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Abstract  This paper presents an integrated experimental 

design and optimization methodology and its application in 

non-conventional machining process optimization. The 

introduced technique incorporates an efficient experimental 

settings generation module, a model building module based 

on the performed experiments and an optimization module 

using the built model. The application results show that the 

presented method is robust and is able to find optimal 

machining parameter values under uncertain process 

circumstances. 
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1.  INTRODUCTION 

Most of the modern machining processes can only be 

described by numerous process variables due to the 

complexity of their technological background. This also 

means that the optimization of these processes requires such 

solutions that are able to successfully navigate in high-

dimensional space in order to find the best parameter 

settings for a specific application of the machining 

technology. The task becomes more complex when in the 

field of non-conventional machining processes because their 

technologies are relatively new and partly unexplored. E.g. 

one of the problems that arose in the presented machining 

application is that the beginning and end of the process 

cannot be specified precisely. In other words the process 

breaks down into multiple smaller stages which behave 

differently from each other; therefore a comprehensive 

optimization cannot be applied and the different stages must 

be handled individually. 

The paper contains five sections. After the introduction 

the second section presents experimental design and process 

optimization methods and applications. The third section 

describes the optimization methodology followed by the 

forth one reviewing the results achieved by applying the 

technique in the optimization of a non-conventional 

machining process. The last three sections are conclusions, 

acknowledgments and references. 

2.  EXPERIMENTAL DESIGN AND PROCESS 

OPTIMIZATION 

Experimental design is often part of process optimisation 

tasks, because in many cases extensive measurements of the 

process are not possible and experiments are needed to 

obtain the necessary information. This section discusses 

typical experimental design and process optimization 

applications. For example Betta, dell’Isola and Frattolillo 

used experimental design techniques in the optimization of 

chain calibration [1]. They proposed a new method for 

designing the calibration which is more general respect to a 

conventional equally-spaced methodology and can be 

performed quicker. In another application experimental 

design and data-fitting techniques were applied to 

calibration of high-frequency electromagnetic field probes 

by D’Apuzzo, D’Arco and Pasquino [2]. Their approach 

reduces the amount of data needed to represent the 

calibration procedure by applying regression on the 

measured values. They could achieve better results than the 

by using linear interpolation which is suggested by the 

current standards. 

Ezilarasan, Senthil kumar and Velyudham used 

Taguchi’s experimental design [3] for analysing the process 

performances in machining of nickel based super alloy [4]. 

They determined important connections between the process 

parameters and also developed equations for the cutting 

force, flank wear and surface roughness. Multi-response 

optimization of non-conventional machining was the goal of 

Puhan, Mahapatra, Sahu and Das [5]. They applied a hybrid 

method of Principle Component Analysis (PCA), fuzzy 

inference systems and Taguchi method for optimizing 

material removal rate, tool wear rate, surface roughness and 

circularity. 

Venkata Rao, Murthy and Mohan Rao analysed surface 

roughness, work piece vibration and metal removal volume 

to monitor the condition of the cutting tool [6]. They found 

that tool insert nose radius has the most influence on the 

work piece vibration and feed rate has the most influence on 

surface roughness and metal removal volume. 

Taguchi method was used by Philip Selvaraj, 

Chandramohan and Mohanraj to optimize surface roughness; 

cutting force and tool wear [7]. Their revealed that the feed 

rate is the most significant parameter influencing the surface 

roughness and cutting force and tool wear is mostly 

influenced by the cutting speed. Masmiati and Sarhan also 

used the Taguchi approach to optimize cutting parameters in 

inclined end milling for minimum surface residual stress [8]. 

They found that as the machined surface inclination angle 

increases the microhardness also increases and the residual 

stress becomes more tensile. Meanwhile the axial depth of 



cut and the cutting speed have less influence on 

microhardness and residual stress. 

It can be seen that Taguchi method is most often used for 

experimental design and in optimization of machining 

processes. Taguchi and other linear methods in one hand 

require a small amount of experiments to be performed but 

on the other hand have the disadvantage that they don’t 

cover the whole, usually non-linear and non-convex 

parameter space. Selecting representative experimental 

settings from the multi-dimensional parameter space require 

the application of soft computing techniques that can greatly 

contribute to achieving a better optimization result. 

3.  THE PRESENTED METHODOLOGY 

This section describes the presented methodology in 

details. The technique is recursive in nature and every step 

consists of three stages. The first stage is the design of 

experiment which aims reducing the possibility of finding a 

local minimum instead of the global one by covering the 

whole parameter space. During the second stage a model is 

built based on the data gathered from the performed 

experiments. This stage uses soft computing techniques for 

mapping the unknown dependencies among the process 

parameters and variables in order to allow the model based 

calculation of optimization objectives, too. Finally the third 

stage optimizes the process parameters using the previously 

built model(s). The optimization also requires the 

application of soft computing techniques for handling the 

uncertainty and unknown topology of the search space. 

These three stages are described individually in the 

following subsections. 

3.1. Design of experiment 

The first stage is to generate such experimental settings 

in the parameter space that are representative enough to 

provide as much information as possible for the model 

building stage and to cover the whole range of the possible 

machining parameters settings space. To achieve this goal a 

parameter value generator based method was applied to 

ideally cover the parameter space. The method randomly 

generates points in a way that the pair-wise distance between 

them cannot be smaller than a certain threshold. This 

threshold is not constant over the parameter space but it is 

calculated dynamically based on the given point’s location. 

The algorithm generates points in the parameter space in a 

way that they are denser around a predefined experimental, 

quasi optimal point. This technique was introduced because 

in the given application field the expert from the field had a 

hypothesis about the possible area of the optimal point and 

this range is receiving higher priority in the selection of 

experiments around it. This not deterministic, unsure 

expert’s opinion about the rough position of the optimal 

parameter values represents well the uncertainty in the 

whole process that is typical and acceptable in a non-

conventional machining. 

 

Fig. 1. Schema of the generated points in the parameter space. 

Fig. 1. shows how the generated points are laid out in the 

parameter space. The circles around the points denote the 

area where other points cannot be generated. This area is 

smaller around the 2. point than around the 1. point because 

it is closer to the experimental, quasi-optimal point (D). 

3.2. Model building 

This stage is responsible for building a acceptable and 

applicable model of the process based on the data gathered 

by performing the experiments. The applicability of the 

model is highly influenced by how representative the 

experimental settings are in the parameter space. As in most 

cases of process optimization the dependencies among the 

process parameters and variables are unknown but models 

for them are required in order to allow the model based 

calculation of optimization objectives, consequently, soft 

computing techniques can be applied to model these 

connections with certain accuracy. 

In the presented application an Artificial Neural Network 

(ANN) was used to build a model via a learning procedure. 

ANNs are robust computational models with relative high 

accuracy but they have the disadvantage that they are not 

easily interpretable. Neuro-Fuzzy systems solve this 

problem by providing an interpretable fuzzy structure. This 

type of system was used by Uros, Franc and Edi to estimate 

flank wear in end-milling [9] and other applications and 

detailed description about these systems can be found in 

[10]. 

3.3. Optimization 

The final stage is to apply the built model for optimizing 

the process parameters. The model acts as a simulation for 

performing an experiment, so, a high number of 

experimental settings can be evaluated by a soft computing 

optimization technique quickly and in a very cheap way. 

The presented application used the Simulated Annealing 

search algorithm for finding the optimal parameter settings. 

The optimization’s objective function is composed of typical 

performance parameters of machining processes like 

machining time, tool wear rate, costs, etc. 

3.4. Recursive optimization process 

The previously introduced modules cannot guarantee to 

find the global optimum so they are applied recursively until 
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the best solutions are no longer improving. The recursive 

application greatly reduces the possibility of finding a local 

minimum instead of the global one. 

 

Fig. 2. Block diagram of the integrated experimental design and 

optimization methodology. 

Fig. 2. shows the block diagram of the presented 

methodology. The first, second and third module was 

introduced in the previous sections. After the optimization 

stage new experiment settings are generated around the 

found optimum and the procedure starts from the beginning. 

This iteration is continued until there is no improvement 

between the new optimum and the previous one. 

4.  APPLICATION FIELD 

This section gives an overview of the application’s 

background. Non-conventional machining processes are 

characterized in the first subsection and the typical process 

optimization problem is discussed in the second one. 

4.1. Non-conventional machining 

 As definition, non-conventional machining processes are 

either used in very specific industrial applications only or 

are based on such technologies that are not widely used yet. 

Naturally, it results, that in several cases these technologies 

can be very complex making more complicated and difficult 

to optimize their process parameters. Kolláth, Halaj and 

Kureková published a paper about the positioning accuracy 

of non-conventional production machines [11]. They 

specifically deal with machines employing parallel-

kinematics structures (PKS) which are more flexible and 

accurate compared to the conventional structures. They 

show that this positioning technology introduces several 

theoretical problems thus making optimization tasks more 

complex. 

4.2. Uncertain process conditions 

Process optimization tasks often come with uncertain 

process conditions which should be handled in order to 

achieve near-to-optimal results.  

 One of problem is that in certain cases the 

beginning and end of the process cannot be 

determined precisely. For example several 

machining processes behave differently in the 

beginning than near the end or during the main 

period of machining. This means that the 

process breaks down into multiple different 

stages which have to be handled individually. 

The presented application is relying on human 

rough judgment to determine the interval of the 

process stages to be optimized in each 

experiment.  

 An important machining parameter is the tool 

wear that is difficult to determine in many 

cases. Usually some sort of rough estimation is 

used and they tend to be inaccurate.  

 It is worth mentioning that an optimization task 

only contains a handful preselected process and 

performance parameters. In case of non-

conventional machining these are determined by 

experts based on some years of experience but it 

cannot be guaranteed that important process 

parameters weren’t left out thus reducing the 

overall performance of an optimization 

algorithm.  

These are the most important uncertainties but each 

machining carries its own unique ones in addition to these. 

It is important to mention that also technical diagnostics 

can reduce the uncertainty in process conditions by 

monitoring the process and providing a more exact feedback 

about the tool status or about the beginning and end of 

process stages. Bilski wrote about preprocessing methods for 

an artificial intelligence-based diagnostic module which 

minimize the number of features in the training and testing 

dataset [12]. This can yield better diagnostic performance 

and thus assisting process optimization tasks, too. Ciani and 

Catelani proposed a fault tolerant architecture to avoid the 

effects of Single Event Upset (SEU) [13]. Their solution can 

prevent SEU induced failure in avionic applications making 

them safer thus reducing uncertainty in the system. 

5.  APPLICATION RESULTS 

The introduced concept was applied for a non-

conventional machining process optimisation and the 

experiments were carried out with the cooperation of 

company specialised in non-conventional machining. As 

mentioned before as example, the process starting and 

ending point is not accurate it was estimated by process 

engineers as a rough estimation with some typical 

deviations, like early or delayed setting, missing start or end 

situations, etc. Also, the tool wear was not measured or 

estimated in an accurate way. Also in some cases the 

possible lower and upper limits of the process parameters 

were not given exactly. On the other hand the currently 
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applied settings and also some ideas about the possible field 

of the assumed optimal machine settings drove the 

optimisation, too. The following paragraphs present the 

different stages of the optimisation process. 

5.1. Experiment plan 

The first stages of every iteration are the generation of 

experiment settings in the parameter space. In the first 

iteration there were 150 measurements and 10 more were 

added in each of the next iterations, as new experiments near 

the actually given optimal solution. 

 

 

Fig. 3. Parameter space of two of the technological parameters 

(normalized values) 

Fig. 3. shows the generated points in the first three 

iterations in the space of two of the technological 

parameters. Iteration 1 denote the first 150 measurement 

points. This initial set were used in the next stages for 

building up the model between technological parameters and 

the process cost and resulted in the first optimum point 

denoted Optimum 1. Then 10 points were selected around 

the Optimum 1, these are denoted by Iteration 2 (the new 

experiment points are generated around the optimum in a 

higher dimensional space, so in the selected two dimensions 

they may appear far). Then the next stages were repeated 

according to the methodology with the extended dataset 

which is the union of Iteration 1 and Iteration 2. 

Subsequently the resulted optimum was Optimum 2 and 

Iteration 3 denotes the next 10 points to be added.  

5.2. Model building 

This stage follows iteratively the experiment generation 

and is using the generated technological parameter settings 

as inputs and the measured cost as output and building the 

model which will be used in the optimisation process. 

 

Fig. 4. Estimated cost of the trained model compared to the real 

cost (normalized values) 

Fig. 4. shows the accuracy of the built cost model in the 

first iteration (first experimental runs). The model was 

trained with 150 samples and achieved 3.91% Mean Squared 

Error (MSE) in the first iteration. This accuracy can be 

considered satisfactory taking into consideration the 

uncertain process conditions, especially as the first 

experimental set. 

5.3. Optimization 

After building up the cost model by an ANN, the 

optimisation procedure can be started. This stage uses the 

previously built model to estimate the cost of any given 

point of the parameter space. 
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Fig. 5. Measured and estimated cost values as a function of two 

of the technological parameters (normalized values) 

Fig. 5. shows measured and estimated cost values in the 

dimension of two parameters. The x axis denotes the range 

of a technological parameter and the y axis shows the 

corresponding cost value. Red circles mark the experimental 

settings of the given parameter and the measured cost, while 

the blue circles show the cost as the function of the given 

parameter having set the optimal values to the other 

parameters. In other words the blue circles show how the 

optimal cost changes depending on one of the parameters if 

the others are set to the optimal value found by the 

algorithm. The diagram on the top shows a technical 

parameter that has minimal influence on the cost, so it can 

be set to any value if the rest of the parameters are set to the 

optimal value. By contrast, the diagram on the bottom shows 

a technical parameter which is inversely proportional to the 

cost. 

5.4. Iterated application 

The previous three stages compose the core of the 

iterated methodology. These are repeated in order until a 

stable optimum point can be acquired. 

 

Fig. 6. Estimated cost of the optimum and model error over the 

iterations (normalized values) 

Fig. 6. shows how the cost and model error changes over 

the iterations. In the first few iterations the cost of the 

optimum is negative because the built model inaccurately 

learns from the experimental dataset of 150 points, 

consequently at the beginning there are not enough 

measurements to cover the whole space of technological 

parameters. As more and more measurement are done and 

added to the training dataset the model error grows, but the 

cost is becoming stable. The increase in the model error is 

relatively small and is inherited from the increased number 

of experimental measurement points and not from the 

significant model accuracy reduction. 

 

 

Fig. 7. Stability of the optimum points over the iterations 

(normalized values) 

Fig. 7. shows two parameter pairs where the optimum 

points changes differently. The upper diagram shows the 

change of the optimum machining values in the space of two 

significant parameters, where the rhombus denotes the 

starting optimum and the triangle denotes the final optimum 

point. It can be seen that after the first few iterations the 

optimum reaches a stable point. By contrast the bottom 

diagram shows two parameters which have minimal 

influence on the cost and the optimum almost randomly 

changes its location over the iterations. This means that 

these parameters can be set almost to any value; they won’t 

increase the cost of the process. 

The application of the introduced iterative, soft 

computing based optimisation technique on the analysed 

non-conventional machining process served with the 

expected, continuously improving optimal values and with 

more stable optimisation points.  

The productivity of the company in the selected process 

increased to around 300% but in daily production this rate is 

“only” around 200% because other (micro downtimes, 

human manipulations, positioning times, non-time based 

cost drivers) factors restricted the speed up of the whole 

production system. This significant results were received in 

case of non-conventional processes under uncertain 

machining conditions. The mathematical results and the 

doubling of the productivity of the firm proved the 

efficiency and effectivity of the novel, introduced algorithm. 

The fact the previous experimental design based 

optimisation trials (using various Taguchi methods) did not 

found the optimal machining setting but the current 

proposed solution was able imply that the proposed method 



can go beyond the classical methods, e.g. when 

dependencies among parameters are highly non-linear. 

6.  CONCLUSIONS 

The paper presented an integrated, interative 

experimental design and optimization methodology and its 

successful application in non-conventional machining 

process optimization. An integrated recursive technique was 

presented consisting of three stages: the first for the 

experimental design, the second for model building and the 

third for process optimization. Non-conventional machining 

and typical problems of process optimization were discussed 

for presenting the background of the application. 

Further research could be aimed at using Neuro-Fuzzy 

systems in the model building stage to yield a more 

interpretable structure of the inner connections between the 

process parameters, production costs and quality parameters. 

Other search algorithms can be applied in the optimization 

stage, too. 
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