it was stated in the Introduction, two recent methods were used in the pilot study 
presented herein for the purpose of RBV segmentation in retinal fundus images. 

2.1   Method A  

In this subsection, the first of the methods mentioned above will be outlined. For 
simplicity, this method will be referred to as method A. The method was proposed 
and is fully described in [40], herein it is summarised for the readers’ convenience.  

Method A is a RBV segmentation method that produces a vascular binary map of 
the retinal fundus image used as input. It makes use of directional response vector 



similarity and carries out region growing. While there are many directional and 
multiscale methods known from the literature, the manner in which the directional 
responses are used in method A distinguishes it from the state-of-the-art. For instance, 
many RBV segmentation methods – including [41] through [43] – rely on either the 
maximal, or some aggregated (e.g., summed, or averaged) responses to directional 2D 
filters at each pixel; on the other hand, method A, as well as the method proposed in 
[44], store and handle all the directional responses in a vector for each pixel.  

Method A is in essence a purpose-made region growing procedure – making use of 
the well-known hysteresis thresholding technique – applied to the response vector 
similarities of adjacent pixels within the fundus image.  

During processing an RBV score map is created and used by the method. The score 
map is a pixelwise combination of various statistical measures of the response 
vectors. The local maxima of the score map provide seeds for the region growing 
procedure. A nearest neighbour classifier – based on a rotation-invariant response 
vector similarity measure – is used to eliminate uncertain seed points. 

Many techniques that capture the Gaussian-like cross-section of blood vessels give 
high responses to the abrupt intensity transitions at the boundary of the optic disc and 
bright lesions. To overcome this drawback, method A applies a symmetry-constrained 
multiscale matched filtering technique. 

The correlation-based similarity metric for directional response vectors and the 
classifier setup used in method A are novel in the field of retinal image analysis, while 
its region growing scheme could well be used in other application fields, as well.  

 
 

  
 

Fig. 1. Retinal fundus image of a left eye with normal blood vessel network. From left to right: 
the original image, the segmented image and its skeletonised version. For the vascular 
segmentation, method A was used. 
 

Method A was tested on the publicly available DRIVE [51] and STARE [52] 
retinal image sets. The experimental results presented in [40] show that its sensitivity 
– particularly at the diagnostically important low false-positive rates – is close to that 
of a human observer, and is competitive with that of other state-of-the-art vessel 
segmentation techniques. 

The method is computationally effective, and therefore well-suited for real-time 
computer-aided diagnosis applications. It is particularly so, if the host computer 
system is equipped with appropriate parallel computing resources, as the 
computationally most critical processing steps of the method are implemented with a 
view on parallel execution. 



2.2   Method B 

The second RBV segmentation method used and evaluated herein – again producing a 
binary blood vessel map for the input fundus image – is described fully in [45]. The 
method will be referred to as method B in the rest of the paper. It is summarised in 
this subsection to make the paper more readable and standalone. 

Method B is based on directional response vector similarity and region growing. 
The response vector is calculated via template matching carried out with generalized 
forms of Gabor functions. Unlike other methods that use matched Gabor filtering with 
only a few specific Gabor filters, e.g., the method proposed  in[15], method B relies 
on a large set of such templates in modelling various parts of the retinal vascular 
system. 

A number of novel solutions were used in method B. Firstly, in order to reconstruct 
the original distribution of vessel widths, the results of the individual template 
matching and region growing steps are unified. Secondly, the problem of false RBV 
detections near bright lesions and other bright areas is explicitly addressed. Thirdly, 
the edges of the raw segmentation results are refined to mimic the local characteristics 
of blood vessel edges identified manually. Furthermore, method B explicitly 
addresses the issue of thin vessels.  

Due to these novel solutions, method B outperforms the majority of published 
methods in respect of the widely used public retinal image-bases, and features better 
RBV segmentations – on average – than the second best (non-expert) human operator 
in respect of the mentioned image-bases. 

Fig. 2. The retinal image – same as the one shown in Fig. 1 – is segmented and skeletonized. 
For the vascular segmentation, method B was used. 

For the quantitative evaluation presented in [51], the method was trained on images 
from the DRIVE database – the only public database that has a well-specified training 
set – and was evaluated on the test images of the database, as well as on all the images 
of the STARE [52] and HRF [53] databases. Even though the images of the latter 
databases were taken by different devices and under various circumstances, further-
more, they differ in size from the training images, the results achieved by method B 
are competitive with that of other techniques trained and evaluated on disjoint subsets 
of the latter databases.  

Method B is fairly robust against unexpected inputs. This feature makes method B 
a possible building block of retinopathy screening systems. On the other hand, its 



novel solutions can be integrated into other existing vessel segmentation methods to 
improve their accuracy.  

3 Evaluation of the Methods 

In this section, the retinal fundus images used in the evaluation, the details of the 
evaluation procedure, the results gained from it and the discussion of the results are 
presented. 

3.1 Images used in the evaluation 

The fundus images presented here were taken of retinas of patients – with their 
explicit and informed consent – treated at the Ophthalmological Clinic in Cluj-
Napoca in 2009. The images were anonymised by the authorized personnel of the 
clinic as part of a pharmacological research project concentrating on acute central and 
hemi-central RVO’s [47]. The images were captured by a Zeiss VISUCAM fundus 
camera using a 45° field-of-view. 

3.2 Evaluation procedure 

Fractal analysis was performed in conjunction with the segmented images and their 
skeletonized versions of a number of retinal images taken as explained in the previous 
subsection.  
 
 

   
 

Fig. 3. Retinal fundus image of an eye affected by hemi-central RVO. From left to right: the 
original image, the segmented image and its skeletonized version. For the vascular 
segmentation, method A was used. 
 

The retinal images presented herein correspond to a healthy cornea (Figs. 1 and 2) 
and to corneas affected by different types of the RVO disease (Figs. 3 - 8). For each 
cornea, the original image, its segmented versions (i.e., version 1: segmented using 
method A, and version 3: segmented with method B) and its skeletonised versions 
(i.e., version 2: the original image segmented with method A and skeletonised 
thereafter, and version 4: the same image segmented with method B and skeletonised 



thereafter) are presented. The fractal analysis of the segmented/skeletonized images 
was carried out using the box-counting algorithm, which was explained in Subsection 
1.3. The skeletonising was accomplished and fractal dimensions of the identified 
retinal vascular networks were computed with the Image J software [48] augmented 
with the FracLac plug-in [49]. The fractal dimensions computed for the identified 
(i.e., segmented, or skeletonized) retinal vascular networks are collated in Table 1. 

Fig. 4. The retinal image – same as the one shown in Fig. 3 – is segmented and skeletonized. 
For the vascular segmentation, method B was used. 

For the fractal analysis, the following options and settings were used in conjunction 
with the aforementioned software configuration: a) 10 grid positions were used; b) 
grid calibers were computed using default box sizes. The range of box-sizes used for 
the fractal dimension calculation was between 2 pixels and 45 % of the length 
corresponding to the shorter side of the region-of-interest.  

Table 1.  The fractal dimensions computed for the identified (segmented or skeletonized) 
retinal vascular networks shown in Figs. 1-8. 

Segmented 
with method 

A 

Skeletonized 
version (for 
method A) 

Segmented 
with method 

B 

Skeletonized 
version (for 
method B) 

Normal 
retina shown 

in Figs. 
1 & 2 

1.6048 1.5185 1.5998 1.4973 

Hemicentral 
RVO retina 
shown  in 

Figs. 3 & 4 

1.4741 1.4299 1.3768 1.2961 

Central 
RVO retina 
shown  in 

Figs. 5 and 6 

1.5790 1.5385 1.4469 1.3637 

Branch RVO 
retina shown  

in Figs. 7 
and 8 

1.5806 1.5243 1.4852 1.4074 



3.3 Results and Discussion 

The images presented herein were selected from a considerably larger set of images 
(see detail in Subsection 3.1) by our ophthalmologist co-authors. No manual RBV 
segmentation of the images has been carried out due to time limitations. Therefore, at 
this stage we cannot compare the computed fractal dimensions presented in Table 1 to 
that of the RBV segmentations created by experts. What we can still do is to take 
these values as morphological features characterising retinas either affected, or not by 
certain RVO and look at how well these values separate the cases considered. 

As in other papers presenting fractal analysis results for retinal vascular networks, 
see e.g., [34] through [38], both the segmented and skeletonized images are processed 
and evaluated.  

The fractal dimensions of skeletonised RBV network tend to be lower than that of 
the corresponding segmented networks (which have not been skeletonised). This rule-
of-thumb holds also for the fractal dimensions presented in Table 1. It is therefore 
more interesting to look at the differences showing up in the fractal dimensions of 
RBV network identified with different algorithms (i.e., by the methods A and B).  

Fig. 5. Retinal fundus image of an eye affected by central RVO of non-ischemic type. From left 
to right: the original image, the segmented image and its skeletonized version. For the vascular 
segmentation, method A was used. 

Fig. 6. The retinal image – same as the one shown in Fig. 5 – is segmented and skeletonized. 
For the vascular segmentation, method B was used. 

Clearly, there is no significant difference in fractal dimensions – computed for the 
retinal images segmented by methods A and B – in case of the presented healthy 



retina. There are, however, perceivable differences present in case of retinas affected 
by RVO. The biggest difference in fractal dimension is for the retina – shown in Figs. 
5 and 6 – affected by central RVO. Similar tendencies can be identified both for the 
segmented and the skeletonised corneas, therefore, it does not really matter whether 
one looks at the corresponding segmented RBV networks (segmented by methods A 
and B, respectively), or at the corresponding skeletonised networks (which had been 
segmented earlier by methods A and B, respectively). So, for example, the biggest 
difference in fractal dimension occurs for the same retina (i.e., the one affected by 
central RVO) if one considers the skeletonised versions of the images. 

Fig. 7. Retinal fundus image of an eye affected by branch RVO. From left to right: the original 
image, the segmented image and its skeletonized version. For the vascular segmentation, 
method A was used. 

Fig. 8. The retinal image – same as the one shown in Fig. 7 – is segmented and skeletonized. 
For the vascular segmentation, method B was used. 

The fractal dimensions computed as detailed above seem to be useful in separating 
the various types of RVO. In this respect, method B performs better than method A 
does (at least in respect of the retinal images considered and presented herein), as the 
former method produces a wider gap between the fractal dimension of the central 
RVO retina’s RBV network (see Fig. 6) and that of the branch RVO retina’s RBV 
network (see Fig. 8) than the latter method does between the fractal dimensions of the 
corresponding RBV networks, i.e., the ones presented in Figs. 5 and 7, respectively. 

In our view, a regional approach – such as used and presented in [39] – would 
considerably improve the quality of the characterization in respect of the various 



stages and the various types of the RVO, and would ensure a better separability 
between these stages and types.  

Further improvement could be achieved in the above characterisation using 
multifractal-based approaches, such described in [8], [37] and [39] in conjunction 
with other eye conditions. Such approaches could work well, as the RBV networks 
can be – and in case of the RVO images presented herein clearly they are – 
morphologically very inhomogeneous.  

4 Conclusions 

In the paper, two recent RBV segmentation algorithms were evaluated on fundus 
images taken of healthy retinas and retinas affected by RVO. As no manual RBV 
segmentation of the images was carried out, only the vascular maps produced by the 
two RBV segmentation algorithms outlined in Subsection 2.1 and 2.2, respectively, 
were used. Both algorithms lead to usable RVB segmentations. The overall fractal 
dimensions of the segmented RBV networks were computed and compared.  

The fractal dimensions seem to be useful in quantifying the types of RVO. In this 
respect, method B performs better than method A does (at least in respect of the reti-
nal images considered and presented herein). The small number of cases considered, 
however, prevents statistical conclusions. Nevertheless, the presented cases and 
results suggest that an evaluation involving a much larger data set of images of retinas 
affected with RVO is definitely worth doing. Such an extended evaluation should 
cover both the various stages and the various types of RVO and make use of RBV 
segmentation created by experts. 

In our view, a regional approach would definitely improve the quantification and 
separability of the RVO cases. Also, the multifractal-based characterisation should be 
utilized for the purpose, as the RBV network can be morphologically very inhomo-
geneous, particularly in case of RVO cases. 

The presented investigation is meant to contribute towards and lead to the joint 
disease-specific RBV segmentation algorithm evaluation effort. This joint effort 
should result in an accepted disease-specific RBV segmentation palette and a related 
knowledge-base.  
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