
Noname manuscript No.
(will be inserted by the editor)

Temporal influence over the Last.fm social network

Róbert Pálovics1,2 András A. Benczúr1,3
1Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA
SZTAKI)
2Technical University Budapest
3Eötvös University Budapest
{rpalovics, benczur}@ilab.sztaki.hu

the date of receipt and acceptance should be inserted later

Abstract In a previous result, we showed that the influence of social contacts spreads
information about new artists through the Last.fm social network. We successfully de-
composed influence from effects of trends, global popularity, and homophily or shared
environment of friends. In this paper we present our new experiments that use a math-
ematically sound formula for defining and measuring the influence in the network. We
provide new baseline and influence models and evaluation measures, both batch and
online, for real time recommendations with very strong temporal aspects. Our experi-
ments are carried over the two-year “scrobble” history of 70,000 Last.fm users. In our
results, we formally define and distill the effect of social influence. In addition, we pro-
vide new models and evaluation measures for real time recommendations with very
strong temporal aspects.

1 Introduction

Last.fm became a relevant online service in music based social networking. For reg-
istered users, it collects “scrobbles”, which is a word by Last.fm meaning that when
you listen to a song, the name of the song is added to your music profile. Most user
profiles are public, and each user of Last.fm may have friends inside the Last.fm social
network.

In this paper we exploit the time series of information gathered by the Last.fm ser-
vice. Our goal is to investigate how members of the social network may influence their
friends’ taste. For this purpose, we use data from users with public profile who allow

Research supported in part by the EC FET Open project “New tools and algorithms for
directed network analysis” (NADINE No 288956) and by the grant OTKA NK 105645.
Support from the “Momentum - Big Data” grant of the Hungarian Academy of Sciences.
The work of Robert Palovics reported in this paper has been developed in the framework of the
project “Talent care and cultivation in the scientific workshops of BME” project. This project
is supported by the grant TAMOP - 4.2.2.B-10/1–2010-0009. Work conducted at the Eötvös
University, Budapest was partially supported by the European Union and the European Social
Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013).

Address(es) of author(s) should be given

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48295495?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Pálovics, Benczúr

others to view their detailed timeline of listening history. Last.fm’s service is unique
since in the timeline and friendship information, we may catch immediate effects by
matching the history of friends in time. In our data, we observe stronger temporal
correlation of friends compared to pairs of random users. Based on modeling the dif-
ference of coupled events between friends vs. all users, we formally define a quantity
to distinguish influence from coincidental pairs of users listening to the same music.

In our previous work [27] we showed that social contacts influence one another by
showing that the observed similarity in taste and behavior is not only due to homophily:
in a carefully designed experiment we subtracted external effects that may result in
friends listening to similar music.

In this paper we concentrate on the timely aspects of the recommendation and the
statistical foundations of the notion of the influence. We give two methods that take
potential influence between friends into account.

The first lightweight method is a modified version of our previous result [27]. We
recommend new artists to a user closely after a friend listened to the same artist. Since
most users only have a few friends, the prediction can be very efficiently computed
even in real time. Our model in this paper is based on a probabilistic notion of the
influence conditional probabilities, unlike the heuristic approach of [27].

The second method is a highly time sensitive latent factor model. Compared to
a standard collaborative filtering method, we process events only once and in the
order they have appeared. This online learning method is based on stochastic gradient
descent with high learning rate so that recent events have high contribution to the
factor weights. The online factor model already incorporates not just popularity by
using a high learning rate, but also part of friends’ influence. Immediately after a user
listens to an artist, the corresponding factor weights are adjusted by a high learning
rate. If a friend has similar factor weights e.g. by homophily, the same artist will have
high recommendation score after the learning step. The online factor model hence
involves a latent variant of an influence recommender.

Our best recommender method is the combination of the online factor model with
the lightweight recommender based on friends’ past items. This latter influence based
recommender combines very well with other methods and improves an additional near
1% even over the online factor model that already incorporates part of the influence
effect. Over batch recommenders, we obtain a 4% of increase in quality, a strong result
in view of the three-year Netflix Prize competition [5] to improve recommender quality
by 10%. Note that we only give two methods that result in a stable strong improvement
over the baselines that include batch matrix factorization, temporal popularity [27] and
social regularization [22].

As part of our new results, we introduce quality measures for time aware rec-
ommender evaluation. As influence from friends has short, few hours effect only, we
retrain part of our models after each event and hence potentially we give completely
new top list of items for each event in the testing period. We show that discounted
cumulative gain (DCG) computed individually for each event and averaged in time is
an appropriate measure for real time recommender evaluation.

Throughout the paper, we use an anonymized data set of two years of artist scrob-
ble timeline obtained from Last.fm. We selected a representative, well-connected, yet
anonymous random sample of users by the following rule:

– User location is stated in UK;
– Age between 14 and 50, inclusive;

Temporal social influence 3

– Profile displays scrobbles publicly (privacy constraint);
– Daily average activity between 5 and 500.
– User has at least 10 friends that meet the first four conditions.

In our experiments we use 71,000 users with 285,241 friendship edges. The time series
contain 979,391,001 scrobbles from 2,073,395 artists and were collected between 01
January 2010 and 31 December 2011. Note that one user can scrobble an artist at
different times. The number of unique user-artist scrobbles is 57,274,158. Detailed
statistics on the data set can be found in [27].

The rest of this paper is organized as follows. First we explore for measurable signs
of influence by friends in Section 2. Our lightweight influence recommender is defined
in Section 3 and our online matrix factorization method in Section 4. We define new
online evaluation metrics in Section 5, and give the baseline algorithms in Section 6.
Finally we show our measurements for improved recommendation quality in Section 7.

1.1 Related results

The Netflix Prize competition [5] has recently generated increased interest in recom-
mender algorithms in the research community and put recommender algorithms under
a systematic thorough evaluation on standard data [4]. The final best results combined
a very large number of methods whose reproduction is out of the scope of this paper.
As one of our baselines we selected a successful matrix factorization recommender de-
scribed by Simon Funk in [14] that is based on an approach reminiscent of gradient
boosting [13].

Bonchi [6] summarizes the data mining aspects of research on social influence. He
concludes that “another extremely important factor is the temporal dimension: never-
theless the role of time in viral marketing is still largely (and surprisingly) unexplored”,
an aspect that is key in our result.

Closest to our results are the applications of network influence in collaborative filter-
ing under the term of “social regularization” [22,26,32,33]. These results add smoothing
to that make friends’ model similar. We use social regularization as one baseline model
in our experiments. In other results, only ratings and no social contacts are given [11],
or in [15], both friendship and view information was present over Flickr, but the main
goal was to measure the strength of the influence and no measurements were designed
to separate influence from other effects.

Since our goal is to recommend different artists at different times, our evaluation
must be based on the quality of the top list produced by the recommender. This
so-called top-K recommender task is known to be hard [10]. For a recent result on
evaluating top-K recommenders is found in [9].

Music recommendation is considered in several results orthogonal to our methods
that will likely combine well. Mood data set is created in [16]. Similarity search based
on audio is given in [18]. Tag based music recommenders [12,30, and many more], a few
of them based on Last.fm tags, use annotation and fall into the class of content based
methods as opposed to collaborative filtering considered in our paper. Best starting
point for tag recommendation in general are the papers [17,23,24]. Note that the
Netflix Prize competition put a strong vote towards the second class of methods [28].

As a social media service, Twitter is widely investigated for influence and spread
of information. Twitter influence as followers has properties very different from usual

4 Pálovics, Benczúr

Friends of u

(u,a,t)

Δt3Δt1 Δt2 Δt4 Δt5 Δt6 Δt7

Users scrobbled a before t

Fig. 1: Potential influence on u by some other user to scrobble (u, a, t).

social networks [20]: compared to our data set, for example, the life span of items in
Twitter are too short to be used in recommender systems. Deep analysis of influence
in terms of retweets and mentions is given in [7]. Notion of influence similar to ours
is derived in [3,8] for Flickr and Twitter cascades, respectively. Note that by our mea-
surement the Last.fm data contains only a negligible amount of cascades as opposed
to Twitter or Flickr.

Finally we mention that several results that we list in [27] show the influence of
friends and contacts to spread many properties in social networks. Others question the
methodology of these experiments [21,?] by proposing that the measured effects may
be due to homophily [25,?], the fact that people tend to associate with others like
themselves, and a shared environment also called confounding or contextual influence.

In our experiment we subtract external effects that may result in friends listening
to similar music. Homophily is handled by collaborative filtering, a method that is
capable of learning patterns of similarity in taste without using friendship information.
External events and information sources (e.g. mass media) may result in temporal
increase in popularity. We filter external trends by a method that measures popularity
at the given time and recommends based on the momentary popularity.

2 Network influence

The key concept in this paper is a user v influencing another u to scrobble some
new artist. Whenever a user u first time scrobbles an artist a in her timeline, we
investigate whether another user could have influenced u to listen a. We may well
expect influence among the causes when u scrobbles artist a the first time at time t,
after v last scrobbling the same artist at some time t′ < t before. The time difference
∆t = t − t′ is the delay, as seen in Fig. 1. Our key assumption is that we observe
such a subsequent first time scrobbling between non-friends only by coincidence while
some of these events between friends are the result of certain interaction. Our goal is
to prove that friends indeed influence each other and this effect can be exploited for
recommendations.

Temporal social influence 5

P(
Δt

 ≤
 τ

)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

τ (days)
0 100 200 300 400 500 600 700

3
3

friends f
non-friends fc

P(
Δt

 ≤
 τ

)

0

0.01

0.02

0.03

0.04

0.05

0.06

τ (hours)
0 2 4 6 8 10 12 14 16 18 20 22 24

3
2

friends f
non-friends fc

Fig. 2: Fraction of subsequent first time scrobbles with delay ∆t ≤ τ as the function of
τ , in case of friends (P (∆t ≤ τ | f)) and non-friends (P (∆t ≤ τ | fc)) over the entire
timeline (top) and the first 24 hours (bottom).

Similar influence definitions are given in [3,8,15]. As detailed in [3], one main
difference between these definitions is that in some papers t′ is defined as the first
and not the last time when user v scrobbles a. The smaller the delay ∆t between the
scrobbles of v and u, the more certain we are that u is affected by the previous scrobble
of v. The distribution of delay with respect to friends and non-friends will help us in
determining the frequency and strength of influence over the Last.fm social network.

In what follows, we consider first time scrobbles, events when a user scrobbles an
artist for the first time in her timeline. Out of the 57,274,158 first-time scrobbles of
a certain artist a by some user, we find a friend who scrobbled a before 10,993,042
times (19%) in the whole time series and 4,203,109 times in the second year. Note that
one user can be influenced by more friends, therefore the total number of influences is
24,204,977. If we only consider influences with delay less than one week, this number
reduces to 4,625,141. Note that there is no influencing user for the very first scrobbler of
a in the data set. For other scrobbles there is always an earlier scrobble by some other
user, however, that user may not be a friend of u. Some of the observed subsequent
scrobbles may result by pure coincidence, especially when a new album is released or
the popularity of the artist increases for some other reason.

In order to quantify real influence within the set of subsequent first time scrobbles,
our goal is to determine the probability that the subsequent scrobbles are result of
influence. If we condition this probability for friends and by the time of delay τ , we
should obtain a monotonically decreasing function Infl(τ).

6 Pálovics, Benczúr

To formalize, let us consider the probability space of subsequent first time scrobbles
among all users. Let I denote the event that an subsequent first time scrobble is the
result of an influence. Ic is the opposite, no influence occurs. Coincidence or other,
external reason such as the overall increase in popularity causes the subsequent first
time scrobble in the time series. Let f denote events between friends and fc between
non-friends. Finally let ∆t ≤ τ denote the set of events with delay at most τ . With
these notations,

Infl(τ) = P (I | ∆t ≤ τ, f) = (1)

=
P (I,∆t ≤ τ, f)
P (∆t ≤ τ, f)

=
P (∆t ≤ τ, I | f)P (f)
P (∆t ≤ τ | f)P (f)

(2)

=
P (∆t ≤ τ, I | f)
P (∆t ≤ τ | f)

=
P (∆t ≤ τ | f)− P (∆t ≤ τ, Ic | f)

P (∆t ≤ τ | f)
. (3)

As non-friends fc should not have any real influence on each other, we assume that

P (∆t ≤ τ, Ic | f) ≈ P (∆t ≤ τ, Ic | fc) = P (∆t ≤ τ | fc). (4)

Using this approximation, we can compute the probability of influences between friends
as in (1) by expanding (3),

Infl(τ) = P (I | ∆t ≤ τ, f) ≈ P (∆t ≤ τ | f)− P (∆t ≤ τ | fc)
P (∆t ≤ τ | f)

. (5)

By the above equation, the influence probability can be approximated by observing the
cumulative density curves in Fig. 2. The estimate of this function as in (5) is shown
in Fig. 3. As expected, Infl(τ) is a monotonically decreasing function of τ . However,
the decrease is slow unlike in some recent influence models that propose exponential
decay in time [15]. Therefore, we approximate the influence probability with a slowly
decreasing logarithmic function instead of an exponential decay,

Infl(τ) = 1− c log τ, (6)

where c is a constant.

3 Influence based recommendation

Based on the measurements in the previous section, we model the observed influences
and give a method to apply them for recommendation.

To formalize, let v
a;∆t∈T−−−−−→ u denote the event that user u scrobbles artist a the

first time in her time series, and ∆t time after her friend v also scrobbled a. The time
difference ∆t is restricted to be in a time interval T . We would like to estimate the
probability that v

a;∆t∈T−−−−−→ u happens and the reason for this event is influence (I)
between the users by a factor that only depends on ∆t. First we decompose the full
event into a conditional probability as

P (I, v
a;∆t∈T−−−−−→ u) = P (I | v a;∆t∈T−−−−−→ u) · P (v a;∆t∈T−−−−−→ u). (7)

In our simple model we consider the right term constant times the length of the time
interval, independent of users and time,

P (I, v
a;∆t∈T−−−−−→ u) ≈ P (I | v a;∆t∈T−−−−−→ u) · |T |. (8)

Temporal social influence 7

In
fl(
τ)

 =
 P

(I
 |
Δt

 ≤
τ,

 f)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

τ (days)
0.001 0.01 0.1 1 10 100 1,000

Fig. 3: The influence probability approximated by equation (5), the ratio of increase
among friends compared to non-friends, very closely follows a logarithmic function of
delay ∆t ≤ τ .

 … (a
5
,t

5
) (a

4
,t

4
)

… (a
3
,t

3
) (a

2
,t

2
) (a

1
,t

1
)

v
2

v
1

timeline of v
2

timeline of v
1

u

a
4

Recommendation
for u in t

a
5

a
1

a
2

a
3

Infl(Δt(v
1
,a

1
,t

1
))

time
 t - T

time frame T

t

Fig. 4: Scheme of the influence based recommender algorithm.

Note that in our previous work [27], we modeled the left hand term of (7), the strength
of the influence between users, by a heuristic formula that counted the number of
influence events between the given pair of users. That formula has no mathematical
foundation and in our new experiment, modeling by a constant performed better.

When a scrobble event happens at time exactly τ after the scrobble of v, the interval
becomes a point and hence we are looking for the derivative of (8),

p(I, v
a;∆t=τ−−−−−→ u) := lim

τ ′→τ

P (I, v
a;∆t≤τ ′

−−−−−−→ u)− P (I, v a;∆t≤τ−−−−−→ u)

τ ′ − τ (9)

≈ lim
τ ′→τ

P (I | v a;∆t≤τ ′

−−−−−−→ u) · τ ′ − P (I | v a;∆t≤τ−−−−−→ u) · τ
τ ′ − τ . (10)

8 Pálovics, Benczúr

We model the conditional probability of an influence in (10) independent of the users
and the artist to get the influence function as in (5),

P (I | v a;∆t≤τ−−−−−→ u) ≈ P (I | ∆t ≤ τ) = Infl(τ). (11)

By using (11) and (6), equation (10) becomes

p(I, v
a;∆t=τ−−−−−→ u) ≈ lim

τ ′→τ

Infl(τ ′) · τ ′ − Infl(τ) · τ
τ ′ − τ = 1− c(1 + log τ). (12)

As illustrated in Figure 4, the final recommendation model for predicting influence
events needs to aggregate the effect of all potential influencers. The events in (7)
have very low probability since the right hand term is small. We may also assume
independence of the influencers and approximate the effect of all influencers by the
sum of the individual influence probabilities. Our final prediction score based on (12)
is therefore

r̂(u, a, t) =
∑

v∈n(u)
1− c (1 + log(t− tv)) , (13)

where n(u) denotes the friends of u and tv is when v last scrobbled a before t.
In an efficient implementation, since the expression (12) decays with τ , we only

need to retrieve the past scrobbles of all friends of u. This step is computationally
inexpensive unless u has too many friends, when the recommendation is noisy anyway.
To speed up computations, we only consider influences with delay not more than a
predefined time frame T and hence we set

c = 1/ (1 + log T) . (14)

With a sufficiently small parameter of the time frame in the range of a few days, our
algorithm can hence be implemented even to provide recommendations based on real
time updated models.

4 Online matrix factorization

Batch recommender algorithms may iterate several times over the training set until
convergence. In an online setting [1], the model needs to be retrained after each new
event and hence reiterations over the earlier parts of the data is ruled out.

In this section, we give an online matrix factorization method and show that this
method includes components that may learn user influences. In our algorithm, we
allow a single iteration over the training data only, and this single iteration processes
the events in the order of time. We use scrobbles as positive training instances and
generated negative training instances by selecting three random artists uniformly at
the time when a user scrobbled an artist.

We use the regularized matrix factorization method of [29], and use the k-factor
model for prediction,

r̂(u, a, t) =
k∑
i=1

puitqait, (15)

Temporal social influence 9

where p and q contain the user and artist models, respectively. We optimize for mean
squared error with an additional regularization term of weight λ,

F =
∑
u,a,t

(
r(u, a, t)−

k∑
i=1

puitqait

)2

+ λ

k∑
i=1

p2uit + λ

k∑
i=1

q2ait. (16)

For a single event (u, a, t) that is either a scrobble with r = 1 or a generated negative
sample with r = 0, we optimize the coefficients puit and qait for i = 1, . . ., k by
gradient descent with learning rate η as

puit ← pui(t−1) + η ·

(
r(u, a, t)−

k∑
i=1

pui(t−1)qai(t−1)

)
qai(t−1) − η · λ · pui(t−1); (17)

qait ← qai(t−1) + η ·

(
r(u, a, t)−

k∑
i=1

pui(t−1)qai(t−1)

)
pui(t−1) − η · λ · qai(t−1). (18)

Online recommenders seem more restricted than those that may iterate over the
data set several times and one would expect inferior quality by the online methods.
Online methods however have the advantage of giving much more emphasis on recent
events. In some sense, the online methods may incorporate the notion of influence
from Section 2: if friends have similar taste and hence similar factor weights, a friend
scrobbling some artist a will in the near future strengthen the weight for this artist for
all users who have similar taste.

Indeed, assume that an influence v
a;∆t−−−→ u happens at time t. When we observe

v scrobbling a at time t − ∆t, we update the coefficients qai(t−∆t) in (18). We may
expect u and v, as friends, share their taste and hence their coefficients puit′ and pvit′
are similar at all times t′. Thus the update of qai(t−∆t) increases the score of artist a
for user u at time t, as long as ∆t remains small and the effect of the update is not
diminished by more recent transactions.

5 Online evaluation

In this section, we describe our method to measure the accuracy of the best items
recommended for a user in a timely manner, by looking at the scrobbles of the user
at the given time. Influence depends on time and no matter how relative slow, the
influential power of a friend scrobbling an artist decays as time passes by. For this
reason, the influence based recommender must learn on the fly. Next we show why
evaluating on the fly recommenders is challenging.

Recommender systems in practice need to rank the best K items for the user. In
this top-K recommendation task [10,9] the goal is not to rate some of the individual
items but to provide the best candidates. Despite the fact that only prediction for the
top list matters in top-K evaluation, several authors propose models trained for RMSE
with good top-K performance [19,31] and hence we follow their approach.

In a time sensitive or online recommender that potentially retrains its model after
each and every scrobble, we have to generate new top-K recommendation list for every
single scrobble in the test period. The online top-K task is hence different from the
standard recommender evaluation settings, since there is always a single item only in
the ground truth and the goal is to aggregate the rank of these single items over the

10 Pálovics, Benczúr

entire testing period. For our task, we need carefully selected quality metrics that we
describe next.

One possible measure for the quality of a recommended top list of length K could
be precision and recall [32,33]. Note that we evaluate against a single scrobble. Both
the number of relevant (1) and the number of retrieved (K) items are fixed. Precision
is 1/K if we retrieve the single item scrobbled and 0 otherwise. Recall is 0 if we do
not retrieve the single relevant item and 1 otherwise. The value of K that maximizes
precision is the rank of the item scrobbled and hence “maximal precision” follows the
function of 1/rank.

Recently, measures other than precision and recall are preferred for measuring the
quality of top-K recommendation [2]. The most common measure is nDCG that is a
normalized version of the discounted cumulative gain (DCG) with threshold K

DCG@K(a) =

{
0 if rank(a) > K;

1
log2(rank(a) + 1)

otherwise. (19)

Since DCG is a slower decreasing function of the rank than what we observed for
maximal precision, DCG is more advantageous since we have a large number of artists
of potential interest to each user. Our choice is in accordance with the observations in
[2] as well.

Note that in our unusual setting of DCG evaluation, there is a single relevant item
and hence for example no normalization is needed as in case of the DCG measure. Also
note that the DCG values will be small since the nDCG of a relative short sequence of
actual scrobbles will roughly be equal to the sum of the individual DCG values. The
DCG measured over 100 subsequent scrobbles of different artists cannot be more than
the ideal DCG, which is

∑100
i=1 1/ log2(i + 1) = 20.64 in this case (the ideal value is

6.58 for K = 20). Hence the DCG of an individual scrobble will on average be less
than 0.21 for K = 100 and 0.33 for K = 20.

6 Music Recommendation Baseline Methods

We describe one baseline method based on dynamic popularity in Section 6.1 and two
more based on matrix factorization in the subsequent subsections. In Section 6.2 we
describe the settings of a standard method, and finally in Section 6.3 we add regular-
ization over friendship as in [22]. The first two methods were used as baseline in our
preliminary experiments [27].

6.1 Dynamic popularity based recommendation

Given a predefined time frame T as in Section 3, equation (14), at time t we recommend
an artist based on the popularity in time not earlier than t − T but before t. In our
algorithm we update the counts and store artists sorted by the current popularity. In
one time step, we may either add a new scrobble event or remove the earliest one,
corresponding to a count increment or decrement. For globally popular items, the
sorted order can be maintained by a few changes in the order only. To speed up the
procedure, we may completely ignore part of the long tail and for others update the
position only after a sufficiently large change in count.

Temporal social influence 11

nu
m

be
r

of
 n

ew
 (

u,
a)

sc
ro

bb
le

s

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

time (days)
0 100 200 300 400 500 600 700

Fig. 5: Number of new (u, a) scrobbles as the function of time.

6.2 Batch factor model based recommendation

For our factor model based recommender, we use the standard regularized stochas-
tic gradient descent implementation [14,29]. In the testing period, we trained weekly
models based on all data before the given week. For each user, we constructed three
times as many negative training instances as positive by selecting random artists with
probability proportional to their popularity in the training period. Each testing period
lasted one week. For each user, we compute a top list of predictions once for the entire
week and evaluate against the sequence of scrobbles in that week.

6.3 Social regularization

Ma et al. [22] propose a method to implement constraints in a factor model based
recommender algorithm for keeping the profile of friends similar. We implemented
both the average-based and the individual-based regularization of [22] and found the
latter superior, hence we use individual-based regularization in our experiments. Note
that these algorithms have no knowledge of time and hence cannot incorporate our
notion of subsequent first time scrobbles as in Section 2, even though they may work
very well for other, non-first-time scrobbles that we do not consider in this paper.

7 Experiments

In this section, we measure the quality of our recommendation methods. Out of the
two year scrobbling data, we use the full first year as training period. The second
year becomes the testing period where we consider scrobbles one by one. We allow a
recommender algorithm to use part or full of the data before the scrobble in question
for training and require a ranked top list of artists as output. We evaluate the given
single actual scrobble a in question against the recommended top list of length K. As
seen in Fig. 5, by the second year, the number of first-time scrobbles stabilize around
50,000 a day after the artificial peak in the beginning caused by the lack of earlier
data. For the reason of stability, we measure our recommender methods in Year 2 of
the timeline.

12 Pálovics, Benczúr

P(
po

p(
a)

 =
 x

)

1e−06

0.0001

0.01

1

artist popularity x
1 100 10,000P(

po
p(

a)
 ≤

 x
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

artist popularity x
1 10 100 1,000 10,000 100,000

nu
m

be
r

of
 s

cr
ob

bl
es

 t
o

ar
tis

ts
w

ith
 p

op
ul

ar
ity

 >
 x

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

artist popularity x
1 10 100 1,000 10,000

Fig. 6: Top: Distribution of scrobble count to a given artist and the cumulative dis-
tribution. Bottom: Fraction of scrobbles for artists with popularity at least a given
value x, as the function of x.

nu
m

be
r

of
 a

rt
ist

s

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

0.0e+00

5.0e+04

1.0e+05

1.5e+05

2.0e+05

time (months)
0 5 10 15 20

all
pop(a)≧14

Fig. 7: The number of different artists scrobbled before a given time in the two year
period of the data set.

In our evaluation we discard infrequent artists from the data set both for efficiency
considerations and due to the fact that our item based recommenders will have too
little information on them. As seen in Fig. 6, top, the number of artists with a given
scrobble count follow a power-law distribution with near 60% of the artists appearing
only once. While 90% of the artists gathered less than 20 scrobbles in two years, as
seen in Fig. 6, bottom, they attribute to only less than 10% of the data set. In other

Temporal social influence 13

av
er

ag
e

D
C

G

0.005

0.01

0.015

0.02

top K
20 40 60 80 100

 batch factor
 pop
 influence

av
er

ag
e

D
C

G

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

T (hours)
0 24 48 72 96 120 144 168

influence
 pop

Fig. 8: Top: DCG@K as the function of K for the batch algorithms, for a time window
T equal to one week. Bottom: DCG@100 defined by equation (19) as the function of
the time window threshold T as in Section 3.

words, by discarding a large number of artists, we only lose a small fraction of the
scrobbles. For efficiency we only consider artists of frequency more than 14.

As time elapses, we observe near linear increase in the number of artists that appear
in the data set in Fig. 7. This figure shows artists with at least 14 scrobbles separately.
Their count grows slower but still we observe a large number of new artist that appear
in time and exceed the minimum count of 14. Very fast growth for infrequent artists
may be a result of noise and unidentified artists from e.g. YouTube videos and similar
Web sources.

Under various settings, we give daily, monthly and full year average DCG@K de-
fined by equation (19). The final conclusion of the experiments is drawn by blending
five recommenders, i.e. linearly combining their output. In our experiments we obtained
the best results by linearly combining the values of 1/rank for each item instead of the

14 Pálovics, Benczúr

av
er

ag
e

D
C

G

0.016
0.017
0.018
0.019
0.02

0.021
0.022
0.023
0.024

time (months)
1 2 3 4 5 6 7 8 9 10 11 12

av
er

ag
e

D
C

G
0.016

0.018

0.02

0.022

0.024

0.026

time (days)
0 5 10 15 20 25 30

2
2
2
2

factor factor + socReg + pop
factor + socReg factor + socReg + pop + influence

Fig. 9: DCG@100 as in equation (19) as the function of time. Top: Daily averages in a
one month sample of the test period. Bottom: Monthly averages in the second year.

predicted score. As an advantage of 1/rank, we need no score normalization. The best
combined results will be given in Figs. 9–14 and Tables 1–4. We give a detailed analysis
of the parameters and the weights in the combinations in Section 7.1 for batch and in
Section 7.2 for online matrix factorization.

7.1 Batch recommenders

We start by assessing the global parameters of the experiments. Parameter K in equa-
tion (19) controls the length of the top list considered for evaluation. In other words,
K can be interpreted as the size of the list presented to the user. Practically K must
be small in order not to flood the user with information. The dependence on the top
list size K is measured in Fig. 8, top, for K ≤ 100. We observe that our influence
based method saturates the fastest. This is due to the fact that the number of items
recommended to a given user is usually small unless the user has a large number of
very active friends. For this reason, we give linear combination results not just for the
value K = 20 that we consider practically feasible, but also for 100 for comparison.

The popularity and influence based methods depend on the time frame. The longer
we look back in time, the more artists we can recommend. If we carefully set the
rank as a function of time, wider time frames are advantageous for quality but put
extra computational load. For the influence recommender T is the maximum delay
∆t that we consider as influence while for the popularity one T is the time interval
that we use for frequency computation. We ran measurements in the second year test
period with different time frames T and computed the average DCG performance of the

Temporal social influence 15

D
C

G
 d

iff
er

en
ce

 (
%

)

0
2
4
6
8

10
12
14
16
18

weight of combination
0 0.05 0.1 0.15 0.2 0.25 0.3

3
3
3

factor factor + socReg
factor + socReg + pop

Fig. 10: Linear combination DCG@100 defined by (19) as the function of the linear
combination weight for the influence recommender. Different curves correspond to dif-
ferent baseline methods.

recommender systems. Figure 8, bottom, shows the average DCG scores with different
time frames. The performance only slowly increases for time frames longer than a day.
In what follows we set T to be one week.

Next we set the parameters of the factor models. We use matrix factorization (see
Section 6.2) and the social regularization variant [22] with the following parameters
that turned out to perform best in our experiments. We set the learning rate = 0.01,
k = 20, initial feature value = 0.1 and 20 iterations. We re-train the regularized matrix
factors each week based on all past data. For this reason we see weekly periodicity in
the one month timeline of Fig. 9: the batch factor model performs best immediately
after the training period and slowly degrades in each one-week testing period. Since
the online model has no retraining, we observe stable performance in time in Fig. 12
with a best learning rate of 0.1. Notice the contrast with the batch model that has, for
best performance, ten times lower learning rate but 20 iterations instead.

First we improved the batch factor model based recommenders by combining them
with the influence model. In all cases the combination of the influence model further
improved our recommender systems.

In Fig. 9, we measure a stack of gradually stronger combinations of batch recom-
menders in a short daily and a full period monthly averaging. The batch factor model is
slightly improved by social regularization. Major improvement is obtained by combin-
ing with temporal popularity. Finally, influence recommendation yields improvement
over the full stack.

The relative improvement as the function of the influence weight in the combination
is seen in Fig. 10. First we combined the influence recommender to a batch factor model
and a factor model with social regularization. Finally, we selected the best combination
(7:3) of our social regularization contained factor and popularity recommenders and
combined it with the influence model.

In Tables 1–2 we summarize the average DCG@20 and DCG@100 curves in the
testing period in case of the different combined batch recommenders.

7.2 Online models

Now we show our results using the online factor model. First of all, it turns out that
this model is much stronger than its batch version. In addition, it already incorporates

16 Pálovics, Benczúr

DCG@100 best combined improvement
DCG@100 (%)

batch factor 0.017407 0.019393 11.41
batch factor + social regularization 0.018133 0.020101 11.40
batch factor + social reg. + popularity 0.021482 0.022256 3.75

Table 1: Best batch recommender accuracy and their combination with the influene
recommender, K=100.

DCG@100 best combined improvement
DCG@20 (%)

batch factor 0.010660 0.011449 7.40
batch factor + social regularization 0.011079 0.011450 7.41
batch factor + social reg. + popularity 0.011114 0.011592 4.30

Table 2: Best batch recommender accuracy and their combination with the influene
recommender K=20.

av
er

ag
e

D
C

G

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

top K
20 40 60 80 100

 online factor (0.1)
 online factor (0.05)
 influence
 pop

Fig. 11: DCG@K as the function of K for the online method with two different learning
rates.

popularity, and also social regularization: these combinations gave no improvement for
the entire range of combination weights.

As in Section 7.1, we first investigate the parameters of the recommenders. The
dependence on the top list size K is similar to the batch methods, as seen in Fig. 11.
We use the same values except we experiment with learning rate in the range of 0.01–
0.5, as seen in Fig. 12. In this figure we also show the the improvement achieved
by combining with the influence recommender. The online factor model cannot be
improved by combining with any method other than the influence recommender and
hence the combination of these two gives our strongest result. One can see that the final
combination of the online methods outperforms the best combination of popularity and
batch matrix factorization with social regularization for DCG@100.

Temporal social influence 17

av
er

ag
e

D
C

G
0.015

0.02
0.03

0.035

0.04

time (days)
0 5 10 15 20 25 30

2
2
2
2
2
2

lrate=0.01 lrate=0.01 combined
lrate=0.05 lrate=0.05 combined
lrate=0.1 lrate=0.1 combined

Fig. 12: DCG@100 as in equation (19) as the function of time for online factor models
with different learning rates and their best combination with the influence recom-
mender.

D
C

G
 d

iff
er

en
ce

 (
%

)

0

2

4

6

8

10

weight of network to online factor combination
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.01
0.05
0.1

Fig. 13: Linear combination DCG@100 defined by (19) as the function of the linear
combination weight for the network influence method. Different curves correspond to
combined online factor models with different learning rates.

av
er

ag
e

D
C

G

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

 D
C

G
 d

iff
er

en
ce

 (
%

)

0

1

2

3

4

5

6

7

8

learning rate
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

2
2

average DCG
relative improvement

Fig. 14: Average DCG@100 (left axis) and combination relative improvement (right
axis) for the online matrix factorization method as the function of the learning rate.

18 Pálovics, Benczúr

DCG@100 best combined improvement
DCG@100 (%)

online factor with learning rate 0.01 0.017950 0.018925 5.43
online factor with learning rate 0.05 0.032655 0.032959 0.93
online factor with learning rate 0.1 0.036890 0.037135 0.66

Table 3: The performance of the online factor model with different learning rates and
their best combination with the influence recommender, K=100.

DCG@100 best combined improvement
DCG@20 (%)

online factor with learning rate 0.01 0.008478 0.009238 8.97
online factor with learning rate 0.05 0.016307 0.016504 1.21
online factor with learning rate 0.1 0.018248 0.018425 0.97

Table 4: The performance of the online factor model with different learning rates and
their best combination with the influence recommender, K=20.

In our final experiment for obtaining the best recommender, we only combine the
online factor model with network influence in Fig. 13. Note that as explained in Sec-
tion 4, both models incorporate influence effects in their models. As expected, the
stronger the factor model, the lower the improvement but it remains near 1% even in
the strongest case. As the function of the learning rate, we can see both DCG and the
relative improvement in Fig. 14.

Finally, Tables 3–4 summarize the average DCG@20 and DCG@100 curves in the
testing period in case of the different combined recommenders. Note the strong im-
provement over the batch results in Tables 1–2.

Conclusions

Based on a 70,000-entry sample of Last.fm users, we were able to exploit the immedi-
ate temporal effect of users influencing the taste of friends for improving the quality of
music recommendation. Over baseline recommenders, we achieved a 4% improvement
in recommendation accuracy by combining them with presenting artists from friends’
recent scrobbles that the given user had never seen before. Furthermore, we used our
time-aware online matrix factorization method combined with our influence recom-
mender and achieved significantly better results than in our batch experiments. Our
system has very strong time sensitivity: when we recommend, we look back in the near
past and combine friends’ scrobbles with a factor model that is updated after each and
every scrobble event. The influence from a friend at a given time is certain function of
the observed influence in the past and the time elapsed since the friend scrobbled the
given artist.

Our best methods learn online and provide top-K recommendation lists recomputed
for each and every user query. Because of the inherent time dependence, we reviewed
the available metrics and identified average DCG as a good candidate for time-aware
recommender evaluation.

Temporal social influence 19

Acknowledgments

To the Last.fm team for preparing us this volume of the anonymized data set that
cannot be efficiently fetched through the public Last.fm API. To Bálint Daróczy and
Levente Kocsis for discussions and help in implementing the matrix factorization meth-
ods.

References

1. Abernethy, J., Canini, K., Langford, J., Simma, A.: Online collaborative filtering. Univer-
sity of California at Berkeley, Tech. Rep (2007)

2. Al-Maskari, A., Sanderson, M., Clough, P.: The relationship between ir effectiveness mea-
sures and user satisfaction. In: Proceedings of the 30th annual international ACM SI-
GIR conference on Research and development in information retrieval, pp. 773–774. ACM
(2007)

3. Bakshy, E., H., J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying
influence on twitter. In: Proceedings of the fourth ACM international conference on Web
search and data mining, pp. 65–74. ACM (2011)

4. Bell, R.M., Koren, Y.: Lessons from the netflix prize challenge. ACM SIGKDD Explo-
rations Newsletter 9(2), 75–79 (2007)

5. Bennett, J., Lanning, S.: The netflix prize. In: KDD Cup and Workshop in conjunction
with KDD 2007 (2007)

6. Bonchi, F.: Influence propagation in social networks: A data mining perspective. IEEE
Intelligent Informatics Bulletin 12(1), 8–16 (2011)

7. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.: Measuring user influence in twitter:
The million follower fallacy. In: 4th International AAAI Conference on Weblogs and Social
Media (ICWSM) (2010)

8. Cha, M., Mislove, A., Adams, B., Gummadi, K.P.: Characterizing social cascades in flickr.
In: Proceedings of the first workshop on Online social networks, pp. 13–18. ACM (2008)

9. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n
recommendation tasks. In: Proceedings of the fourth ACM conference on Recommender
systems, pp. 39–46. ACM (2010)

10. Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans-
actions on Information Systems (TOIS) 22(1), 143–177 (2004)

11. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings
of the seventh ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 57–66. ACM (2001)

12. Eck, D., Lamere, P., Bertin-Mahieux, T., Green, S.: Automatic generation of social tags for
music recommendation. Advances in neural information processing systems 20, 385–392
(2007)

13. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. The Annals
of Statistics 29(5), 1189–1232 (2001)

14. Funk, S.: Netflix update: Try this at home. http://sifter.org/˜ si-
mon/journal/20061211.html (2006)

15. Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social net-
works. In: Proceedings of the third ACM international conference on Web search and data
mining, pp. 241–250. ACM (2010)

16. Hu, X., Bay, M., Downie, J.: Creating a simplified music mood classification ground-truth
set. In: Proceedings of the 8th International Conference on Music Information Retrieval
(ISMIR’07) (2007)

17. Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recommen-
dations in folksonomies. Knowledge Discovery in Databases: PKDD 2007 pp. 506–514
(2007)

18. Knees, P., Pohle, T., Schedl, M., Widmer, G.: A music search engine built upon audio-
based and web-based similarity measures. In: Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval, pp. 447–
454. ACM (2007)

20 Pálovics, Benczúr

19. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 426–434. ACM (2008)

20. Kwak, H., Lee, C., Park, H., Moon, S.: What is twitter, a social network or a news media?
In: Proceedings of the 19th international conference on World wide web, pp. 591–600.
ACM (2010)

21. Lyons, R.: The spread of evidence-poor medicine via flawed social-network analysis. Statis-
tics, Politics, and Policy 2(1), 2 (2011)

22. Ma, H., Zhou, D., Liu, C., Lyu, M.R., King, I.: Recommender systems with social regular-
ization. In: Proceedings of the fourth ACM international conference on Web search and
data mining, pp. 287–296. ACM (2011)

23. Markines, B., Cattuto, C., Menczer, F., Benz, D., Hotho, A., Stumme, G.: Evaluating
similarity measures for emergent semantics of social tagging. In: 18th International World
Wide Web Conference, pp. 641–641. Citeseer (2009)

24. Marlow, C., Naaman, M., Boyd, D., Davis, M.: Ht06, tagging paper, taxonomy, flickr,
academic article, to read. In: Proceedings of the seventeenth conference on Hypertext and
hypermedia, pp. 31–40. ACM (2006)

25. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: Homophily in social
networks. Annual review of sociology pp. 415–444 (2001)

26. Noel, J., Sanner, S., Tran, K.N., Christen, P., Xie, L., Bonilla, E.V., Abbasnejad, E.,
Della Penna, N.: New objective functions for social collaborative filtering. In: Proceedings
of the 21st international conference on World Wide Web, pp. 859–868. ACM (2012)

27. Pálovics, R., Benczúr, A.A.: Temporal influence over the last. fm social network. In: Pro-
ceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining, pp. 486–493. ACM (2013)

28. Pilászy, I., Tikk, D.: Recommending new movies: even a few ratings are more valuable
than metadata. In: Proceedings of the third ACM conference on Recommender systems,
pp. 93–100. ACM (2009)

29. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Investigation of various matrix factorization
methods for large recommender systems. In: Proceedings of the 2nd KDD Workshop
on Large-Scale Recommender Systems and the Netflix Prize Competition, pp. 1–8. ACM
(2008)

30. Tso-Sutter, K., Marinho, L., Schmidt-Thieme, L.: Tag-aware recommender systems by
fusion of collaborative filtering algorithms. In: Proceedings of the 2008 ACM symposium
on Applied computing, pp. 1995–1999. ACM (2008)

31. Weimer, M., Karatzoglou, A., Smola, A.: Adaptive collaborative filtering. In: Proceedings
of the 2008 ACM conference on Recommender systems, pp. 275–282. ACM New York,
NY, USA (2008)

32. Yang, X., Steck, H., Guo, Y., Liu, Y.: On top-k recommendation using social networks.
In: Proceedings of the sixth ACM conference on Recommender systems, pp. 67–74. ACM
(2012)

33. Yuan, Q., Chen, L., Zhao, S.: Factorization vs. regularization: fusing heterogeneous social
relationships in top-n recommendation. In: Proceedings of the fifth ACM conference on
Recommender systems, pp. 245–252. ACM (2011)

	Introduction
	Network influence
	Influence based recommendation
	Online matrix factorization
	Online evaluation
	Music Recommendation Baseline Methods
	Experiments

