
NESUS
Network for Sustainable Ultrascale Computing

IC1305

Second NESUS Workshop • September 2015 • Vol. I, No. 1

Scheduler hierarchies to aid peta-scale cloud
simulations with DISSECT-CF

Gabor Kecskemeti

Laboratory of Parallel and Distributed Systems at the Institute for Computer Science and Control
of the Hungarian Academy of Sciences (MTA SZTAKI), Kende u. 13-17, Budapest 1111, Hungary

kecskemeti.gabor@sztaki.mta.hu

Abstract

IaaS cloud simulators are frequently used for evaluating new scheduling practices. Unfortunately, most of these
simulators scarcely allow the evaluation of larger-scale cloud infrastructures (i.e., with physical machine counts
over a few thousand). Thus, they are seldom applicable for evaluating infrastructures available in commercial cloud
settings (e.g., users mostly do not wait for simulations to complete in such settings). DISSECT-CF was shown to
be better scaling than several other simulators, but peta-scale infrastructures with often millions of CPU cores were
out of scope for DISSECT-CF as well. This paper reveals a hierarchical scheduler extension of DISSECT-CF that
not only allows its users to evaluate peta-scale infrastructure behaviour, but also opens possibilities for analysing
new multi-cloud scheduling techniques. The paper then analyses the performance of the extended simulator through
large-scale synthetic workloads and compares its performance to DISSECT-CF’s past behaviour. Based on the
analysis, the paper concludes with recommended simulation setups that will allow the evaluation of new schedulers
for peta-scale clouds in a timely fashion (e.g., within minutes).

Keywords Cloud computing, simulator, petascale, hierachical scheduling

I. Introduction

Cloud computing infrastructures [1] have rapidly de-
veloped into a commodity. Based on virtualisation
technologies, they offer simple and straightforward
management capabilities for virtual infrastructures.
As a result, users of Infrastructure as a Service (IaaS)
clouds can more rapidly respond to their ever changing
demand patterns, while they do not have to face the ev-
eryday issues that would arise with the maintenance of
physical infrastructures. Because of the many benefits
of IaaS clouds, their adoption has became widespread.

Unfortunately, this widespread use limits research
on the internal behaviour of IaaS clouds. To overcome
these limits, researchers often turn to cloud simulators
to analyse their new ideas [2]. These simulators al-
low rapid evaluation of many new scenarios; however,
they frequently have scaling issues of their own. Thus,
they restrain those scenarios that can be evaluated with
them. And even in cases when they scale well for the

larger-scale simulation needs of recent cloud infras-
tructures, they are too specialised for general research
(e.g., they do not allow simultaneous evaluation of
both cloud internals and user side behaviour).

DISSECT-CF (DIScrete event baSed Energy Con-
sumption simulaTor for Clouds and Federations [3])
was proposed as a general purpose, compact, highly
customisable open source cloud simulator with spe-
cial focus on the internal organisation and behaviour
of IaaS systems. Compared to other state-of-the-art
cloud simulators its performance is already amongst
the best. However, even DISSECT-CF has scaling issues
when it needs to simulate such large-scale computing
infrastructures as the front entries in the top500 super-
computers list1.

This paper analyses past DISSECT-CF behaviour
when simulating infrastructures similar to the ones
listed amongst the top500 supercomputers. Based on

1http://top500.org

1

mailto:kecskemeti.gabor@sztaki.mta.hu


Second NESUS Workshop • September 2015 • Vol. I, No. 1

the analysis, the paper concludes that the large amount
of physical machines (handled by a single virtual ma-
chine – VM – placement technique) cause the scaling
issues in the past simulator. Therefore, this paper
proposes a generic technique to organise scheduler hi-
erarchies in DISSECT-CF. These hierarchies allow the
reduction of the number of machines handled by a
single VM placement technique. In order to overcome
the inefficiencies that could be caused by the newly
introduced hierarchies, the simulator now introduces
several ways for interacting between the various levels
of the scheduler hierarchy: (i) automated high-level
VM request revocation, (ii) VM request rejection, (iii)
automated hierarchy setup and (iv) VM request prop-
agation though cloud boundaries.

Although the introduced hierarchies are good to in-
crease the scalability of the simulator and allow the
evaluation of larger-scale systems, the newly proposed
technique is still limited by several factors: (i) it cannot
support nodes with mixed accelerator-CPU constructs
– accelerator-CPU interactions cannot be handled with
the new hierarchical model because the new model
is limited to a hierarchy of a single kind of resource
(because of a limitation in DISSECT-CF)–, (ii) simi-
larly, inhomogeneous multi-cloud systems are still out
of scope, (iii) the automated hierarchy setup is de-
pendent on the kind of simulated workload – with
improper hierarchy setup, the simulation might still
face scalability issues–, and finally (iv) the relation be-
tween the actual layout of the simulated infrastructure
and the real one can become very detached (the auto-
matically introduced hierarchies usually have different
layout than the actual racks, clusters and data centres
in an IaaS).

The paper concludes with the analysis of the new hi-
erarchical scheduling. Using synthetic traces a compar-
ison is shown between the past and current simulator
with infrastructures ranging from a few thousand to
almost two million CPU cores. The behaviour of the
extended simulator is also compared to CloudSim [4],
revealing that DISSECT-CF has a performance advan-
tage between 5-136× over CloudSim. Even compared
to its past self, the new DISSECT-CF performs signif-
icantly better and its hierarchical scheduling mecha-
nism could provide up to four-fold performance in-
crease in smaller-scale infrastructure simulations, and

a performance improvement of over 92× is observable
for large-scale simulations.

The rest of the paper is structured as follows: the
paper continues with studying state-of-the-art simula-
tors to reveal their problems. Then, in Section III, the
paper introduces a new hierarchical VM scheduling
technique for DISSECT-CF. Next, the paper presents a
performance evaluation for the improved simulator in
Section IV. Finally, the paper provides its conclusive
thoughts in Section V.

II. Related Works

CloudSim [4] is amongst the most popular IaaS cloud
simulators. It introduces the simulation of virtualised
data centres mostly focusing on computational inten-
sive tasks and data interchanges between data centres.
An extension called NetworkCloudSim [5], improved
its support for in-data-centre network communications.
There is also an extension that simulates the energy
consumption of the physical machines in a data centre
based on specpower benchmarks [6]. CloudSim also
ignited an ecosystem around it adding performance
improvements, inter-cloud operations and GUI wrap-
pers for teaching [7, 8, 9, 10]. Despite its widespread
use and its healthy ecosystem, research done with
CloudSim is mostly limited to clouds with a few thou-
sand CPU cores. This limitation severely affects the
applicability of the results of CloudSim based simula-
tions.

The SimGrid framework [11] is another widely used
simulator for analysing distributed systems (e.g., grids,
peer-to-peer systems). This simulator is not focused
on clouds and only includes constructs to support
virtualisation (e.g., hypervisors and live migration –
[12]). Unfortunately, the lack of higher-level cloud
related constructs reduces the applicability of SimGrid
in most cloud simulation scenarios. Its users would
need significant expertise in every cloud management
issue so they can build and evaluate complete cloud-
like scenarios.

Next, an analysis of GroudSim, which is a simula-
tor developed at the University of Innsbruck [13, 14],
was performed. This simulator aims at runtime per-
formance, while it also integrates with the ASKALON
workflow system. Until recently this simulator fol-

2



Second NESUS Workshop • September 2015 • Vol. I, No. 1

lowed a black box model (i.e., it did not simulate
any internal details of the cloud management be-
haviour). Nowadays, GroudSim incorporates the
DISSECT-CF simulator to enable the simulation of in-
ternal IaaS behaviour [15]. However, the complex cross-
simulation synchronisation and workflow orientation
of GroudSim makes it less scalable than DISSECT-CF
alone.

While the previously mentioned simulators were
heavily influenced by past simulators of grids and/or
distributed systems, for performance reasons, they also
made compromises on the simulation of networking
functionalities. Such issues are resolved by simula-
tors like iCanCloud [16] and GreenCloud [17]. These
are built on network simulators (e.g., OMNeT++ or
NS2) to most accurately simulate network communi-
cations in cloud systems. Other than their networking
improvements, GreenCloud also offers precise energy
estimates for networking and computing components,
while iCanCloud is also user oriented and thus offers
support in the decision making regarding the use of
IaaS systems [18]. As these simulators are network
oriented, their use cases are different from the rest
of the simulators discussed in this section (e.g., they
are mostly used to evaluate localised phenomena thus
their scaling capabilities are not relevant).

Finally, there are some specialised simulators like
xSim [19] and SimMatrix [20]. These simulators are
proven to perform well for large-scale systems, but
their scope is limited. For example xSim is focusing
on the analysis of MPI workloads in exa-scale systems,
while SimMatrix is focused on many task computing.
Because of their over-specialisation these simulators
are not suitable for analysing general problems in large-
scale systems.

II.1 Problem Statement

After analysing the prior art, it can be concluded that
existing simulators have many drawbacks for those
planning to investigate scheduling in large-scale IaaS
systems (e.g., they do not provide foundations for
constructing scheduling hierarchies instead they expect
their users to construct the hierarchies on their own).
To fulfil the needs of such scheduling scenarios, the rest
of this paper reveals a new hierarchical virtual machine

Infrastructure Simulation
PMVM Network Node

Unified resource sharing

ResourceSpreader
Resource Consumption Resource Scheduler

Energy Modeling

Energy Meter
Power State Consumption Model

Event system
Timed Deferred Event

Infrastructure Management

IaaSService
VM Scheduling PM Scheduling Repository

Figure 1: The architecture of DISSECT-CF

scheduling technique to be applied by the DISSECT-CF
simulator. With the use of this technique researchers
will have better insights on infrastructure behaviour
even if significantly larger-scale systems are simulated
than it was previously possible by past simulators.

III. Generic Hierarchical Scheduling

III.1 Overview

DISSECT-CF [3] is a compact, customisable open-
source simulator with focus on the internal organisa-
tion and behaviour of IaaS systems. Figure 1 presents
its architecture. The figure groups the major compo-
nents with dashed lines into subsystems. Each subsys-
tem is implemented as independently from the others
as possible. There are five major subsystems each
responsible for a particular aspect of internal IaaS func-
tionality: (i) event system – for a primary time refer-
ence; (ii) unified resource sharing – to resolve low-level
resource bottleneck situations; (iii) energy modelling –
for the analysis of energy-usage patterns of individual
resources (e.g., network links, CPUs) or their aggrega-
tions; (iv) infrastructure simulation – to model physi-
cal and virtual machines as well as networked entities;
and finally (v) infrastructure management – to provide
a real life cloud like API and encapsulate cloud level
scheduling (the target of this paper’s improvements).

III.2 Scaling Bottleneck

Although the simulator was designed from the begin-
ning with high scalability in mind, the performance
of its VM placement mechanisms is dependent on the
number of physical machines registered at an IaaS
service. Thus, to reduce this bottleneck, but to allow

3



Second NESUS Workshop • September 2015 • Vol. I, No. 1

simulator developers to still design simple schedulers,
a new hierarchical solution was needed. This new
solution must allow the old scheduling mechanisms
to work without even knowing that they only play a
small role in a large-scale simulation, but the simu-
lator’s users should also have a chance to alter the
hierarchy and the way higher-level schedulers interact
with the original scheduling mechanisms.

III.3 Hierarchical Scheduling

III.3.1 Generic Scheduling

The new hierarchical scheduler concept of DISSECT-
CF is built around the following functionalities: (i)
schedulers should be able to propagate VM requests
amongst each others, (ii) higher-level schedulers
should be able to cancel requests, (iii) independently
from the level of the scheduler, the same scheduling
interface must be used (allowing to implement even
cross-cloud scheduling mechanisms). In the following
paragraphs, these functionalities are detailed.

VM propagation The hierarchical scheduler interface
is expected to be implemented by every entity in the
system who is planning to accept VM requests (ranging
from Physical Machines, to low-level VM schedulers to
even IaaS systems). This interface contains the follow-
ing operations: (i) VM request, (ii) VM termination,
(iii) VM migration, (iv) VM request cancellation and
(v) VM resource reallocation. With the “standardised”
interface it is not only possible to migrate VMs across
various VM managers but also possible to create feder-
ations of multiple IaaS systems. In the new hierarchy,
VM requests are propagated until they reach a physical
machine that can serve them. If there are no physi-
cal machine that can serve a request in a low-level
scheduler (one that directly interacts with physical ma-
chines), then the scheduler is allowed to queue the VM
request. If the VM request is handled by an entity that
does not directly interact with physical machines, then
based on a scheduling policy it must decide to which
lower-level scheduler it propagates the VM request (it
cannot queue the request on its own). The selection
of the lower-level scheduler can be accomplished by a
range of techniques. The simulator currently delivers

a random, a round robin and a weighted probabilistic
scheduler selection technique (where VM requests are
propagated to lower level schedulers that are less likely
to queue them).

Automated request cancellation and resubmission
As with many hierarchical schedulers in the past, it
could frequently happen that one of the low-level
schedulers gets overloaded with VM requests while
others are left with very little work to do (this is a likely
scenario with weighted probabilistic techniques). In
order to automatically avoid bottlenecks, DISSECT-CF
contains an automated request cancellation and resub-
mission technique. Upon submitting a VM request,
higher-level schedulers will tag the request with an ex-
piration time. This tag will be a timestamp after which
time the lower-level scheduler is not allowed to serve
the VM request, instead the request should be sent
back to the higher-level scheduler who sent it. This
tagging mechanism allows the low-level schedulers to
prioritise the almost expired requests (as a measure of
keeping service level objectives). Also, the high-level
schedulers could penalise those lower-level schedulers
that did not succeed in completing their designated
VM requests within the expected period of time. In
order to refrain VM requests from getting cancelled too
frequently, the high-level schedulers analyse the VM
throughput of each of their underlying schedulers and
they set up VM request termination times so requests
will expire with a small likelihood (in the current sim-
ulation setup, the resubmission rate is set up to be
around a single request out of every thousand).

VM request rejection As VM requests received by
lower-level schedulers are tagged with their expira-
tion times, the low-level schedulers can decide if they
are willing to queue such requests. When a tagged
request arrives, the scheduler will automatically re-
ject the request if its queue is significantly longer than
the queues of other schedulers with similarly sized
managed infrastructures.

III.3.2 Automated Hierarchy Formation

The simulator allows the precise definition of the hi-
erarchy of the schedulers during the construction of

4



Second NESUS Workshop • September 2015 • Vol. I, No. 1

IaaSServices, ensuring that it matches the real life hi-
erarchies set up in large scale cloud systems. However,
to allow investigations about the effect of different hi-
erarchies, this definition is not obligatory. If the user
prefers, the hierarchy can be automatically constructed.
The automatic hierarchies can even evolve during the
entire runtime of a simulation (allowing the user to
investigate several hierarchy adaptation scenarios and
their effect on runtime). Also, the simulator can save
an automatically determined hierarchy for later use, so
users will have a chance to reuse previously efficiently
working hierarchies (this option also allows users to
utilise the auto constructed hierarchies outside of the
simulated world and check the correctness of their
simulations in real life).

The simulator allows the creation of the following
kinds of schedulers (all these schedulers are also exem-
plified in Figure 2):

Regular schedulers. These schedulers have an
IaaSService as their parents and they manage
physical machines directly. These are the original
kinds of schedulers possible in the simulator.

Low-level schedulers. They manage physical machines
directly, but their parents are not IaaSServices.
Instead they are operating with a high-level sched-
uler.

High-level schedulers. They do not directly operate
with physical machines, they handle the VM re-
quests as discussed in the previous sub-section.
They can be classified into two subtypes:

Mid-level schedulers. They are placed in the mid-
dle of the hierarchy, they forward VM re-
quests from their parents to their directly
managed schedulers. They can either man-
age both high and low-level schedulers.

Ingress schedulers. They have an IaaSService
as their parents, and they can act as either
mid-level schedulers (if acting as an entry to
a hierarchy) or as regular schedulers (if no
hierarchy is needed).

Creating scheduler profiles. Before running the sim-
ulator with automated scheduling hierarchy man-
agement for realistic workloads, the hierarchy cre-
ation technique needs a profile for the user provided

low-level schedulers (for the schedulers integrated in
DISSECT-CF these profiles are already done). The pro-
file creation starts with the specification of the total
number of CPU cores – Cmax – the simulated infrastruc-
tures should have during the profiling session. Next,
several IaaSServices are created with varying number
of CPUs in each physical machine – cpm ∈ Cpm, where
Cpm = {∀x : (x ∈ N) ∧ (1 < x < Cmax)} – ensuring
that the complete size of the infrastructure is matching
the previously given total (e.g., with 8 CPU physical
machines the number of physical machines should be
Cmax/8). Then, on each IaaSService the same ran-
domly generated VM utilisation trace is executed (the
trace’s properties can be user defined). The execution
time – tex : Cpm → R – is recorded for all cases and
they are written to the profile for the user provided
low-level scheduler (examples of such profiles can be
seen in Figures 4 and 5). The profiling executed on
this way to ensure that the simulated infrastructure’s
size does not unnecessarily prolong the profiling pe-
riod, and instead, only the PM count related scaling
properties of the low-level scheduler do.

From the collected profile, the automated hierarchy
creator determines the optimal amount of physical
machines:

pmopt := Cmax/copt (1)

where tex(copt) = min
∀(cpm)

(tex(cpm))

The optimal amount of machines is calculated as the
ratio between the maximum amount of CPU cores used
during the profiling – Cmax – and the specific number
of CPU cores per machine – copt – which resulted in
the smallest profiling execution time. Each low-level
scheduler has a specific optimum value. Users can also
specify an operationally acceptable pm count range for
their scheduler relative to the pmopt value. The range
is specified with τ ∈]0..1] which shows the difference
allowed in the percentage of the execution time entries
in the profile compared to the minimum execution
time recorded for pmopt (i.e., tex(copt)). Thus:

Cacc := {∀cx : cx ∈ Cpm ∧ |1−
tex(cx)

tex(copt)
| < τ}(2)

PMacc := {Cmax/cx : cx ∈ Cacc} (3)

Where the set of Cacc defines all the CPU core num-

5



Second NESUS Workshop • September 2015 • Vol. I, No. 1

Legend

VM Scheduler IaaS Service Physical Machine VM Request propagation Hierarchy management

Regular 
Scheduler

PMPMPMPM
PMPMPMPM

IaaS
Service

Ingress Scheduler

Mid-level scheduler

Low-level 
scheduler

Low-level 
scheduler...

Mid-level scheduler

Low-level 
scheduler

Low-level 
scheduler...

PMPMPMPM
PMPMPMPM

PMPMPMPM
PMPMPMPM

PMPMPMPM
PMPMPMPM

PMPMPMPM
PMPMPMPM

IaaS Service

H
ierarchy

M
anager

Low-level 
scheduler

Low-level 
scheduler...

Ingress Scheduler

PMPMPMPM
PMPMPMPM

PMPMPMPM
PMPMPMPM

IaaS Service
H

ierarchy
M

anager

Figure 2: The kinds of scheduling hierarchies and schedulers possible in the new extended simulator

bers that resulted in profiling execution times within
the user specified range. While PMacc is the set
of PM numbers for which the profiling suggests ac-
ceptable scheduling performance according to the
user specified range. The hierarchy creator will use
only the minimum pml = min PMacc and maximum
pmh = max PMacc values from the PMacc set to deter-
mine under what conditions it does not need to alter
the previously constructed hierarchy.

Managing scheduler hierarchies using profiling re-
sults. When a new PM is registered in the infrastruc-
ture under the control of a high-level scheduler, the hi-
erarchy manager will register the PM in a round robin
fashion to the underlying schedulers. Once the super-
vised PM count for a particular low-level scheduler is
reached (i.e., it reaches over pmh), the hierarchy man-
ager realigns the PMs amongst the currently registered
schedulers (ensuring a uniform PM count distribution
amongst all its managed low-level schedulers). If it is
not possible to realign the PM set without violating the
maximum PM count limit set by the user, then the hi-
erarchy manager will create a new low-level scheduler
and start the realignment process again. This process
is repeated until the number of physical machines reg-
istered under a particular low-level scheduler reaches
pmopt.

As PMs belong to a particular low-level scheduler,
when they are deregistered, their past low-level sched-
uler will have a less balanced pm count. The hierarchy
manager will not react to this unbalance until the PM
count in one of the low-level schedulers reach pml . In
such case, first the hierarchy manager tries to realign

the PM set of all low-level schedulers so their man-
aged PM set will be equally sized. If this approach
still leaves some low-level schedulers with too low
PM counts then those schedulers are eliminated from
the system and their PMs are distributed amongst the
still remaining low-level schedulers by the hierarchy
manger. The elimination process is continued until the
PM set of each managed low-level scheduler is sized
around pmopt.

So far we have discussed the situation for high-level
schedulers that are directly in contact with low-level
ones. In some cases the number of their directly man-
aged schedulers reach the boundaries of the optimally
operated scheduler set size. In those cases they get
in touch with the hierarchy manager. The manager
will either create secondary schedulers alongside the
scheduler in question or eliminate one with similar
techniques discussed for low level schedulers. The dif-
ference: the profile created for these high-level sched-
ulers are defined in terms of the number of directly
managed schedulers instead of the number of super-
vised PMs in a low-level scheduler. In both cases the
hierarchy manager tries to equalise the number of
PMs under a particular scheduler before creating or
eliminating a high-level scheduler. The physical ma-
chine counts are also automatically determined and
realigned if some low-level schedulers are preferred
more than the others.

Finally, the hierarchy manager is operated alongside
the ingest scheduler, the top scheduler in the hierarchy.
This scheduler is the one that will be responsible for
receiving the VM management operations from the
IaaSService. Also, as future work, the automated

6



Second NESUS Workshop • September 2015 • Vol. I, No. 1

Sheet1

Page 1

9.50E+001

9.50E+002

9.50E+003

9.50E+004

9.50E+005

time →

N
u

m
be

r 
o

f p
ro

ce
ss

o
rs

 u
se

d

Figure 3: Example synthetic workload

hierarchies can follow the rules of software defined
networking to have a more realistically constructed
data centre layout.

IV. Evaluation

IV.1 Simulation Setup

Throughout the evaluation section, the following ma-
chine was used for executing the simulations: AMD
Athlon FX 8120, 16 GB RAM, 128 GB SSD. The sim-
ulations were all set up and run in a controlled envi-
ronment, the machine was never executing anything
else just the simulators themselves. As workload traces
for peta scale infrastructures are not yet public, in all
the following cases the simulators were running a syn-
thetic workload with similar characteristics than the
one shown in Fig. 3. This synthetic workload has a
peak utilisation with the same number of nodes as
the simulated infrastructure has. This utilisation is
the result of a randomly generated amount of virtual
machine requests at a given time, and filling up the
VMs with as many jobs as many needed to reach the
expected utilisation profile at the given time instance
(e.g., a particular VM in the load could host no jobs
at all, but in some cases they can be filled up with
several hundred if the VM’s resources would not get
exhausted by that many jobs). Also, the number of
utilisation peaks can be configured and during the
evaluation runs it was set up to be between 4-10 (the
actual number of peaks was determined so it has had
a stabilising effect on the simulation runtime – i.e., the
number of peaks was set so the consecutive simula-
tion runs have had small variance in their runtimes).
Throughout this paper the following simulators were

used: (i) DISSECT-CF 0.9.5 – as the old reference point
that represents the latest stable release of the simulator
without any peta-scale optimisations, (ii) DISSECT-CF
0.9.6 – as the last released version, (iii) DISSECT-CF
0.9.7∗ – the simulator incorporating the hierarchical
extensions of this paper, and (iv) CloudSim 3.0.3 DVFS
extensions – the independent reference point. Finally,
it was ensured that independently from the simulator
used, the program that set up and run the simulations
was never consuming more CPU than 1% of the total
CPU consumption of a simulation (this step assured
that the below presented results are influenced mainly
by the investigated simulators and not by the addi-
tional code used for the evaluation).

The simulated results of the extended DISSECT-CF
simulator were validated by comparing its results to the
past validated DISSECT-CF 0.9.5 results as well as to
the results obtained from CloudSim 3.0.3 DVFS. After
executing a workload in a simulation, the termination
time of the last virtual machine was noted. These
times were compared with both past simulators. The
new simulations yielded final termination times within
0.05% of the older simulators, while significantly im-
proving on simulation performance.

IV.2 Measurements

During the first measurements, basic scaling proper-
ties were investigated for all simulators. For this ex-
periment, a 5000 core infrastructure was set-up in the
simulators. The composition of the infrastructure was
changed to range from a single node (with 5000 cores)
to 5000 nodes (with a single core each). This experi-
ment was designed to show the bottleneck situations
in both the simulator’s resource sharing mechanism
and in its default virtual machine scheduler. Also, this
experiment actually replicates the profiling technique
introduced in Section III.3.2.

Figure 4 reveals the results of this first experiment.
In the experiments utilising simulated infrastructures
with less than 10 hosts, the resource sharing mecha-
nism of the simulator is more dominant (i.e., the mech-
anism that determines how the resources of a single
physical machine are shared amongst the VMs it is
hosting). Similarly, experiments, with infrastructures
consisting of over 1000 hosts, were dominated by the

7



Second NESUS Workshop • September 2015 • Vol. I, No. 1

5000 cpus

Page 1

1 10 100 1000 10000
1000

10000

100000

1000000
0.9.5 0.9.6

0.9.7* CloudSim-3.0.3DVFS

No. hosts

S
im

ul
at

io
n 

tim
e 

(m
s)

Figure 4: Small-scale measurement utilising an infrastruc-
ture with 5000 CPU cores (distributed amongst a varying
number of hosts)

virtual machine scheduler’s performance (i.e., in these
cases it was very unlikely to have multiple virtual ma-
chines hosted in a single physical machine, thus the
assignment mechanism of the virtual machines to phys-
ical ones become more dominant in execution time).
As it can be seen, DISSECT-CF has a bigger overhead
for resource sharing than CloudSim: DISSECT-CF pre-
viously had a 33% performance loss if the 5000 cores
needed to be scheduled by the resource sharing mech-
anism of the simulator, while in case of CloudSim a
virtual machine scheduler has a 86% performance loss.
Next, the evaluation of DISSECT-CF 0.9.7 and its hier-
archical extensions show that an over 8.8× improve-
ment is achievable by just switching to the hierarchical
scheduler. Remarks: the hierarchy built up by the new
automated mechanism consisted of 10 low-level vir-
tual machine schedulers and one high-level scheduler
acting as ingress. Also the number of utilisation peaks
was set to 10 as that gave the most stable measure-
ments after evaluating the sample standard deviation
of the measured runtimes of simulations.

Because of performance issues, only the first exper-
iment was evaluated with CloudSim. The rest of the
simulations are compared to past DISSECT-CF versions
only as CloudSim based results were not obtainable in
feasible time.

Next, the above discussed experiment was repeated
with 50000 cores. This experiment was executed to
show how the simulator scales in a well defined and
controlled environment. The number of utilisation
peaks was kept at 10 in order to allow a more direct
comparison with the results from the previous exper-

50000 cpus

Page 1

1 10 100 1000 10000 100000
5000

50000

500000

5000000

50000000

0.9.5 0.9.6 0.9.7*

No. hosts

S
im
ul
at
io
n 
tim
e 
(m
s)

Figure 5: Medium-scale measurement using an infrastruc-
ture consisting of 50000 cores (distributed amongst a vary-
ing number of hosts)

PetaScale

Page 1

Sequoia K computer
100000

1000000

10000000

100000000
0.9.5 0.9.6 0.9.7*

S
im
ul
at
io
n 
tim
e 
(m
s)

Figure 6: Peta-scale measurement

iment. The hierarchy built up by the new automated
mechanism consisted of 50 low-level virtual machine
schedulers. The results of this second experiment are
shown in Fig. 5. As it can be seen, the hierarchical
extension now improves with over 111× compared to
the original DISSECT-CF 0.9.5 version. The figure also
reveals, that it is not recommended to use hierarchical
virtual machine schedulers in case there are too few
physical machines on which these schedulers can place
the requested VMs (e.g., performance degradation is
observable for simulations with less than 600 hosts –
the worst case degradation reaches 33%). In terms of
scaling, the 5000 node infrastructure performs 1.72×
better when there are more CPU cores supervised by
a single node (the 50000 core experiment executed
with 64VMs/ms – virtual machines processed per mil-
lisecond – while the 5000 core experiment achieved a
performance of 37VMs/ms).

Finally, two peta-scale experiments were also exe-

8



Second NESUS Workshop • September 2015 • Vol. I, No. 1

cuted. For these experiments, two of the top supercom-
puters were selected and their infrastructures were con-
structed in the simulator. The selected supercomputers
were chosen with two criteria: they should be listed
amongst the top 10 from the top500 supercomputers
list, and they should not have accelerators augment-
ing their computing power (this second requirement is
needed because the current simulator cannot handle
tasks running simultaneously on an accelerator and on
a CPU core). The two supercomputers fulfilling these
requirements:

• Sequoia – with 1,572,864 CPU cores in 98,304
nodes.

• K Computer – with 705,024 CPU cores in 88,128
nodes.

These two large-scale systems were simulated in the
various versions of DISSECT-CF with 4 utilisation
peaks for Sequoia and 6 utilisation peaks for the K
Computer. Figure 6 reveals the measured results. As
it can be seen, without the hierarchical extensions of
DISSECT-CF, the simulations complete in over 3 hours
(best case with the fastest 0.9.6 version without hier-
archical scheduling). Thus it is not realistic to expect
users of the simulators that they can execute hundreds
or even thousands of scenarios for their research. How-
ever, with the hierarchical extensions even the peta-
scale simulation reaches a manageable less than 4 min-
utes runtime. The automatically created hierarchy is
still only two levels deep for these large-scale infrastruc-
tures (the third level of the hierarchy would appear for
exa-scale simulations), but now consists of a little over
100 smaller infrastructure fragments. The resulting
performance increase is between 91-139× compared to
the original hierarchy-less simulations.

V. Conclusions and Future Works

This paper presented a new hierarchical VM schedul-
ing technique for the DISSECT-CF simulator. The new
scheduling technique is aimed at large-scale simula-
tions (in the current paper it is focused on simulating
peta-scale systems). The paper shows that the new
technique can successfully reduce the time required
for simulations on such scale. The observable perfor-
mance improvements are enabling the application of

the DISSECT-CF simulator during the evaluation of
even peta-scale cloud systems (e.g., systems similarly
constructed as the Sequoia or K computer present in
recent top500 lists).

Regarding future works, the results presented in this
paper is just the first step in many to enable a generic
cloud and distributed systems simulator to cope with
such large-scale systems like the commercially avail-
able Amazon EC2. In the following, the simulator is
intended to be improved with GPGPU support to fol-
low the trends of the accelerator based systems. Also,
further research is needed to identify the peculiarities
of the various interconnects in these large-scale sys-
tems. This new research will allow DISSECT-CF based
simulations to handle infrastructures with mixed inter-
connects or federation of infrastructures with different
interconnect technologies.

Acknowledgement

This work was partially supported by the European
Union’s Horizon 2020 programme under grant agree-
ment No 644179 (ENTICE), by the COST Program
Action IC1305: Network for Sustainable Ultrascale
Computing (NESUS) and by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences.

Software availability

This paper described the behaviour and features of
DISSECT-CF version 0.9.7. Its source code is open and
available (under the licensing terms of the GNU LGPL
3) at the following website:
https://github.com/kecskemeti/dissect-cf

References

[1] M. Armbrust, A. Fox, R. Griffith et al., “Above
the clouds: A berkeley view of cloud comput-
ing,” University of California at Berkley, Tech.
Rep. UCB/EECS-2009-28, February 2009.

[2] G. Sakellari and G. Loukas, “A survey of math-
ematical models, simulation approaches and
testbeds used for research in cloud computing,”
Simul. Model. Pract. Th., vol. 39, pp. 92–103, 2013.

9



Second NESUS Workshop • September 2015 • Vol. I, No. 1

[3] G. Kecskemeti, “DISSECT-CF: a simulator to fos-
ter energy-aware scheduling in infrastructure
clouds,” Simulation Modelling Practice and Theory,
to appear, DOI: 10.1016/j.simpat.2015.05.009, pp.
1–28, 2015.

[4] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A.
De Rose, and R. Buyya, “CloudSim: a toolkit for
modeling and simulation of cloud computing en-
vironments and evaluation of resource provision-
ing algorithms,” Software: Practice and Experience,
vol. 41, no. 1, pp. 23–50, January 2011.

[5] S. K. Garg and R. Buyya, “NetworkCloudSim:
modelling parallel applications in cloud simula-
tions,” in Fourth IEEE International Conference on
Utility and Cloud Computing (UCC). Victoria, NSW:
IEEE, December 2011, pp. 105–113.

[6] A. Beloglazov and R. Buyya, “Optimal online de-
terministic algorithms and adaptive heuristics for
energy and performance efficient dynamic consol-
idation of virtual machines in cloud data centers,”
Concurrency and Computation: Practice and Experi-
ence, vol. 24, no. 13, pp. 1397–1420, Sept 2012.

[7] X. Li, X. Jiang, P. Huang, and K. Ye, “DartCSim:
An enhanced user-friendly cloud simulation sys-
tem based on CloudSim with better performance,”
in 2nd International Conference on Cloud Computing
and Intelligent Systems (CCIS), vol. 1. Hangzhou:
IEEE, Oct 2012, pp. 392–396.

[8] S. Sotiriadis, N. Bessis, N. Antonopoulos, and
A. Anjum, “SimIC: Designing a new inter-cloud
simulation platform for integrating large-scale re-
source management,” in 27th International Confer-
ence on Advanced Information Networking and Appli-
cations (AINA), 2013, pp. 90–97.

[9] Y. Shi, X. Jiang, and K. Ye, “An energy-efficient
scheme for cloud resource provisioning based
on CloudSim,” in IEEE International Conference
on Cluster Computing (CLUSTER). Austin, TX:
IEEE, Sept 2011, pp. 595–599.

[10] Y. Jararweh, Z. Alshara, M. Jarrah, M. Kharbutli,
and M. Alsaleh, “Teachcloud: a cloud computing

educational toolkit,” Int. J. of Cloud Computing,
vol. 2, no. 2/3, pp. 237–257, 2012.

[11] H. Casanova, “SimGrid: A toolkit for the simula-
tion of application scheduling,” in First IEEE/ACM
International Symposium on Cluster Computing and
the Grid. Brisbane, Qld.: IEEE, May 2001, pp.
430–437.

[12] T. Hirofuchi, A. Lèbre, L. Pouilloux et al., “Adding
a live migration model into SimGrid, one more
step toward the simulation of infrastructure-as-a-
service concerns,” in 5th IEEE International Con-
ference on Cloud Computing Technology and Science
(IEEE CloudCom), Bristol, UK, December 2013, pp.
96–103.

[13] S. Ostermann, K. Plankensteiner, R. Prodan, and
T. Fahringer, “Groudsim: an event-based simu-
lation framework for computational grids and
clouds,” in Euro-Par 2010 Parallel Processing Work-
shops, ser. Lecture Notes in Computer Science, vol.
6586. Springer, 2011, pp. 305–313.

[14] S. Ostermann, K. Plankensteiner, D. Bodner,
G. Kraler, and R. Prodan, “Integration of an event-
based simulation framework into a scientific work-
flow execution environment for grids and clouds,”
in Towards a Service-Based Internet, ser. Lecture
Notes in Computer Science. Poznan, Poland:
Springer, 2011, vol. 6994, pp. 1–13.

[15] G. Kecskemeti, S. Ostermann, and R. Prodan,
“Fostering energy-awareness in simulations be-
hind scientific workflow management systems,”
in Utility and Cloud Computing (UCC), 2014
IEEE/ACM 7th International Conference on, Dec
2014, pp. 29–38.

[16] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero,
J. Carretero, and I. M. Llorente, “Design of a new
cloud computing simulation platform,” in Compu-
tational Science and Its Applications-ICCSA 2011, ser.
Lecture Notes in Computer Science. Santander,
Spain: Springer, 2011, vol. 6784, pp. 582–593.

[17] D. Kliazovich, P. Bouvry, and S. U. Khan, “Green-
Cloud: a packet-level simulator of energy-aware

10



Second NESUS Workshop • September 2015 • Vol. I, No. 1

cloud computing data centers,” The Journal of Su-
percomputing, vol. 62, no. 3, pp. 1263–1283, 2012.

[18] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero,
G. G. Castañé, J. Carretero, and I. M. Llorente,
“iCanCloud: A flexible and scalable cloud in-
frastructure simulator,” Journal of Grid Computing,
vol. 10, no. 1, pp. 185–209, 2012.

[19] C. Engelmann, “Scaling to a million cores and
beyond: Using light-weight simulation to under-
stand the challenges ahead on the road to exas-
cale,” Future Gener. Comp. Sy., vol. 30, pp. 59–65,
2014.

[20] K. Wang, K. Brandstatter, and I. Raicu, “Simma-
trix: Simulator for many-task computing execu-
tion fabric at exascale,” in Proceedings of the High
Performance Computing Symposium. Society for
Computer Simulation International, 2013, p. 9.

11


	Introduction
	Related Works
	Problem Statement

	Generic Hierarchical Scheduling
	Overview
	Scaling Bottleneck
	Hierarchical Scheduling
	Generic Scheduling
	Automated Hierarchy Formation


	Evaluation
	Simulation Setup
	Measurements

	Conclusions and Future Works

