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Abstract
Euclidean Automata (EA) are finite state computational devices that take continuous parameter
vectors as input. We investigate decompositions of EA into simpler Euclidean and classical finite
state automata, relate them to better known computational devices such as artificial neural nets
and electronic devices, and show that they are plausible Big Mechanism candidates.

1. Introduction

Euclidean automata (EA) were introduced, and motivated from the perspective of Artificial
Intelligence, in [8]. For convenience, we repeat some of the definitions and examples here, but
the focus of the current paper is with the decomposition of EA and relating the concept to
better known computational frameworks, subjects that could not be discussed in the earlier
work. EA are modified Finite State Automata (FSA) that draw their input not from a finite
alphabet as usual, but rather from vectors from a parameter space P , typically Rn. For quantum
applications, Cn would also be of interest, but we concentrate on the real case.

Definition 1.1 A Euclidean automaton (EA) over a parameter space P is defined as a 4-tuple
(P , I, F, T ) where P ⊂ 2P is a finite set of states given as subsets of P ; I ⊂ P is the set of
initial states; F ⊂ P is the set of accepting states; and T : P ×P → P is the transition function
that assigns for each parameter setting ~v ∈ P and each state s ∈ P a next state t = T (~v, s)
that satisfies ~v ∈ t.

Thus, while the input is drawn (in discrete steps) from a continuous domain, EA are still finite
in that states are simply subsets Pi of P indexed from a finite index set S. If Pi ∩ Pj = ∅ for
all i, j ∈ S we call the EA deterministic, if

⋃
i∈S Pi = P we call it complete. If all Pi are open

subsets of the the Euclidean space, we call the EA open.

In problems of linguistic pattern classification the number of classes (e.g. the set of valid
characters in optical character recognition (OCR) or the set of phonemes in automated speech
recognition (ASR)) is finite, and small continuous deformations of the input leave the output
unchanged, suggesting that the classifier is an open EA. The main problem with this is that we
cannot partition Rn or Cn into finitely many disjoint open sets. Approximate solutions thus
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must give up non-overlapping, e.g. by permitting probabilistic or fuzzy outcomes, or exhaus-
tiveness, e.g. by leaving ‘gray areas’ near decision boundaries where the system produces no
output. As discussed in [8], EA take the first route, sacrificing determinism (non-overlapping).
This enables modeling of the nondeterminism actually seen in cases of perceptual hysteresis
[12]. In fact, we observe that the appearance of hysteresis in such situations is not an accident:

Observation 1.1 There is no deterministic classification of a connected parameter space P ⊂
Rn by some open EA.

Proof By definition, connected subspaces of Euclidean space cannot be the discrete union of
open sets.

Figure 1: Decision boundary in 2-20-10-1 layer perceptron

As an example, consider the multilayer perceptron depicted in Fig. 1, trained in [5]. In spite
of the complexity of the decision boundary, the EA with equivalent behavior has only two
states, corresponding to the black and the white subsets of the image. The input vectors are
two-dimensional, and there is no output to speak of (we could designate one of the two states
final). To account for output as well, consider the following definitions (repeated from [8] for
convenience):

Definition 1.2 A Euclidean transducer (ET) over a parameter space P is defined as a 5-tuple
(P , I, F, T, E) where P , I, F, and T are as in Def. 1.1 and E is an emission function that assigns
a string (possibly empty) over a finite alphabet Σ to each transition defined by T .

Definition 1.3 A Euclidean Eilenberg Machine (EEM) over a parameter space P is defined as
a 5-tuple (P , I, F, T,R) where P , I, F, and T are as in Def. 1.1 and R is a mapping P ×P → P
which assigns to each transition a (not necessarily linear, or even deterministic) transformation
of the parameter space.
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2. Decomposition

The definition of EA leaves open the possibility that the parameter space P is embedded in Rn

in a partially discrete manner, e.g. as indexed subsets of lower-dimensional spaces. Consider,
for example, a three-stop elevator running from the basement to the top (first) floor of some
building. This will have both continuous parameters, such as the reading from the position
sensor, and discrete parameters, such as the reading from the engine sensor, with only three
possible values “going up”, “stopped”, and “going down”. Some of the parameters, such as
the reading from the weight sensor, are seemingly continuous but effectively quantized to two
discrete values, “above safety limit” or “below safety limit”. In such cases, we may want to
select canonical representatives ~pi from Pi. (Other input values, pertaining to the state of call
buttons at each floor and inside the cab, to accelerometer readings, or to sensors for AC power
quality could be added, but we don’t aim at realistic detail here.)

As long as the parameters can be isolated from one another we can view P as being the
direct product of smaller parameter spaces Pi, some Euclidean, some discrete. Isolating the
parameters is easy enough for elevators with different sensors, but not at all trivial in pattern
recognition tasks where the individual coordinates, such as spectral peaks in ASR, can show
all kinds of interdependence. There is notable uncertainty how we wish to embed the discrete
spaces in R, for example two-valued parameters are often encoded as 0 or 1, but often as −1 or
+1, and there is no easy way to select a canonical embedding. In many applications, n-valued
parameters are encoded as 0, . . . , n−1, in others as 1, . . . , n, in yet others as 0, 1/(n−1), 2/(n−
1), . . . , 1. Let us first consider a family M of P → P mappings with the goal of replacing one
conventional encoding by another. As the examples show, such mappings are typically taken
from continuous/differentiable families, but are not necessarily linear.

Definition 2.1 An EA Ψ is the homeomorphic image of Φ under a mapping m ∈M iff for any
sequence of inputs ~v1, . . . , ~vn we have Ψ(m(~v1), . . .m(~vn)) = m(Φ(~v1, . . . , ~vn)).

Here we assume that both Φ and Ψ are started from the same unique initial state (if we permit
several initial states the definition needs to be complicated accordingly) and that equality means
equality of result state. This is meaningful, since m naturally maps not just inputs on inputs,
but also EA states (subsets of parameter vectors) on one another. We will say Φ and Ψ are
isomorphic if they are homomorphic images of each other under some m and m−1.

Definition 2.2 The skeleton of an EA Φ is a standard (Mealy) FSA whose alphabet corresponds
to canonical representatives from each Boolean atom of P .

In the deterministic case, this is also a Moore automaton, as there is a one to one correspondence
between input letters and automaton states. As is clear from Definition 1.1, the sequential
behavior of EA is relatively simple in this case, since the result state depends only on the input,
and not on the previous state. In the nondeterministic case (which is the more interesting case
as per Observation 1.1) we may not be able to select distinct canonical representatives for each
state Pi, or even for the set of Boolean atoms formed by the Pi. Here skeleta must be replaced
by what we will call subjective EA, unique only up to canonical isomorphism, but sacrificing
the one to one correspondence between state set and input set.
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Besides the well understood serial and parallel modes of composition (see 3.2 for examples),
EA admit a further possibility. This can already be illustrated in the simplest case of a mixed
parameter space, where Pc, the continuous part of the parameter space, is just R, and Pd, the
discrete part, is just a binary choice >,⊥. We may think of an EA Φ over P = Pc×Pd as being
composed of two simpler EA Φ> and Φ⊥ by means of a real parameter p that influences whether
the Φ> or the Φ⊥ behavior dominates. Importantly, the parameter that does the influencing
may just be the input parameter, providing a crude form of memory, as in Example 3 of [8].

3. Relating EA to other computational mechanisms

3.1 Artificial neural nets In classification tasks our interest is with the inverse images Ci

of the possible outputs i. As our example in Fig. 1 shows, EA offer a method for directly
encoding the information concerning the shape of the Ci where it belongs, in Rn, where n is
the dimension of the input parameter vector, rather than in Rm×m, the matrix of connection
strengths. As is well known, in pattern recognition a great deal depends on the preprocessing
of the signal, and using EA can make this dependence explicit. For example, consider the “two
circles” data set presented in [10] reproduced here as Fig. 2: while it is evident that no linear
separator (simple NN) exists, transforming the data to a system of polar coordinates around
the center of gravity of the datapoints would make the task trivial. In ASR, we routinely apply
a far more elaborate sequence of data transformation steps (power cepstra [1], mel warping [3],
and delta cepstra [6]) to make the data manageable. Altogether, the use of EA is expected to
bring new insights, especially for the increasingly popular but not yet well understood “deep
learning” neural net architectures such as LSTM [7].

Figure 2: “Two circles” data from Ng (2001)
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3.2 Electronics For many applications it makes sense to define the initial state as a parameter
region P0 that has no overlap with the other states of the automaton (even for EA not otherwise
deterministic), since this will guarantee that we can reset the EA to the initial state by making
sure that there are outbound transitions from every Pi. If we have another region we can reset
to, we obtain an EA corresponding to the classical flip-flop (or latch) circuit. As discussed
in [8], we can also obtain classical circuits with hystersis, such as a Schmitt trigger [13]. By
creating EA corresponding to elementary building blocks such as transistors, all forms of logic
circuitry operating on continuous variables such as voltages could be recast as networks of
EEMs. Modeling of transient behavior is not facilitated by the framework.

As is standard in logic design, digital circuitry can be conceptualized as series-parallel composi-
tion of standard FSTs, either with output string length limited to 1 (otherwise issues of timing
and synchrony become paramount) or with clock signals added in. For semi-analog circuitry,
where the outputs of each buiding block can be characterized as constant values (or values
with very little variation) the same series-parallel conceptualization is available with Eucldean
transducers (ETs), as long as we take the outputs of the upstream ETs to be the canonical
representatives of the inputs of the downstream ETs. This means that in principle all physical
models of digital computation, realized by discrete electronics as they are in current comput-
ers, are within scope of the EA/ET/EEM model as defined in D1.1-3. These are theoretical
models, unlikely to gain much traction in circuit design, where transitional behavior and syn-
chrony are highly relevant, but the connection makes clear that EA don’t suffer from the kind
of realizability problems that plague many theoretical computing devices from quantum gates
to memristors.

3.3 WFSA, Bayes/Markov nets Here the relationship is much more tenuous, in that both
weighted FSA (WFSA) and Bayesian nets take discrete inputs (in the Bayesian case just 0-1,
for WFSA strings from an arbitrary finite alphabet) and produce continuous values on output,
not the other way round as in EA. In the case of WFSA and WFST, there is no way to pass the
weights to later automata, so in investigating how automata can influence each other we are
restricted to communication by means of strings from a discrete alphabet. While the dificulties
are not insurmounatble (after all, we can always encode good approximations of continuous
values in discrete strings) the system is highly unnatural, requiring a great deal of decoding
and re-encoding to express any simple arithmetical relation such as the activation of a node
being determined by the sum of the inbound activation levels.

Bayesian/Markov nets offer a highly coherent way of thinking about probabilistic influences, but
here the technical difficulties are even worse. There is nothing to say, at least in principle, that
the random variables at the nodes couldn’t be continuous, but to compute the marginal density
of a child node we have to integrate out all the parents. Really the only parametric family that
makes sense in this setting is (multivariate) normal [9], which excludes many systems of great
interest to which we now turn.

3.4 Big Mechanism Following the success of Big Data, DARPA has started a search towards
a Big Mechanism that is capable of modeling cancer signaling pathways, the brain, climate, the
economy, and other large interconnected systems, focusing initial attention on cancer signaling
pathways. Acquiring the data from medical journals and databases, requiring both considerable
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standardization of terminology and sophisticated natural language processing (NLP) capabili-
ties, are seen as part of the task of developing Big Mechanisms, which are “large, explanatory
models of complicated systems in which interactions have important causal effects” [2]. In the
graphical language standard for systems biology [11], which notes the functional analogy with
electronic circuit diagrams and algorithm block diagrams, we see both discrete, FSA-like ele-
ments such as a channel being open or closed, a muscle being tense or relaxed, and continuous,
additive elements such as the level of various chemicals. Eilenberg Machines [4] were developed,
for the discrete case, with block diagrams in mind, and EEM provide the kind of continuous
generalization that makes e.g. stochiometry possible to model.
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[11] N. L. NOVÈRE, The Systems Biology Graphical Notation. Nature Biotechnology 27 (2009),
735–741.

[12] S. POLTORATSKI, F. TONG, Hysteresis in the Perception of Objects and Scenes. Journal
of Vision 13 (2013) 9, 672.

[13] O. H. SCHMITT, A thermionic trigger. Journal of Scientific Instruments 15 (1938) 1, 24.

http://www.darpa.mil/Our_Work/I2O/Programs/Big_Mechanism.aspx
https://www.youtube.com/watch?v=MkLJ-9MubKQ
http://bit.ly/1jJs2M6

	1. Introduction
	2. Decomposition
	3. Relating EA to other computational mechanisms

