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Abstract. Projective geometry is a standard mathematical tool for image-based

3D reconstruction. Most reconstruction methods establish pointwise image corre-

spondences using projective geometry. We present an alternative approach based

on differential geometry of a surface observed by any camera, existing or poten-

tial, that satisfies very general conditions, namely, the differentiability of the sur-

face and the bijective projection functions. Considering two views of the surface,

we derive the pose equation that can be used to determine the relative pose of the

two cameras. Then we discuss the generalized epipolar geometry and derive the

generalized epipolar constraint along the epipolar curves. Applying the proposed

theory to projective camera and assuming that affine mapping between small cor-

responding regions has been estimated, we obtain the minimal pose equation for

the case when a fully calibrated camera is moved with its internal parameters

unchanged. Equations for the projective epipolar constraint and the fundamental

matrix are also derived. Then, the special cases of normalized coordinates and

rectified image pair are discussed. Finally, we present test results for pose estima-

tion showing that our solution is correct and operational.

1 Introduction

Most approaches to multi-view stereo reconstruction [15], [4], [5] use projective, affine

or weak perspective camera models [6]. Solutions for central and non-central catadiop-

tric cameras [17] [10] are also available. Many methods search for pointwise image

correspondences, but attempts to avoid correspondence, e.g. [7], have also been made.

Despite the great variety of the methods, almost all of them rely on projective ge-

ometry as a basic tool to describe relations between scene points and image points or

establish correspondence between points in different views. This mainstream research

has led to the development of solutions providing impressive results in both sparse and

dense reconstruction of scenes and objects with varying geometry and surface proper-

ties. Applications to vision-based SLAM [8] have also resulted in significant improve-

ment in localization and mapping by mobile devices, autonomous robots and vehicles.

Differential properties of surfaces expressed by image gradients and affine distor-

tions of local regions have been used in various areas related to 3D reconstruction. In

particular, affine propagation of patch correspondences in wide-baseline stereo was pro-

posed in [9]. A similar principle was successfully applied to multi-view stereo in [4].
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The study [5] uses surface growing in multi-view reconstruction by image warping es-

timating the surface normal vector as a linear function of the camera matrix and the

homography.

Affine-covariant regions and features [11] [18] [14] can be used to find image cor-

respondences and estimate affine distortion of a surface patch between views. Alter-

natively, one can apply the correspondence-free approach [3] to register shapes and

estimate local homography. In our study, we assume that such estimation has been done

and the entries of the Jacobian describing the local mapping of two views are known.

Brightness and texture gradients reveal the surface geometry and are used in shape

from shading and shape from texture, respectively [16]. These methods operate on sin-

gle images and do not require correspondences.

In this paper, we consider a surface viewed by two cameras and derive relation-

ships between local distortions of small corresponding regions, the parameters of the

cameras and the local geometry of the surface in the regions. We present an alternative

approach based on differential, rather than projective, geometry. In spirit, our theory is

related to the work [2] that also relies on differential geometry. However, the study [2]

considers only projective camera and uses a parameterization dependent, non-invariant

representation, while we use a very general camera model and invariant representation.

The main contributions of this paper are as follows. The camera model we use is

a mapping restricted only by the differentiability of the surface and the bijective pro-

jection functions. Projective, affine, weak-perspective and central and non-central cata-

dioptric camera models are all special cases of our model. For this general model, we

obtain the pose equation that can be used to calculate the relative pose of the cameras.

Also, we derive the generalized epipolar constraint along the epipolar curves. For the

special case of the widely applied projective camera model, the proposed theory re-

sults in the minimal pose equation that allows one to determine the new pose of a fully

calibrated camera moved to another position with its internal parameters unchanged.

Finally, we obtain equations for the projective epipolar constraint and the fundamental

matrix.

The structure of the paper is as follows. Section 2 introduces notations and theoret-

ical background. Then derivations and results for a surface observed by general camera

are presented. Due to paper length limitations, we have to omit some technical details

of lengthy derivations. The full version will be given in a forthcoming journal paper. In

section 3, we apply the general theory to projective camera. Test results for pose estima-

tion are shown and analyzed in section 4. Section 5 concludes the paper by discussion

and outlook.

2 Theory for surface viewed by general camera

2.1 Basic equations

Consider an observed scene in the 3D space R
3. The visible parts of the scene objects

are treated as 2D surfaces embedded in R
3. A standard basis in the space is defined by

three orthonormal basis vectors i, j and k. For spatial coordinates, we use italic cap-

ital letters with superscripts: X1, X2, X3; for 3D vectors, we use bold capital letters,
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while lowercase bold letters are used for 2D vectors. Homogeneous representations

are marked with tilde to be distinguished from their inhomogeneous counterparts. Italic

letters u1, u2 are used for Gaussian point coordinates constrained to the embedded man-

ifolds. Partial derivatives are denoted by subscripts.

Different images of a surface are distinguished with lower indices i, j; only these

two letters are used to identify the projection functions, any other letter in subscript

means partial derivative. Scalar product between vectors is denoted by dot, vector prod-

uct by cross. Triple scalar product of three vectors a,b, c is denoted by |abc|.
Surfaces are parameterized using the general (Gaussian) coordinates:

S
(

u1, u2
)

= X1
(

u1, u2
)

i+X2
(

u1, u2
)

j+X3
(

u1, u2
)

k (1)

We assume that images of spatial points are projections given by two functions assign-

ing two image coordinates
(

x1, x2
)

to spatial points. Spatial points lying on the surface

are mapped onto the i-th image by composite functions

xk
i = xk

i

(

X1
(

u1, u2
)

, X2
(

u1, u2
)

, X3
(

u1, u2
))

= x̂k
i

(

u1, u2
)

, k = 1, 2 (2)

To simplify notation, the hat in the right-hand side will be omitted. We suppose that the

mappings in Eq. (2) are bijections in a small open disk around the point
(

u1, u2
)

. As-

suming that both the projection functions and the surface are smooth, this is the condi-

tion for differentiability. The inverse functions u1
(

x1
i , x

2
i

)

, u2
(

x1
i , x

2
i

)

of the bijective

mappings also exist.

Consider a surface observed by two cameras that provide images i and j. A small

shift on the surface results in small shifts dxi and dxj in the two images. As shown

in [12], they are related as follows:

dxj = Jij · dxi, (3)

where the Jacobian of the image mapping i → j

Jij =





∂x1

j

∂x1

i

∂x1

j

∂x2

i

∂x2

j

∂x1

i

∂x2

j

∂x2

i



 =





∂x1

j

∂u1

∂x1

j

∂u2

∂x2

j

∂u1

∂x2

j

∂u2









∂x1

i

∂u1

∂x1

i

∂u2

∂x2

i

∂u1

∂x2

i

∂u2





−1

(4)

The equation is parameterized by
(

u1, u2
)

. We seek coordinate-independent, ‘invariant’

representation. The partial derivatives of any function f ∈
{

x1
i , x

1
j , x

2
i , x

2
j

}

can be

written as

∂f

∂uk
=

∂X1

∂uk

∂f

∂X1
+

∂X2

∂uk

∂f

∂X2
+

∂X3

∂uk

∂f

∂X3
= Suk · ∇f, k = 1, 2, (5)

where Suk are the partial derivatives of the surface (1), ∇f the spatial gradient of f . It

has been shown in [12] that Jij can be expressed in invariant form as

Jij =
1

|∇x1
in∇x2

i |

[

|∇x1
jn∇x2

i | |∇x1
in∇x1

j |
|∇x2

jn∇x2
i | |∇x1

in∇x2
j |

]

, (6)

where |∇x1
in∇x2

i | is the triple scalar product of the gradients and the normal unit vector

n of the surface.
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2.2 Interpretation

Suppose the observed surface is parameterized by its image coordinates pushed forward

to the surface. For example, image i induces the following parameterization:

S
(

x1
i , x

2
i

)

= X1
(

x1
i , x

2
i

)

i+X2
(

x1
i , x

2
i

)

j+X3
(

x1
i , x

2
i

)

k (7)

We wish the local basis S1i =
∂S
∂x1

i

,S2i =
∂S
∂x2

i

to be expressed with invariants. (From

now on, we will use the standard simplified notation S1i ≡ Sx1

i
, etc.) Applying Eq. (5)

to the coordinate functions x1
i and x2

i with u1 = x1
i and u2 = x2

i , we obtain

Sp · ∇q = δpq, p, q ∈
{

x1
i , x

2
i

}

, (8)

where δpq is the Kronecker delta. This fulfills the definition of the inverse basis for

∇x1
i ,∇x2

i . The inverse (contravariant) basis vectors will be denoted by S1
i , S2

i . Since

they lie on the tangent plane of the surface, the following must hold:

S1
i = ∇x1

i |T ,S
2
i = ∇x2

i |T

∇z|T = ∇z · (I− nn) , z ∈
{

x1
i , x

2
i

}

(9)

Here ∇z|T is the projection of ∇z to the tangent plane, I the identity tensor, nn the di-

rect (dyadic) product. The cross-product of these contravariant vectors is perpendicular

to the tangent plane, hence it is a surface normal with the length li = n ·
(

S1
i × S2

i

)

. It

can be easily shown that

li = |∇x2
in∇x1

i |. (10)

We observe that li equals the denominator in the Jacobian (6). Since the contravariant

and covariant basis vectors are related as S1i = 1
li

(

S2
i × n

)

, S2i = 1
li

(

n× S1
i

)

, we

have

S1i =
1

|∇x2
in∇x1

i |

[

∇x2
i −

(

∇x2
i · n

)

n
]

× n =
n×∇x2

i

|∇x1
in∇x2

i |
,

S2i =
1

|∇x2
in∇x1

i |
n×

[

∇x1
i −

(

∇x1
i · n

)

n
]

=
∇x1

i × n

|∇x1
in∇x2

i |
. (11)

Any vector v in the tangential plane can be decomposed in two ways:

v = (v · S1)S1 + (v · S2)S2 = (v · S1)S
1 + (v · S2)S

2, (12)

where v1 = v · S1, v2 = v · S2 are the contravariant, v1 = v · S1, v2 = v · S2 the

covariant vector coordinates. Applying such decomposition to Eq. (3), the components

of dxi = S1idx
1
i + S2idx

2
i in projection j can be expressed as

dxk
j = Sk

j ·
(

S1idx
1
i + S2idx

2
i

)

, k = 1, 2 (13)

Using (9) and (11), the Jacobian (4) can be written as

Jij =





∇x1
j |T ·

(n×∇x2

i )
|∇x1

i
n∇x2

i
|
∇x1

j |T ·
(∇x1

i×n)
|∇x1

i
n∇x2

i
|

∇x2
j |T ·

(n×∇x2

i )
|∇x1

i
n∇x2

i
|
∇x2

j |T ·
(∇x1

i×n)
|∇x1

i
n∇x2

i
|





.
=

[

a11 a12
a21 a22

]

. (14)
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This form, which is equivalent to Eq. (6), expresses the image mapping i → j by

invariant first-order differential quantities, the projection gradients and the unit normal

vector. The symbols a11, a
1
2, . . . are introduced to simplify notation. The components of

Jij can be estimated from image correspondences.

Applying the decomposition Eq. (12) to the tangential vectors ∇x1
j |T , ∇x2

j |T , we

obtain

∇xk
j |T =

(

∇xk
j |T · S1i

)

∇x1
i |T +

(

∇xk
j |T · S2i

)

∇x2
i |T , k = 1, 2 (15)

The expressions in brackets are the components of Jij , hence Eq. (15) can be rewritten

as
[

∇x1
j |T

∇x2
j |T

]

= Jij ·

[

∇x1
i |T

∇x2
i |T

]

, (16)

which means that contravariant basis vectors transform as coordinate differentials. We

call this important relation the pose equation for the reason that will be explained later.

The equation states that the same relationship exists between two images of a surface

as between projection gradients constrained to the tangent plane.

Using Eq. (9), Eq. (16) can be re-written as

∇xk
j · (I− nn) = ak1∇x1

i · (I− nn) + ak2∇x2
i · (I− nn) , k = 1, 2 (17)

Taking the dot product of both sides with
(

∇x1
i ×∇x2

i

)

, we have

1

li

[

|∇x1
j∇x1

i∇x2
i |

|∇x2
j∇x1

i∇x2
i |

]

=

[

∇x1
j |n

∇x2
j |n

]

− Jij ·

[

∇x1
i |n

∇x2
i |n

]

. (18)

The right-hand side of Eq. (18) is the counterpart of Eq. (16) in the normal direction.

Recall that li was introduced in Eq. (10), while ∇z|n = (∇z · n)n is the projection

of ∇z, z ∈
{

x1
i , x

2
i , x

1
j , x

2
j

}

, to the normal direction. The left-hand side is the basic

expression for the epipolar geometry to be discussed below.

2.3 Epipolar geometry

Now we impose further restrictions on the projection functions (2). We assume that

each image point has a dedicated ray associated with it. The rays may not intersect,

that is, points in space may not have same image coordinates, except for the case

when they have common projection center. We emphasize that this does not neces-

sarily mean central projection, since each image point may have its own origin denoted

by C = C
(

x1, x2
)

. We only assume that origins and rays vary smoothly keeping all

differentiability criteria valid.

A back-projected ray X(t), t ∈ (0,∞] ,X(0) = C, is characterized by constant

image coordinates x1 (X (t)) =
(

x1
)

0
, x2 (X (t)) =

(

x2
)

0
for any ray parameter t.

The derivative wrt t is ∇xk · Ẋ = 0, k = 1, 2, where Ẋ (t) = dX
dt

is the direction of the

ray. That is, Ẋ (t) is perpendicular to both gradients and

Ẋ (t) = c
(

∇x1 ×∇x2
)

(19)
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for any real constant c, which can be selected freely. Since the ray direction
Ẋ(t)

|Ẋ(t)|
is

independent of t, the unit vector ∇x1×∇x2

|∇x1×∇x2| depends only on the image coordinates
(

x1
)

0
,
(

x2
)

0
. Integrating this normalized version of Eq. (19), we obtain the equation

for back-projected ray:

X (t) = C+
∇x1 ×∇x2

|∇x1 ×∇x2|
t = C+

∇x1 ×∇x2

r
t, r

.
= |∇x1 ×∇x2|, (20)

where the constant vector C = X (0) is the origin of the ray, the ‘projection center’

associated with the image coordinates
(

x1
)

0
,
(

x2
)

0
.

Observing by camera j a back-projected ray of camera i, we have the following

correspondence equation:

xk
j (t) = xk

j

(

Ci +
1

ri

(

∇x1
i ×∇x2

i

)

t

)

, k = 1, 2 (21)

Since the normalized cross product 1
ri

(

∇x1
i ×∇x2

i

)

is independent of t,

dxk
j

dt
= ∇xk

j ·
∇x1

i ×∇x2
i

ri
, k = 1, 2 (22)

From this, we obtain the first-order ordinary differential equation

dx2
j

dx1
j

=
|∇x2

j∇x1
i∇x2

i |

|∇x1
j∇x1

i∇x2
i |

(23)

expressed as a ratio of triple scalar products that contains neither t nor ri. The initial

condition is given by the ‘epipoles’ x2
j

(

x1
j ((Ci))

)

= x2
j (Ci), and solution associating

possible image coordinate pairs
(

x1
j , x

2
j

(

x1
j

))

to the image point
(

x1
i , x

2
i

)

is uniquely

defined.

According to Eq. (18), the differential equation compatible with Eq. (6) can be

expressed via image gradients and the entries of Jij :

dx2
j

dx1
j

=
n · (∇x2

j − a21∇x1
i − a22∇x2

i )

n · (∇x1
j − a11∇x1

i − a12∇x2
i )

(24)

Eq. (24) can be considered as generalized epipolar constraint since it provides equa-

tions for the components of Jij , i.e., the components of Jij are not independent along

the epipolar curves. Examples will be given in section 3.

In the case of central projection with constant Ci and Cj , the vector (Ci −Cj)
and the two rays

(

∇x1
i ×∇x2

i

)

,
(

∇x1
j ×∇x2

j

)

define the epipolar plane. Its images

are the above mentioned epipolar curves. With an epipolar plane given, the two associ-

ated epipolar curves are defined by

dx2
i

dx1
i

=
|∇x2

i∇x1
j∇x2

j |

|∇x1
i∇x1

j∇x2
j |
, x2

i

(

x1
i (Cj)

)

= x2
i (Cj) , (25)

and similarly for j, with i and j swapped. Any observed object point on an epipo-

lar plane has two projected points on its associated epipolar curves. Searching a point

along the corresponding epipolar curves means searching an object point on the epipolar

plane.
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3 Application to projective camera

As long as the differentiability criteria are valid, the presented theory does not assume

any particular camera model. Below, we apply the theory to finite projective CCD cam-

era because of its practical importance. In this case, the projection matrix P = K·[R, t]
where K is an upper-triangular matrix, R the rotation matrix, t the translation vector.

In homogeneous coordinates, a spatial point X is projected onto image point x as

x̃ = K−1 ·P · X̃, (26)

where X̃ =
[

X1 X2 X3 1
]T

and x̃ = s
[

x1 x2 1
]T

with unknown scale factor s. In

practice, the skew-free (CCD) camera model is widely used. In this case K and K−1

take simple form

K =





α 0 u1

0 β u2

0 0 1



 , K−1 =







1
α

0 −u1

α

0 1
β
−u2

β

0 0 1






. (27)

Introduce ρ
k =

[

rk1 rk2 rk3
]

for the k-th row of the rotation matrix. Then the projection

function becomes

xk =
1

s

[(

βρk + uk
ρ
3
)

·X+ p24
]

, k = 1, 2

s = ρ
3 ·X+ p34 (28)

with X =
[

X1 X2 X
]T

and K · t =
[

p14 p24 p34
]T

. The gradient components are

∇x1 →
∂x1

∂Xk
=

1

s

[

αr1k −
(

x1 − u1
)

r3k
]

,

∇x2 →
∂x2

∂Xk
=

1

s

[

βr2k −
(

x2 − u2
)

r3k
]

, k = 1, 2, 3. (29)

The following problems can be addressed using the proposed theory: 1. Repro-

jection. For a calibrated camera system and an approximately reconstructed surface,

transformation between images can be estimated to evaluate similarity and refine the

surface. This problem is considered in [12]. 2. Normal vector calculation. For a cal-

ibrated camera system and estimated Jacobian (14), the surface normal vector can be

computed, enabling reconstruction from sparse correspondences. The Jacobian is the

local affine transformation with the two origins aligned, which can be estimated by dif-

ferent means [11], [18], [3]. 3. Pose estimation. For one fully calibrated camera and

another one with only internal parameters known, the pose of the second camera can be

calculated given the Jacobian. Below, we address the third problem assuming that the

Jacobian components a11, a12, . . . have been estimated.

3.1 Pose estimation

Assume a camera had been calibrated, then moved with the internal parameters un-

changed. Without loss of generality, we can suppose that camera i has been calibrated
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to the origin of the tangent plane n = k (Z = 0). Then the pose equation (16) becomes

∇xk
j |T = ak1∇x1

i |T + ak2∇x2
i |T , k = 1, 2. (30)

The right-hand side has known entries, the parameters of the completely calibrated

camera and the estimated Jacobian components. The left hand side has 7 unknowns, 6

components of the rotation matrix and s. The number of equations available is also 7:

4 independent equations (30) written for the tangential (k = 1, 2) components of (29),

and the constraint on the rotational matrix properties, i.e., the norms of the columns are

1 and their dot product is zero. Equations (30) can therefore be considered as minimal

pose equations.

Since all unknowns are in camera j, in the equations bellow we omit this index.

Introduce rk =
[

r1k r2k r3k
]T

, k = 1, 2, 3, for the k-th column of R in the decomposition

P = K · [R, t]. The right-hand side of Eq. (30) can be given in the standard basis.

Denote these components by Ak
l , k, l = 1, 2:

ak1∇x1
i |T + ak2∇x2

i |T
.
= Ak

1i+Ak
2j, k = 1, 2, (31)

where Ak
l are known. Using properties of R and (27), (31), one can derive

(

B1
1s+ C1

1r
3
1

)2
+
(

B2
1s+ C2

1r
3
1

)2
+
(

r31
)2

= 1,
(

B1
2s+ C1

2r
3
2

)2
+

(

B2
2s+ C2

2r
3
2

)2
+

(

r32
)2

= 1, (32)
(

B1
1s+ C1

1r
3
1

) (

B1
2s+ C1

2r
3
2

)

+
(

B2
1s+ C2

1r
3
1

) (

B2
2s+ C2

2r
3
2

)

+ r31r
3
2 = 0.

Here we introduced notations B1
k

.
= 1

α
A1

k, B2
k

.
= 1

β
A2

k, k = 1, 2, C1 .
= 1

α

(

x1 − u1
)

,

C2 .
= 1

α

(

x2 − u2
)

. rik is the element of R in i-th row and k-th column.

The first two equations in (32) can be parametrically solved for r31 and r32 as func-

tions of s, then the absolute value of the left-hand side in the third equation can be used

as error function for s. Fixed-length iteration can be used. The maximum value for s is

estimated as the lower bound of the two discriminants of the first two equations (32).

Finally, 4 solutions are available for positive s, from which the unique solution can be

chosen by reprojection.

3.2 Epipolar lines

For projective camera, the gradients are

s∇xl = pl − xlp3, l = 1, 2 s = p3 ·X+ p34, (33)

where
(

pT
)k

=
[

pk1 pk2 pk3
]

, k = 1, 2, 3, is the k-th row of the left 3 × 3 submatrix of

P. In Eq. (23). the scale factors si, sj are eliminated:

dx2
j

dx1
j

=
|∇x2

j∇x1
i∇x2

i |

|∇x1
j∇x1

i∇x2
i |

=

(

p2
j − x2

jp
3
j

)

·
[(

p1
i − x1

ip
3
i

)

×
(

p2
i − x2

ip
3
i

)]

(

p1
j − x1

jp
3
j

)

· [(p1
i − x1

ip
3
i )× (p2

i − x2
ip

3
i )]

. (34)
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This can be re-arranged as

x2
j −

(x1

iD
2

23
−x2

iD
2

13
+D2

12)
(x1

i
D3

23
−x2

i
D3

13
+D3

12)

x1
j −

(x1

i
D1

23
−x2

i
D1

13
+D1

12)
(x1

i
D3

23
−x2

i
D3

13
+D3

12)

.
=

x2
j − d23

x1
j − d13

, (35)

where

dk3
.
=

(

x1
iD

k
23 − x2

iD
k
13 +Dk

12

)

(x1
iD

3
23 − x2

iD
3
13 +D3

12)
, k = 1, 2.

Here the notation Dl
mn = |pl

jp
m
i pn

i |, l,m, n ∈ {1, 2, 3} was introduced for triple

scalar products with the first vector from camera j and two vectors from camera i. For

a fixed image point
(

x1
i , x

2
i

)

whose corresponding epipolar line is sought in image j,

the expression (35) is a function of
(

x1
j , x

2
j

)

and

dx2
j

dx1
j

=
x2
j − d23

x1
j − d13

, (36)

with the point
(

d13, d
2
3

)

lying on the epipolar line.

O.d.e. (36) is separable in its variables, and its general solution

x2
j = κx1

j +
(

d23 − κd13
)

(37)

is a one-parameter family of straight lines with the slope κ. For a particular solution

we need an initial value condition to be satisfied. Denote the epipole coordinates by

e1j , e
2
j . Then the initial condition is e2j = κe1j +

(

d23 − κd13
)

, κ =
e2j−d2

3

e1
j
−d1

3

and Eq. (37)

transforms to

(

e1j − d13
)

x2
j −

(

e2j − d23
)

x1
j +

(

e2jd
1
3 − e1jd

2
3

)

= 0. (38)

Any of the following ratios expresses the same property, the slope κ of the epipolar line:

e2j − d23

e1j − d13
=

x2
j − d23

x1
j − d13

=
e2j − x2

j

e1j − x1
j

(39)

All of them lead to the same solution (38).

Eq. (38) is related to the fundamental matrix. It can be written in the form express-

ing that three points are on a same line:

det







x1
j x2

j 1

e1j e2j 1

d13 d23 1






= 0, (40)

or, equivalently, using the notation of Eq. (35)

x̃j · [ẽj ]× ·





D1
23 −D1

13 D1
12

D2
23 −D2

13 D2
12

D3
23 −D3

13 D3
12



 · x̃i = 0 → x̃j · F · x̃i = 0 (41)

��



10 Molnár, Chetverikov, Kató, Baráth

Here the fundamental matrix appears in the factorized form F = [e]× · H with the

homography H. The properties rank(F) = 2 and ej · F = 0 are obvious.

Applying Eq. (24) to Eq. (33), we obtain

n ·
(

κ∇x1
j −∇x2

j + a21∇x1
i + a22∇x2

i − κa11∇x1
i − κa12∇x2

i

)

= 0. (42)

Substituting (33) and (39), we have

sjn ·
[(

a21 − κa11
) (

p1
i − x1

ip
3
i

)

+
(

a22 − κa12
) (

p2
i − x2

ip
3
i

)]

=

sin ·
[

p2
j − κp1

j +
(

κe1j − e2j
)

p3
j

]

(43)

si, sj are the homogeneous scale factors (projective depths) for cameras i and j. Since

the equation must hold for any normal unit vector, including n = i, j,k, we have three

equations from which two independent ratios can be used to eliminate the projective

depths. These two equations represent the epipolar constraint on the components of

Jij , reducing its DOF to two.

For normalized coordinates, however, si = di, sj = dj become ‘real’ Euclidean

depths, and their ratio has a well-defined meaning. We consider two special cases of the

epipolar constraint, for normalized coordinates and for rectified image pair.

For calibrated cameras, we can normalize image coordinates and projection matrix:

x̄ =
(

K−1 ·P
)

· X̄,

P̄ = K−1 ·P = [R,−RC] , (44)

where ā denotes normalization. Note that any λP̄, λ 6= 0, is a possible choice for

the normalized projection matrix, but the specific representation can easily be chosen

forcing the determinant of the 3× 3 left submatrix of P̄ to be 1. Denote the coordinates

for this special case by X̄ =
[

X Y Z
]T

and x̄i =
[

xi yi
]T

, x̄j =
[

xj yj
]T

. Using

notation similar to Eq. (33), we have

s∇x = ρ
1 − xρ3, s∇y = ρ

2 − yρ3, s = ρ
3 · X̄+ ρ34, (45)

where ρ
k is the k-th row of R. The following properties hold:

detR = |ρ1
ρ
2
ρ
3| = 1

ρ
1 × ρ

2 = ρ
3, ρ

2 × ρ
3 = ρ

1, ρ
3 × ρ

1 = ρ
2, ρ

l · ρk = δlk (46)

s = d

The projective depth now becomes the distance d to the principal plane of the camera.

The specific form of Eq. (43) is

dj

di
n ·

[(

a21 − κa11
) (

ρ
1
i − xiρ

3
i

)

+
(

a22 − κa12
) (

ρ
2
i − yiρ

3
i

)]

=

n ·
[

ρ
2
j − κρ1

j +
(

κe1j − e2j
)

ρ
3
j

]

. (47)
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To simplify Eq. (47), we can choose the world coordinate system to coincide with that

of camera i: ρ1
i = i,ρ2

i = j,ρ3
i = k. Then

dj

di
n ·

[(

a21 − κa11
)

(i− xik) +
(

a22 − κa12
)

(j− yik)
]

=

n ·
[

ρ
2
j − κρ1

j +
(

κe1j − e2j
)

ρ
3
j

]

. (48)

Component-wise, applying the normals n = i, j,k, we have

dj

di

(

a21 − κa11
)

=r21j − κr11j +
(

κe1j − e2j
)

r31j ,

dj

di

(

a22 − κa12
)

=r22j − κr12j +
(

κe1j − e2j
)

r32j , (49)

dj

di

[

−xi

(

a21 − κa11
)

− yi
(

a22 − κa12
)]

=r23j − κr13j +
(

κe1j − e2j
)

r33j .

ρ
1
j ,ρ

2
j ,ρ

3
j are the rows of the relative rotation matrix Rj = [rikj ], i, k = 1, 2, 3.

For known camera poses and selected (fixed) image point (xi, yi), Eq. (48) provides

three equations (49). One of them can be solved for
dj

di
. Eliminating this parameter, we

have two equations for the four entries of the Jacobian. They can be parameterized by

the two components of the unit normal vector.

Rectified image pair can be characterized by two special camera matrices and im-

age coordinate system with origin in the optical center:

Pi = K [I,0] =





α 0 0 0
0 β 0 0
0 0 1 0



 , Pj = K [I,−di] =





α 0 0 −αd

0 β 0 0
0 0 1 0



 . (50)

Using the finite CCD model (27), we have p1
j = p1

i =
[

α 0 0
]

, p2
j = p2

i =
[

0 β 0
]

,

p3
j = p3

i =
[

0 0 1
]

.

Two trivial observations can be made for any imaged spatial point, namely, x2
j = x2

i

and sj = si. The slope parameter κ given by Eq. (35) is zero: κ = 0. Since pr
j = pr

i ,

Eq. (43) becomes

n ·
[

a21
(

p1
i − x1

ip
3
i

)

+
(

a22 − 1
) (

p2
i − x2

ip
3
i

)]

= 0. (51)

In the directions i, j,k this yields, respectively,

a21α = 0 ⇒ a21 = 0,
(

a22 − 1
)

β = 0 ⇒ a22 = 1, (52)

a21
(

u1 − x1
i

)

+
(

a22 − 1
) (

u2 − x2
i

)

= 0.

Note that the third condition is satisfied by the solutions of the first two, expressing the

fact that the depth parameters are identical: sj = si. The epipolar constraint-compatible

Jacobian is therefore written as

Jij =

[

a11 a12
0 1

]

. (53)
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12 Molnár, Chetverikov, Kató, Baráth

It has two degrees of freedom. Note that this result can be obtained directly from the

correspondence equation (6). In this case, the epipolar constraint and the correspon-

dence equation are identical. The correspondence equation can also be used to translate

parameterization (53) into parameterization with components of the unit normal vector.

This has been done by purely geometric considerations in [9].

4 Tests

This paper is essentially theoretical. We propose a novel theoretical framework pro-

viding an alternative to the mainstream approach. The sole purpose of the initial tests

presented in this section is to demonstrate that our theory is technically correct and op-

erational. We use synthetic data and projective camera model to test the minimal pose

equation (30) applying the solution (32). A fully calibrated virtual camera views a vir-

tual, elliptical surface patch from a randomly generated position on a plane. Then the

camera is randomly moved to another position on the plane preserving the visibility of

the patch. A lower and an upper limit on the distance between the two positions were

introduced to avoid too close and too far views. The precise Jacobian components a11,

a12, . . . were calculated based on the known geometry of the stereo pair and the patch.

To simulate the imprecision of the Jacobian estimation, random noise was added to

the patch contour points in the second view. Then the normalized DLT algorithm [6] for

planar homography estimation was applied between the two views. For each noise level,

100 sets of perturbed Jacobians were obtained. For each set, the camera generation

procedure was repeated 100 times resulting in 100 camera pairs viewing the patch.

In each trial, the relative pose of the second camera was calculated as proposed and

compared to the ground truth.

Recall that the Eq. (32) has four solutions, and the solution with the smallest repro-

jection error is selected. By setting an error threshold, we excluded the cases when the

smallest reprojection error is still too large. In such cases, which were rare (less than

5%), the proposed method may not provide an acceptable solution. A major source of

the potential failures is a poor estimate of the homography, which is not a part of the

proposed theory.

The mean and the median errors of the 100 trials for each noise level were ob-

tained. Both values were averaged over the 100 different camera pairs. Fig. 1 shows the

plots of the angular and position errors for varying noise level which is the variance of

the Gaussian noise, in pixels. The continuous line is the averaged median, the dotted

line the averaged mean. The position error of the second camera is measured as the

percentage of the distance between the patch and the camera. The angular error was

obtained as follows. Given the ideal rotation matrix Rid and the estimated matrix Res,

we calculated the correction matrix Rcr that relates the ideal and the estimated matrices:

Rid = ResRcr. Then the angle of the axis-angle representation [1] was obtained as

θ = arccos
traceRcr − 1

2
.

The absolute value of this angle was used as the angular error.

Analyzing Fig. 1, we observe that in the noise-free case the errors are zero, that is,

the estimates are precise demonstrating that the proposed theory is technically correct.

��



Camera-Independent Correspondence 13

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

NOISE LEVEL

A
N

G
U

L
A

R
 E

R
R

O
R

, 
d
e
g
re

e
s

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

NOISE LEVEL
P

O
S

IT
IO

N
 E

R
R

O
R

, 
p

e
rc

e
n

t

Fig. 1. Plots of angular (left) and position (right) errors. Continuous line: averaged median. Dotted

line: averaged mean.

The small difference between the averaged median and the averaged mean indicates

that imposing an upper limit on the smallest reprojection error efficiently filters out the

rare cases when the proposed method may become unreliable.

5 Discussion and conclusion

Traditional approaches to image correspondence are based on projective geometry that

operates with points and lines to obtain the fundamental matrix or the trifocal tensor.

The proposed alternative approach uses differential geometry and operates with two-

dimensional entities, small surface patches. The correspondence equation (6) is valid

when the surface is close to the tangent plane, and the derivatives of the projection

functions are approximately constants. However, for projective camera viewing a planar

patch, the Jacobian can be exactly determined from homography. This means that for flat

surfaces the proposed theory provides exact solution to the surface normal and camera

pose estimation problems.

Recently, we have applied the general theory to different kinds of camera models.

Results for 3D reconstruction of planar patches viewed by omnidirectional cameras

appeared in our study [13]. A promising direction of research could be the development

of a second-order theory of image correspondence along the lines proposed in [12].

The first-order theory allows for camera pose estimation. Additive second-order entries

could possibly bring additional information allowing for planar autocalibration with

less images than the current approaches. A complete reconstruction pipeline could be

built based exclusively on the proposed theory and its second-order extension.
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