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Abstract – The underlying dynamically similar linear 

MIMO LTI model, that can be associated to a 

Lotka-Volterra system model with a positive equilibrium 

point, is used in this paper to design a decoupling 

controller based on Youla-parametrization. The method is 

illustrated on a simple nonlinear fermentation model, 

where the structure of the designed feedback can be related 

to the structure of the original open-loop system. 
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1 Introduction 

 

 A wide range of systems can only be tackled using 

nonlinear techniques [6], that are applicable only for a 

narrow class of nonlinear systems, while the more 

generally applicable methods suffer from computational 

complexity problems. One possible way of balancing 

between general applicability and computational feasibility 

is to find nonlinear system classes with good descriptive 

power but well characterized structure, and utilize this 

structure when developing control design methods. 

 

The class of quasi-polynomial (QP) systems is one of the 

candidates for this purposes, because nonlinear systems 

with smooth nonlinearities can be transformed into 

quasi-polynomial form [5]. This means, that any 

applicable method for quasi-polynomial systems can be 

regarded as a general technique for nonlinear systems. 

QP-systems are invariant under quasi-monomial 

transformation [3], this enables to partition them into 

equivalence classes represented by a Lotka-Volterra (LV) 

system, and use LV models as canonical forms. 

 

Recently, improved methods have been developed for 

stabilizing feedback design of QP systems based on 

control Lyapunov functions [7] and also using the 

underlying reduced linear dynamics [8]. All of the above 

attempts, however, have used polynomial nonlinear 

feedback to achieve their control goals. 

 

The aim of this paper is to apply a linear output feedback 

controller for a special subset of Lotka-Volterra systems 

using a generalization of well-established methods based 

on Youla-parametrization [1], [2]. The structure of the 

controller, namely the inputs and outputs to be used will 

also be related to the structure of the open-loop system 

model. 

 

2 Lotka-Volterra models and their underlying 

linear dynamics 

 

 The so-called quasi-polynomial (QP) model is a set of 

nonlinear ODEs in the form  

 �	
 = �
�
 + ∑���� �
�∏���� ������, � = 1,… ,�.										(1) 

 

where � ∈ ℛ�×� , # ∈ ℛ�×�  are constant parameter 

matrices (coefficient matrix and exponent matrix, 

respectively),  ∈ ℛ�  is a vector. The monomial-like 

terms in (1) of the form  

 $� = ∏���� ����� ,				% = 1, … , &                   (2) 

 

are the so-called quasi-monomials of the system, and 

usually & ≥ �. 

 

It is known (e.g. [5]) that the set of quasi-polynomial 

systems can be split into classes of equivalence according 

to the matrix invariant  

 ( = # ⋅ �.																																																																														(3) 

 

A unique, descriptive element of such QP equivalence 

class is the Lotka-Volterra model 

 $	� = $��*� + ∑�
�� (�
$
�,				% = 1, … , &																								(4) 

 

where ( ∈ ℛ�×�, Λ = [*�, … , *�]. ∈ ℛ�. It is important 

to note that the state variables of the Lotka-Volterra form 

are the quasi-monomials of the original QP model (1). 

 

Because of its descriptive nature, the values of the 

Lotka-Volterra parameter matrices can be computed from 

the QP parameter matrices of any quasi-polynomial model 

belonging to the same class of equivalence as ( = # ⋅ � 

and Λ = # ⋅ . The model (4) can also be written in a 

more compact matrix-vector notation as  

 $	 = /%01($)	(	($ − $∗),                        (5) 
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where /%01($) is a diagonal matrix with $�  in its %th 

diagonal entry, and $∗ is a unique positive equilibrium 

point of the system, which is the (nonzero) solution of the 

steady state version of (4):  

 0 = Λ +($∗                                  (6) 

 

2.1 The translated X-factorable phase space 

transformation and the underlying linear dynamics 

 

 Assume that the following set of ordinary differential 

equations (ODEs)  

 7879 = :(;)                                  (7) 

 

is defined on the positive orthant <� . The singular 

solutions of Eq. (7) are defined by :(;) = 0. Consider 

the following nonlinear translated X-factorable 

transformation of Eq. (7) 

 7879 = diag(;):(; − A)                         (8) 

 

where the elements of A = [A�, … , A�]. are positive real 

numbers, and ; = [;�, . . . , ;�]. . 

 

Assume that :(;)  is composed of polynomial-type 

functions with a finite number of singular solutions. It can 

be shown ([9]) that the above transformation can move the 

singular solutions into the positive orthant, and leaves the 

geometry of the state (or phase) space unchanged within it 

(but not at or near the boundary). Therefore, the dynamics 

of the solutions of Eqs. (7) and (8) are structurally similar. 

 

It is easy to see that a LV model has polynomial right-hand 

sides, so one can associate a structurally similar linear 

ODE model  

 $	 = (	($ − $∗),                              (9) 

 

to the model (5), that is called the underlying linear 

dynamic model of it. 

 

3 MIMO decoupling control for square stable LTI 

systems 

 

Let us consider a square MIMO LTI system that has the 

same number (B) of input and output variables in the form  

 $	 = 7C79 = D$ + EFG = H$ + IF                            (10) 

 

where D ∈ ℛ�×� , E ∈ ℛ�×J , H ∈ ℛJ×�  and I ∈ ℛJ×J 

are the constant coefficient matrices of the model. The 

transfer function matrix (TFM) is then in the following 

form  

 ℙ(L) = H(LM − D)N�E + I = HΨ(L)E + I = P(Q)R(Q)   (11) 

where 0(L) is the characteristic polynomial of matrix D, 

and the TFM Ψ(L) is in the form  

 Ψ(L) = STU(QVNW)R(Q)                               (12) 

 

The above model form is called the "naive" model [1]. 

Assume that the system is inverse stable, and the reference 

model ℝ�(L) is also given in its naive form in such a 

way, that it reflects both the decoupling and the speeding 

up controller design goals, i.e.  

 ℝ�(L) = PY(Q)RY(Q) = VRY(Q)                          (13) 

 

where M is the unit matrix and 0�(L) is a low degree 

stable polynomial with real eigenvalues. Then the 

Youla-parametrized MIMO regulator ℂ becomes 

 ℂ(L) = 0(L)PN�(L)ℝ�(L)�M − ℝ�(L)�N� = = R(Q)RY(Q)N�PN�(L)                              (14) 

 

4 Decoupling output feedback controller design for 

Lotka-Volterra systems 

 

The input extension of the system (4) is assumed to be in 

the form  

 $	� = $��*� + ∑�
�� (�
$
 +∑J
�� Γ�
F
�,				% = 1, … , & (15) 

 

This means that $�F
 terms are appearing in the %-th state 

equation. 

 

The motivation behind this simple structure is twofold:   

(i) the design will be based on the underlying linear 

dynamics that enables to have a linear static full state 

feedback for stabilizing,  

(ii) this structure corresponds to the model structure of 

lumped process models when the flow-rates are chosen as 

manipulable input variables (see in [4]).  

 

The design is based on the fact, that nonlinear X-factorable 

transformation described in subsection 2.1 enables us to 

examine a dynamically similar LTI state space model 

instead of the original one that can be characterized by the 

LTI matrix pair ((, Γ). 
 

4.1 The transfer function matrix of the underlying LTI 

model 
 

The design principle implies, that the state and input 

matrices of the MIMO LTI state space model (10) are  

 D = (,E = Γ                               (16) 

 

In order to achieve a suitable output set for the special 

needs of Lotka-Volterra systems, one needs to recognize, 

that usually the number of quasi-monomials in a QP model 

(1) is larger than the number of its variables, while the 

embedding of the model into LV-form (4) requires an 

increase of the state variables to be equal to &. Therefore, 



it is natural to select the original QP variables with 

physical meaning to be in the set of output variables, and 

thus choose the matrices in the output equation in (10) to 

be 

 H = [M|0], I = 0                              (17) 

 

where M ∈ ℛJ×J is a unit matrix. 

 

The above mentioned variable extension implies the 

appearance of zero eigenvalues in the state matrix D . 

However, the corresponding integrator elements will not 

appear in the transfer function, as we shall see it through 

the example in section 5. 

 

4.1.1 The Youla-parametrized MIMO regulator 

 

An important speciality of designing an output feedback 

for a stable Lotka-Volterra system is, that it has a positive 

equilibrium point $∗ for a positive steady state point of 

the input vector F∗ such that $∗ is the solution of (6), i.e. 

 0 = (Λ + F∗) + ($∗. 
 

This implies that the centred version of the physical input 

variable should be used as the input F, and the centred 

version of the physical output variable is used as the output G when performing the design. 

 

This is depicted in figure 1 in the case of the nonlinear 

fermentation process example that is described next in 

section 5. The nonlinear model is given as ℙ′, while the 

dynamically equivalent centred linear system is shown by 

the box in point-boundaries denoted by ℙ in the figure. 

 

5 A nonlinear fermentation process example 
 

The example is a fermentation process system where the 

substrate and biomass is fed to the reactor with a constant 

flow-rate ^_̀  and ;_̀ , and they can be outlet from the 

reactor with manipulable flow-rates :�  and :� , 

respectively. Then the state equations of the dynamic 

model originating from component mass balances can be 

written in the following form 

 �	� = a�RC���� + ;_̀ − :���
�	� = − bcde� ���� + ^_̀ − :���               (18) 

 

where �� is the concentration of the biomass, and �� is 

that of the substrate, respectively. The values of the system 

parameters are listed in Table 1. 

 

5.1 The Lotka-Volterra open-loop model 
 

The two inputs two outputs case of the model (18) is a QP 

system model, it is apparent if it is written in the form 

 

Table 1: Variables and parameters of the fermentation 

process model (18) 

 

analogous to (1) as:  

 �	� = ��(−:� + a�RC�� + ;_̀��N�)
�	� = �� f−:� − bcde� �� + ^_̀��N�g             (19) 

 

Let us choose the reference values for the flow-rates :� 

and :� to be  

 :�∗ = 2, :�∗ = 1 

 

then the model (19) has an equilibrium (steady-state) point 

at �∗ = [1,1].. 

 

Let us choose the output variables to be the centred state 

variables, while the input variables are centred flow-rates  

 G = [�� − ��∗, �� − ��∗]. , F = [:� − :�∗, :� − :�∗]. .    (20) 

 

In order to apply the results of Section 4, the process 

model must be embedded into Lotka-Volterra form (for the 

details of the embedding procedure, see [5]), that is  

 $	� = $� f−:� − bcde� $� + ^_̀$ig
$	� = $�(−:� + a�RC$� + ;_̀$j)
$	j = $j(:� − a�RC$� − ;_̀$j)
$	i = $i f:� + bcde� $� − ^_̀$ig

             (21) 

 

where the new state variables are the quasi-monomials in 

the QP-model (19)  

 $� = ��, $� = ��, $j = ��N�, $i = ��N�. 

 

5.1.1 MIMO decoupling output feedback 

 

The decoupling output feedback structure is based on the 

open-loop Lotka-Volterra model of the system described 

in subsection 5.1 with centred input and output variables. 

��   biomass concentration   [kl ]  ��   substrate concentration   [kl ] ^_̀    substrate inlet feed 

flow-rate   
2 [ kl⋅m]  

;_̀    biomass inlet feed 

flow-rate   
1 [ kl⋅m]  

:�   biomass outlet flow-rate   [ lm]  :�   substrate outlet flow-rate  [ lm]  #   yield coefficient   1 - a�RC   kinetic parameter   1 [�m]  



It is depicted in figure 1. 

 
 

Figure  1: The MIMO closed control loop of the example 

 

The corresponding MIMO LTI system matrices derived 

from the underlying dynamically similar system of the 

Lotka-Volterra model are as follows.  

 

D = ( = n0 −1 0 21 0 1 0−1 0 −1 00 1 0 −2o ,				E = Γ = n0 −1−1 01 00 1 o (22) 

 H = p0 1 0 01 0 0 0q ,				I = 0 .               (23) 

 

It is easy to check that the eigenvalues of ( are stable [0,0, −1.5 − 0.866%, −1.5 + 0.866%] , so the MIMO 

decoupling design can be used. 

 

Now the TFM model of the system will be developed 

using the nominator TFM  

 P(L) = L� u−(L + 2) −11 −(L + 1)v              (24) 

 

that leads to its naive form  

 ℙ(L) = �(QwxjQxj) u−(L + 2) −11 −(L + 1)v          (25) 

 

Let us choose a reference model for achieving the 

decoupling and the speed up of the response as follows 

 ℝ�(L) = �(�x`.yQ) M = �(�x`.yQ) p1 00 1q               (26) 

 

Now we can perform the design of the controller by 

substituting the above calculated parameters into (14) to 

obtain 

 ℂ(L) = �(QwxjQxj)Q(QwxjQx�) u−(L + 1) 1−1 −(L + 2)v          (27) 

 

6. Conclusion 

 

A linear output feedback structure has been presented in 

this paper for a special subset of Lotka-Volterra systems, 

where the input terms are assumed to be input-affine and 

bilinear. It is also assumed that the open-loop LV system 

has a locally stable equilibrium point. 

 

The design is based on the underlying dynamically similar 

linear MIMO LTI model, that can be associated to a 

Lotka-Volterra system model with a positive equilibrium 

point, while the centred versions of the physical input and 

output variables are used. It is shown that the zero 

eigenvalues associated to the new variables during the 

embedding of a QP model do not appear in the resulting 

input-output model. 

 

The developed model was used to design a decoupling 

controller based on Youla-parametrization when the 

centred version of the original QP-variables were used as 

output variables. 

 

The method is illustrated on a simple nonlinear 

fermentation model, where the structure of the designed 

feedback can be related to the structure of the original 

open-loop system. 
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