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Abstract

We present a randomized algorithm to solve a system of diagonal polynomial equations
over finite fields when the number of variables is greater than some fixed polynomial of the
number of equations whose degree depends only on the degree of the polynomial equations. Our
algorithm works in time polynomial in the number of equations and the logarithm of the size
of the field, whenever the degree of the polynomial equations is constant. As a consequence we
design polynomial time quantum algorithms for two algebraic hidden structure problems: for the
hidden subgroup problem in certain semidirect product p-groups of constant nilpotency class,
and for the multi-dimensional univariate hidden polynomial graph problem when the degree of
the polynomials is constant.

Keywords: algorithm, polynomial equations, finite fields, Chevalley–Warning theorem,
quantum computing

1 Introduction

Finding small solutions in some well defined sense for a system of integer linear equations is an
important, well studied, and computationally hard problem. Subset Sum, which asks the solvability
of a single equation in the binary domain is one of Karp’s original 21 NP-complete problems [16].

The guarantees of many lattice based cryptographic system come from the average case hardness
of Short Integer Solution, dating back to Ajtai’s breakthrough work [1], where we try to find short
nonzero vectors in a random integer lattice. Indeed, this problem has a remarkable worst case versus
average case hardness property: solving it on the average is at least as hard as solving various lattice
problems in the worst case, such as the decision version of the shortest vector problem, and finding
short linearly independent vectors.

Turning back to binary solutions, deciding, if there exists a nonzero solution of the system of
linear equations

a11x1 + . . .+ a1nxn = 0
...

...
...

am1x1 + . . .+ amnxn = 0

(1)
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in the finite field Fp, for some prime number p is easy when p = 2. However, by modifying the
standard reduction of Satisfiability to Subset Sum [24] it can be shown that it is an NP-hard problem
for p ≥ 3.

The system (1) is equivalent to the system of equations

a11x
p−1
1 + . . .+ a1nx

p−1
n = 0

...
...

...

am1x
p−1
1 + . . .+ amnx

p−1
n = 0

(2)

where we look for a nonzero solution in the whole Fn
p .

In this paper we will consider finding a nonzero solution for a system of diagonal polynomial
equations similar to (2), but where more generally, the variables are raised to some power 2 ≤ d.
We state formally this problem.

Definition 1 The System of Diagonal Equation problem SDE is parametrized by a finite field F
and three positive integers n,m and d.
SDE(F, n,m, d)

Input: A system of polynomial equations over F:

a11x
d
1 + . . .+ a1nx

d
n = 0

...
...

...
am1x

d
1 + . . .+ amnx

d
n = 0

(3)

Output: A nonzero solution (x1, . . . , xn) 6= 0n.

For j = 1, . . . , n, let us denote by vj the vector (a1j , . . . , amj) ∈ Fm. Then the system of
equations (3) is the same as

n∑
j=1

xdjvj = 0. (4)

That is, solving SDE(F, n,m, d) is equivalent to the task of representing the zero vector as a
nontrivial linear combinations of a subset of {v1, . . . , vn} with dth power coefficients. We present
our algorithm actually as solving this vector problem. The special case d = |F| − 1 is the vector
zero sum problem where the goal is to find a non-empty subset of the given vectors with zero sum.

Under which conditions can we be sure that for system (3) there exists a nonzero solution?
The elegant result of Chevalley [3] states that a system of homogeneous polynomial equations
has a nonzero solution if the number of variables is greater than the sum of the degrees of the
polynomials. In our case this means that when n > dm, the existence of a nonzero solution is
assured. In addition, Warning has proven [26] that under similar condition the number of solutions
is in fact a multiple of the characteristic of F.

In general where little is known about the complexity of finding a nonzero solution for systems
which satisfy the Chevalley condition. When |F| = 2, Papadimitriou has shown [20] that this
problem is in the complexity class Polynomial Parity Argument (PPA), the class of NP search
problems where the existence of the solution is guaranteed by the fact that in every finite graph
the number of vertices with odd degree is even. This implies that it can not be NP-hard unless NP
= co-NP. Nonetheless finding efficiently a nonzero solution in general seems to be a very hard task.
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Let us come back to our special system of equations (3). In the case m = 1, a nonzero solution
can be found in polynomial time for the single equation which satisfies the Chevalley condition due
to the remarkable work of van de Woestijne [25] where he proves the following.

Fact 2 In deterministic polynomial time in d and log |F| we can find a nontrivial solution for
a1x

d
1 + . . .+ ad+1x

d
d+1 = 0.

In the case of more than one equation we don’t know how to find a nonzero solution for equation (3)
under just the Chevalley condition. However, if we relax the problem, and take much more variable
than required for the existence of a nonzero solution, we are able to give a polynomial time solution.
Using van de Woestijne’s result for the one dimensional case, a simple recursion on m shows that if
n ≥ (d+ 1)m then SDE(Fp, n,m, d) can be solved in deterministic polynomial time in n and log p.
The time complexity of this algorithm is therefore polynomial for any fixed m. The case when
d is fixed and m grows appears to be more difficult. To our knowledge, the only existing result
in this direction is the case d = 2 for which it was shown in [14] that there exists a randomized
algorithm that, when n = Ω(m2), solves SDE(Fp, n,m, d) in polynomial time in n and log p. In the
main result of this paper we generalize this result by showing, for every constant d, the existence
of a randomized algorithm that, for every n larger than some polynomial function of m, solves
SDE(Fp, n,m, d) in polynomial time in n and log p.

Theorem 3 Let d be constant. For n > dd
2 log d(m+ 1)d log d, the problem SDE(Fp, n,m, d) can be

solved by a randomized algorithm in polynomial time in n and log p.

The large number of variables that makes possible a polynomial time solution unfortunately also
makes our algorithm most probably irrelevant for cryptographic applications. Nonetheless, it turns
out the the algorithm is widely applicable in quantum computing for solving efficiently various
algebraic hidden structure problems. We explain now this connection.

Simply speaking, in a hidden structure problem we have to find some hidden object related
to some explicitly given algebraic structure A. We have access to an oracle input, which is an
unknown member f of a family of black-box functions which map A to some finite set S. The task
is to identify the hidden object solely from the information one can obtain by querying the oracle
f . This means that the only useful information we can obtain is the structure of the level sets
f−1(s) = {a ∈ A : f(a) = s}, s ∈ S, that is, we can only determine whether two elements in A
are mapped to the same value or not. In these problems we say that the input f hides the hidden
structure, the output of the problem. We define now the two problems for which we can apply our
algorithm for SDE.

Definition 4 The hidden subgroup problem HSP is parametrized by a finite group G and a family
H of subgroups of G.
HSP(G,H)

Oracle input: A function f from G to some finite set S.
Promise: For some H ∈ H, we have f(x) = f(y)⇐⇒ Hx = Hy.
Output: H.

The hidden polynomial graph problem HPGP is parametrized by a finite field Fp and three positive
integers n,m and d.

HPGP(Fp, n,m, d).
Oracle input: A function f from Fn

p × Fm
p to a finite set S.
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Promise: For some Q : Fn
p → Fm

p , where Q(x) = (Q1(x), . . . , Qm(x)),
and Qi(x) is an n-variate degree d polynomial over Fp with zero constant
term, we have f(x, y) = f(x′, y′)⇐⇒ y −Q(x) = y′ −Q(x′).

Output: Q.

While no classical algorithm can solve the HSP with polynomial query complexity even if the
group G is abelian, one of the most powerful results of quantum computing is that it can be solved
by a polynomial time quantum algorithm for any abelian G (see, e.g., [15]). Shor’s factorization
and discrete logarithm finding algorithms [23], and Kitaev’s algorithm [17] for the abelian stabilizer
problem are all special cases of this general solution.

Extending the quantum solution of the abelian HSP to non abelian groups is an active research
area since these instances include several algorithmically important problems. For example, efficient
solutions for the dihedral and the symmetric group would imply efficient solutions, respectively,
for several lattice problems [21] and for graph isomorphism. While the non abelian HSP has been
solved efficiently by quantum algorithms in various groups [2, 8, 9, 10, 11, 18, 19], finding a general
solutions seems totally elusive.

A different type of extension was proposed by Childs, Schulman and Vazirani [4] who considered
the problem where the hidden object is a polynomial. To recover it we have at our disposal an oracle
whose level sets coincide with the level sets of the polynomial. Childs et al. [4] showed that the
quantum query complexity of this problem is polynomial in the logarithm of the field size when the
degree and the number of variables are constant. In [7] the first time efficient quantum algorithm
was given for the case of multivariate quadratic polynomials over fields of constant characteristic.

The hidden polynomial graph problem HPGP was defined in [5] by Decker, Draisma and
Wocjan. Here the hidden object is again a polynomial, but the oracle is more powerful than in [4]
because it can also be queried on the graphs that are defined by the polynomial functions. They
obtained a polynomial time quantum algorithm that correctly identifies the hidden polynomial
when the degree and the number of variables are considered to be constant. In [7] this result was
extended to polynomials of constant degree. The version of the HPGP we define here is more
general than the one considered in [5] in the sense that we are dealing not only with a single
polynomial but with a vector of several polynomials. The restriction on the constant terms of the
polynomials are due to the fact that level sets of two polynomials are the same if they differ only
in their constant terms, and therefore the value of the constant term can not be recovered.

It will be convenient for us to consider a slight variant of the hidden polynomial graph problem
which we denote by HPGP′. The only difference between the two problems is that in the case of
HPGP′ the input is not given by an oracle function but by the ability to access random level set
states, which are quantum states of the form∑

x∈Fn
p
|x〉|u+Q(x)〉,

where u is a random element of Fm
p . Given an oracle input f for HPGP, a simple and efficient

quantum algorithm can create such a random coset state. Therefore an efficient quantum algorithm
for HPGP′ immediately provides an efficient quantum algorithm for HPGP.

In [6] it was shown that HPGP′(Fp, 1,m, d) is solvable in quantum polynomial time when d and
m are both constant. Part of the quantum algorithm repeatedly solved instances of SDE(Fp, n,m, d)
under such conditions. We present here a modification of this method which works in polynomial
time even if m is not constant.

Theorem 5 Let d be constant. If SDE(Fp, n,m, d) is solvable in randomized polynomial time for
some n, then HPGP′(Fp, 1,m, d) is solvable in quantum polynomial time.
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Using Theorem 3 it is possible to dispense in the result of [6] with the assumption that m is
constant.

Corollary 6 If d is constant then HPGP′(Fp, 1,m, d) is solvable in quantum polynomial time.

Bacon, Childs and van Dam in [2] have considered the HSP in p-groups of the form G = Fp n Fm
p

when the hidden subgroup belongs to the family H of subgroups of order p which are not subgroups
of the normal subgroup 0×Fm

p . They have found an efficient quantum algorithm for such groups as
long as m is constant. In [7], based on arguments from [2] it was sketched how the HSP(FpnFm

p ,H)
can be translated into a hidden polynomial graph problem. For the sake of completeness we state
here and prove the exact statement about such a reduction.

Proposition 7 Let d be the nilpotency class of a group G of the form Fp n Fm
p . There is a

polynomial time quantum algorithm which reduces HSP(G,H) to HPGP′(Fp, 1,m, d).

Putting together Corollary 6 and Poroposition 7, it is also possible to get rid of the assumption
that m is constant in the result of [2].

Corollary 8 If the nilpotency class of the group G of the form FpnFm
p is constant then HSP(G,H)

can be solved in quantum polynomial time.

The special cases of Theorem 3 for d = 2, 3 will be shown in Section 2. The proof of Theorem 3 will
be given in Section 3. The proofs of Theorem 5 and Proposition 7 are given in the full and improved
version of the paper [13]. We remark that the proof of Theorem 3 extends to arbitrary finite fields
(only minor notational changes are needed). Also, the method can be made deterministic using
techniques similar to those used by van de Woestijne in [25]. Details of these can also be found
in [13].

2 Warm-up: the quadratic and cubic cases

2.1 The quadratic case

Proposition 9 The problem SDE(Fp, (m+1)2,m, 2) can be solved in randomized polynomial time.

W. e assume that p > 2 and that we have a non-square ζ in Fp at hand. Such an element can
be efficiently found by a random choice. Assuming GRH, even a deterministic polynomial time
method exists for finding a non-square.

Our input is a set V of (m + 1)2 vectors in Fm
p , and we want to represent the zero vector

as a nontrivial linear combination of some vectors from V where all the coefficients are squares.
The construction is based on the following. Pick any m + 1 vectors u1, . . . , um+1 from Fm

p . Since
they are linearly dependent, it is easy to represent the zero vector as a proper linear combination∑m+1

i=1 αiui = 0. Let J1 = {i : α
p−1
2

i = 1} and J2 = {i : α
p−1
2

i = −1}. Using ζ, we can efficiently
find in deterministic polynomial time in log p by the Shanks-Tonelli algorithm [22] field elements
βi such that αi = β2i for i ∈ J1 and αi = β2i ζ for i ∈ J2. Let w1 =

∑
i∈J1 β

2
i vi and w2 =

∑
i∈J2 β

2
i vi.

Then w1 = −ζw2. Notice that we are done if either of the sets J1 or J2 is empty.
What we have done so far, can be considered as a high-level version of the approach of [14]. The

method of [14] then proceeds with recursion to m− 1. Unfortunately, that approach is appropriate
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only in the quadratic case. Here we use a completely different idea which will turn to be extensible
to more general degrees.

From the vectors in V we form m + 1 pairwise disjoint sets of vectors of size m + 1. By the
construction above, we compute w1(1), w2(1), . . ., w1(m+ 1), w2(m+ 1), where

w1(i) = −ζw2(i), (5)

for i = 1, . . . ,m + 1. Moreover, these 2m vectors are represented as linear combinations with
nonzero square coefficients of 2m pairwise disjoint nonempty subsets of the original vectors.

Now w1(1), . . . , w1(m+ 1) are linearly dependent and again we can find disjoint subsets J1 and
J2 and scalars γi for i ∈ J1 ∪ J2 such that for w11 =

∑
i∈J1 γ

2
i w1(i) and w12 =

∑
i∈J2 γ

2
i w1(i) we

have w11 = −ζw12. But then for w21 =
∑

i∈J2 γ
2
i w2(i) and w22 =

∑
i∈J2 γ

2
i w1(i), using equation (5)

for all i, we similarly have w21 = −ζw22. On the other hand, if we sum up equation (5) for i ∈ J1,
we get w11 = −ζw21. Therefore w11 = ζ2w22 and w12 = w21 = −ζw22.
By Fact 2 we can find field elements δ11, δ22, δ12, not all zero, such that
ζ2δ211 − 2ζδ212 + δ222 = 0, and therefore (ζ2δ211 − 2ζδ212 + δ222)w22 = 0. But

(ζ2δ211 − 2ζδ212 + δ222)w22 = δ211w11 + δ212(w12 + w21) + δ222ζ
2w22.

Then expanding δ211w11 + δ212(w12 + w21) + δ222ζ
2w22 = 0 gives a representation of the zero vector

as a linear combination with square coefficients (squares of appropriate product of βs, γs and δs)
of a subset of the original vectors. 2

2.2 The cubic case

Proposition 10 Let n = (9m + 1)(3m + 1)(m + 1). Then SDE(Fp, n,m, 3) can be solved in
randomized polynomial time.

W. e assume that p − 1 is divisible by 3 since otherwise the problem is trivial. By a randomized
polynomial time algorithm we can compute two elements ζ2, ζ3 from Fp such that ζ1 = 1, ζ2, ζ3
are a complete set of representatives of the cosets of the subgroup {x3 : x ∈ F∗p} of F∗p. Let V be
our input set of n vectors in Fm

p , now we want to represent the zero vector as a nontrivial linear
combination of some vectors from V where all the coefficients are cubes.

As in the quadratic case, for any subset of m + 1 vectors u1, . . . , um+1 from V , we can easily
find a proper linear combination summing to zero,

∑m+1
i=1 αiui = 0. For r = 1, 2, 3, let Jr be the set

of indices such that 0 6= αi = β3i ζr. We know that at least one of these three sets is non-empty. For
each αi 6= 0 we can efficiently identify the coset of αi and even find βi. Let wr =

∑
i∈Jr β

3
i vi. Then

ζ1w1 + ζ2w2 + ζ3w3 = 0. Without loss of generality we can suppose that J1 is non-empty since if
Jr is non-empty for r ∈ {2, 3}, we can just multiply αis simultaneously by ζ1/ζr.

From any subset of size (3m+1)(m+1) of V we can form 3m+1 groups of size m+1, and within
each group we can do the procedure outlined above. This way we obtain, for k = 1, . . . , 3m + 1,
and r = 1, 2, 3, pairwise disjoint subsets Jr(k) of indices and vectors wr(k) such that

ζ1w1(k) + ζ2w2(k) + ζ3w3(k) = 0. (6)

For k = 1, . . . , 3m + 1, we know that J1(k) 6= ∅ and the vectors wr(k) are combinations of input
vectors with indices form Jr(k) having coefficients which are nonzero cubes. Let W (k) ∈ F 3m

p

denote the vector obtained by concatenating w1(k), w2(k) and w3(k) (in this order). Then we can
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find three pairwise disjoint subsets M1,M2,M3 of {1, . . . , 3m+ 1}, and for each k ∈Ms, a nonzero
field element γk such that

3∑
s=1

ζs
∑
k∈Ms

γ3kW (k) = 0. (7)

We can arrange that M2 is non-empty. For r, s ∈ {1, 2, 3}, set Jrs =
⋃

k∈Ms
Jr(k) and wrs =∑

k∈Ms
γ3kwr(k). Then wrs is a linear combination of input vectors with indices from Jrs having

coefficients that are nonzero cubes. The equality (7) just states that ζ1wr1 + ζ2wr2 + ζ3wr3 = 0, for
r = 1, 2, 3. Furthermore, summing up the equalities (6) for k ∈Ms, we get ζ1w1s+ζ2w2s+ζ3w3s = 0,
for s = 1, 2, 3.

Continuing this way, from (9m + 1)(3m + 1)(m + 1) input vectors we can make 27 linear
combinations with cubic coefficients wrst, for r, s, t = 1, 2, 3, having pairwise disjoint supports such
that the support of w123 is non-empty and they satisfy the 27 equalities ζ1w1st+ζ2w2st+ζ3w3st = 0
(s, t = 1, 2, 3); ζ1wr1t+ζ2wr2t+ζ3wr3t = 0 (r, t = 1, 2, 3); ζ1wrs1+ζ2wrs2+ζ3wrs3 = 0 (r, s = 1, 2, 3).
From these we use the following 6 equalities: ζ1w123+ζ2w223+ζ3w323 = 0; ζ1w132+ζ2w232+ζ3w332 =
0; ζ1w213 + ζ2w223 + ζ3w233 = 0; ζ1w312 + ζ2w322 + ζ3w332 = 0; ζ1w231 + ζ2w232 + ζ3w233 = 0;
ζ1w321 +ζ2w322 +ζ3w323 = 0. Adding these equalities with appropriate signs so that the terms with
coefficients ζ2 and ζ3 cancel and dividing by ζ1, we obtain w123+w231+w312−w132−w213−w321 = 0.
Observing that −1 = (−1)3, this gives a representation of zero as a linear combination of the input
vectors with coefficients that are cubes.

2

3 The general case

In this section we prove Theorem 3. First we make the simple observation that it is sufficient to solve
SDE(Fp, n,m, d) in the case when d divides p− 1. If it is not the case, then let d′ = gcd(d, p− 1).
Then from a nonzero solution of the system

n∑
j=1

xd
′

j vj = 0,

one can efficiently find a nonzero solution of the original equation. Indeed, the extended Euclidean
algorithm efficiently finds a positive integer t such that td = u(p− 1) + d′ for some integer u. Then
for any nonzero x ∈ Fp we have (xt)d = xd

′
mod p, and therefore (xt1, . . . , x

t
n) is a solution of

equation (4). From now on we suppose that d divides p− 1.
Our algorithm will distinguish two cases, according to the value of d. The first case is when

−1 is not a dth power in Fp. Then d is necessarily an even number, and we give a method which
reduces to the problem HPGP with polynomials of degree d/2. Observe that in that case −1 is a
d/2th power, and the algorithm proceeds with the method of the second case. The second case is
when −1 is a dth power in Fp, then our algorithm directly solves the problem. For both cases we
will denote by C(d,m) the number of vectors (variables) used by our algorithm. For d = 1, we can
take C(1,m) = m+ 1.

3.1 The reduction when d is even

We assume that p − 1 is divisible by d and that we have a non-square ζ in Fp at hand. We also
assume that we can efficiently express the zero vector as a nontrivial linear combination with dth
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power coefficients of any given t = C(d/2,m) vectors u1, . . . , ut ∈ Fm
p :

∑t
i=1 α

d
i ui = 0.

As in the quadratic case, let J1 = {i : α
p−1
2

i = 1} and J2 = {i : α
p−1
2

i = −1}. Using ζ, we can
efficiently find βi such that αi = β2i for i ∈ J1 and αi = β2i ζ for i ∈ J2. Let w1 =

∑
i∈J1 β

2
i vi and

w2 =
∑

i∈J2 β
2
i vi. Then w1 = −ζdw2. Note that we are done if either of the sets J1 or J2 is empty.

Suppose that we have C(d/2,m) groups, each consisting of C(d/2,m) vectors of length m. For
each i, we can build vectors w1(i) and w2(i) in the ith group with the properties of w1 and w2 above.
Then we can express the zero vector as a linear combination with nonzero dth power coefficients
from a subset of the vectors w1(i). Like in the quadratic case, we find four vectors, a scalar
multiple of each other, represented as nontrivial linear combinations with dth power coefficients of
four pairwise disjoint subsets of the original variables.

We can iterate this process. In the `th iteration we start with C(d/2,m) groups, each consist-
ing of C(d/2,m)`−1 vectors of length m. At the end of the `th iteration we can find a nonzero
vector w and scalars λ1, . . . , λ2` together with representations of the vectors λ1w, . . . , λ2`w as lin-
ear combination with nonzero dth power coefficients of ` pairwise disjoint subsets of the original
vectors.

After dlog2(d+ 1)e ≤ log d+ 1 iterations, starting from at most C(d/2,m)log d+1 input vectors,
we get a vector w and scalars λ1, . . . , λd+1, together with the representations of the vectors w1 =
λ1w, . . . , wd+1 = λd+1w as above.

By Fact 2 we can find field elements z1, . . . , zd+1 such that
∑d+1

i=1 λiz
d
i = 0, which implies that∑d+1

i=1 z
d
i wi = 0. The representations of of w1, . . . , wd+1 give then the desired representation of the

zero vector. Observe that we have also shown that in that case C(d,m) ≤ C(d/2,m)log d+1.

3.2 The algorithm when d
√
−1 ∈ Fp

We assume that p − 1 is divisible by d, we have a dth root µ of −1 as well as ζ2, . . . , ζd in Fp at
hand such that ζ1 = 1, ζ2, . . . , ζd are a complete set of representatives of the cosets of F∗pd in F∗p. To
construct such elements µ, ζ2, . . . , ζd we need ρth non-residues for any prime factor ρ of 2d. Such
non-residues can be found in time polynomial in log p and d by random choice or a deterministic
search assuming GRH [12].

For ` = 1, . . . , d, put B`(d,m) = d
`(`−1)

2 (m+ 1)`. For any `-tuple a = (a1, . . . , a`) ∈ {1, . . . , d}`,
for s ∈ {1, . . . , d} and for 1 ≤ j ≤ `, set a(j, s) = (a1, . . . , aj−1, s, aj+1, . . . , a`).

Claim. From B = B`(d,m) input vectors v1, . . . , vB, in time polynomial in B and log p, we can can
find d` pairwise disjoint subsets Ja ⊆ {1, . . . , B} and field elements β1, . . . , βB such that J(1,...,`) 6= ∅,
and if we set wa =

∑
i∈Ja β

d
i vi, then we have

d∑
s=1

ζswa(j,s) = 0, for every a ∈ {1, . . . , d}` and j = 1, . . . , `.

W. e prove it by recursion on `. If ` = 1 then any B`(d,m) = m+ 1 vectors from Fm
p are linearly

dependent. Therefore there exist α1, . . . , αm+1 ∈ Fp, not all zero, such that
∑m+1

i=1 αivi = 0. For
r = 1, . . . , d, let Jr be the set of indices i such that there exists βi ∈ F∗p with αi = ζrβ

d
i . For i ∈ Jr,

such a βi can be efficiently found. At least one of the sets Jr is non-empty. If J1 is empty then
we multiply the coefficients αi simultaneously by ζ1/ζ

−1
r where Jr is nonempty to arrange that J1

becomes nonempty.
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To describe the recursive step, assume that we are given B`+1(d,m) = d`(m + 1)B vectors.
Put E = d`(m + 1), and for convenience assume that the input vectors are denoted by vki, for
k = 1, . . . , E and i = 1, . . . , B. By the recursive hypothesis, for every k ∈ {1, . . . , E}, there
exist subsets Ja(k) ⊆ {1, . . . , B} and field elements βi(k) such that J(1,...,`)(k) 6= ∅, and with

wa(k) =
∑

i∈Ja(k) βi(k)dvki, we have

d∑
s=1

ζswa(j,s)(k) = 0, (8)

for every a ∈ {1, . . . , d}` and j = 1, . . . , `.
For every k = 1, . . . , E, let W (k) be the concatenation of the vectors wa(k) in a fixed, say the

lexicographic, order of {1, . . . , d}`. Then the W (k)’s are vectors of length d`m < E. Therefore
there exist field elements α1, . . . , αE , not all zero, such that

∑E
i=k α(k)W (k) = 0. For a k such

that α(k) 6= 0, let α(k) = ζrγ(k)d for some 1 ≤ r ≤ d and γ(k) ∈ F∗p. The index r and γ(k) can

be computed efficiently. For r = 1, . . . , d, let Mr be the set of k’s such that α(k) = ζrγ(k)d. We
can arrange that M`+1 is nonzero by simultaneously multiplying the α(k)’s by ζ`+1/ζr for some r,
if necessary. Observe that we have

d∑
s=1

ζs
∑
k∈Ms

γ(k)dW (k) = 0. (9)

For i ∈ {1, . . . , B} and k ∈ {1, . . . , E} set β′ki = γ(k)βi(k). We fix a′ ∈ {1, . . . , d}`+1, and we
set a = (a′1, . . . a

′
`) and r = a′`+1. We define J ′a′ = {(k, i) : k ∈ Mr and i ∈ Ja(k)} and w′a′ =∑

(k,i)∈J ′
a′
β′dkivki. Then w′a′ =

∑
k∈Mr

γdkwa(k). This equality, together with the equalities (8)

imply that for every j = 1, . . . , `, we have∑d
s=1 ζswa′(j,s) = 0.

Equality (9) for j − `+ 1 gives
∑d

s=1 ζs
∑

k∈Ms
γ(k)dwa(k) = 0. Expanding wa(k) in the inner sum∑

k∈Ms
γ(k)dwa(k) gives that it equals wa′(`+1,s). Thus also∑d

s=1 ζswa′(`+1,s) = 0,
finishing the proof of the claim. 2

We apply the procedure of the claim for ` = d. From any B = Bd(d,m) = d
d(d−1)

2 (m+1)d input
vectors v1, . . . , vB, we compute in time polynomial in log p and B subsets Ja, with J(12...d) 6= ∅, as

well as nonzero elements β1, . . . , βB ∈ Fp such that with wa =
∑

i∈Ja β
d
i vi, we have

d∑
s=1

ζswa(j,s) = 0, (10)

for every j = 1, . . . , d and for every a ∈ {1, . . . , d}d.
Permutative tuples a ∈ Sd are of special interest. By sgn(a) we denote the sign of such a

permutation, which is 1 if a is even and −1 if a is odd. We show that∑
a∈Sd

sgn(a)wa = 0. (11)

9



For a ∈ Sd, let ja be the position of 1 in a and for every s ∈ {1, . . . , d}, we denote by a[s] the
sequence obtained from a by replacing 1 with s. Notice that a[s] = a(ja, s), therefore (10) implies∑

a∈Sd
sgn(a)

∑d
s=1 ζswa[s] = 0.

We claim that ∑
a∈Sd

sgn(a)
∑d

s=2 ζswa[s] = 0.

To see this, observe that for s > 1 the tuple a[s] has entries from {2, . . . , d}, where s occurs twice,
while the others once. Any such sequence a′ can come from exactly two permutations which differ
by a transposition: these are obtained from a′ by replacing one of the occurrences of s with 1.
Then (11) is just the difference of the above two equalities.

For i ∈ Ja, let γi = 0 if a is not a permutation, γi = βi if a is an even permutation and γi = µβi
if a is an odd permutation. Then (11) gives

∑B
i=1 γ

d
i vi = 0, the required representation of the zero

vector. Observe that in that case C(d,m) ≤ d
d(d−1)

2 (m+ 1)d. The bounds obtained in the two cases
imply that C(d,m) ≤ dd2 log d(m+ 1)d log d in general.
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pp. 73–75 (1936)

[4] Childs, A.M., Schulman, L., Vazirani, U.: Quantum Algorithms for Hidden Nonlinear Struc-
tures. In: 48th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 395–404
(2007)

[5] Decker, T., Draisma, J., Wocjan, P.: Quantum algorithm for identifying hidden polynomial
function graphs. Quantum Inf. Comput. 9, pp. 0215–0230 (2009)

[6] Decker, T., Høyer, P., Ivanyos, G., Santha, M.: Polynomial time quantum algorithms for
certain bivariate hidden polynomial problems. Quantum Inf. Comput. 14, pp. 790–806 (2014)

[7] Decker, T., Ivanyos, G., Santha, M., Wocjan, P.: Hidden symmetry subgroup problems. SIAM
J. Comput. 42, pp. 1987–2007 (2013)

[8] Denney, A., Moore, C. Russell, A.: Finding conjugate stabilizer subgroups in PSL(2; q) and
related groups. Quantum Inf. Comput. 10, pp. 282–291 (2010)

10



[9] Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and translating
coset in quantum computing. SIAM J. Comput. 43, pp. 1–24 (2014)

[10] Grigni, M., Schulman, L., Vazirani M., Vazirani, U.: Quantum mechanical algorithms for the
nonabelian Hidden Subgroup Problem. In: 33rd ACM Symposium on Theory of Computing
(STOC), pp. 68–74 (2001)

[11] Hallgren, S., Russell, A., Ta-Shma, A.: Normal subgroup reconstruction and quantum com-
putation using group representations. SIAM J. Comput. 32, pp. 916–934 (2003)

[12] Huang, M-D. A:. Riemann hypothesis and finding roots over finite fields. In: 17th annual
ACM symposium on Theory of Computing (STOC), pp. 121–130, (1985)

[13] Ivanyos, G., Santha, M.: On solving systems of diagonal polynomial equations over finite
fields. arXiv:1503.09016 [cs.CC]

[14] Ivanyos, G., Sanselme, L., Santha, M.: An efficient quantum algorithm for the hidden subgroup
problem in nil-2 groups. Algoritmica 62, pp. 480–498 (2012)

[15] Jozsa, R.: Quantum factoring, discrete logarithms, and the hidden subgroup problem. Comput.
Sci. Engin. 3, pp. 34–43 (2001).

[16] R. Karp. Reducibility among combinatorial problems. In.: Miller, R. (ed.) Complexity of
Computer Computations, pp. 85-103, Springer, 1972.

[17] Kitaev, A. Y.: Quantum measurements and the Abelian Stabilizer Problem. arXiv:quant-
ph/9511026v1 (1995)

[18] Kuperberg, G.: A Subexponential-Time Quantum Algorithm for the Dihedral Hidden Sub-
group Problem. SIAM J. Comput. 35, pp. 170–188 (2005)

[19] Moore, C., Rockmore, D., Russell, A., Schulman, L.: The power of basis selection in Fourier
sampling: Hidden subgroup problems in affine groups. In: 15th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 1113–1122 (2004)

[20] Papadimitriou, C.: On the complexity of the parity argument and other inefficient proofs of
existence. J. Comput. System Sci., 48, pp. 498–532 (1994)

[21] Regev., O.: Quantum Computation and Lattice Problems. SIAM J. Comput. 33, pp. 738–760
(2004)

[22] Shanks., D.: Five number-theoretic algorithms. In: 2nd Manitoba Conference on Numerical
Mathematics, pp. 51–70 (1972)

[23] Shor, P.: Algorithms for quantum computation: Discrete logarithm and factoring. SIAM J.
Comput. 26, pp. 1484–1509 (1997)

[24] Sipser, M.: Introduction to the theory of computation. PWS Publishing Company (1997)

[25] van de Woestijne, C. E.: Deterministic equation solving over finite fields. PhD thesis, Univer-
siteit Leiden (2006)

11



[26] Warning, E.: Bemerkung zur vorstehenden Arbeit von Herrn Chevalley. Abh. Math. Sem.
Hamburg 11, pp. 76-83, 1936.

12


