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Abstract. Infrastructure-as-a-Service (IaaS) clouds are widely used to-
day, however there are no standardized or commonly used performance
evaluation methods and metrics that can be used to compare the services
of the different providers. Performance evaluation tools and benchmarks
are able to grasp some aspects or details of performance but for various
reasons are not capable to characterize cloud performance. Our aim is
to collect these elementary or primitive facets of performance and de-
rive high-level aggregated and qualitative performance characterization
semantically far above the output of tools and benchmarks. We designed
and implemented a framework that collects low-level raw performance
data (in terms of CPU, disk, memory and network) of cloud providers
based on standard benchmark tools and these data are aggregated and
evaluated using a hierarchical fuzzy system. In this process performance
characteristics are associated with symbolic values and fuzzy inference is
applied to produce the normalized qualitative comparable and readable
performance metrics. In this paper, we discuss the issues of cloud perfor-
mance analysis, present the concept and implementation of our method,
illustrate the proposed solution by comparing –in terms of performance–
the general purpose medium instance type of the Amazon EC2 cloud (in
Ireland) and the standard instance type of the OpenNebula installation
at MTA SZTAKI.

Keywords: cloud computing, performance evaluation, fuzzy sets, hier-
archical fuzzy inference

1 Introduction

Cloud computing, from a user’s perspective is a contract: the provider offers a
service of negotiated quality and the consumer pays a negotiated fee. Just like in
any other commercial scenario, the consumer is curious if the value vs price ratio
is right and acceptable. Cloud vendors provide multi-tenant infrastructures and
generally do not disclose the technical details of the services (e.g., overprovision-
ing rate) that makes it difficult for customers to anticipate cloud performance.
Furthermore, cloud providers often use different terminologies for resource allo-
cation. Albeit, Service Level Agreements (SLAs) declare the guaranteed level of
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services, these are typically just the lower limits that neither express what the
consumer really gets nor make the services comparable to other providers. From
the consumers’ point of view the expected ”performance” would be interesting
so that it enables the comparison to other providers and to the costs. Albeit
in this work we discuss ”performance”, it is worth mentioning that characteriz-
ing a service involves many other aspects that are quite related to performance
such as Quality of Service (QoS), Quality of Experinece (QoE), in lesser extent
robustness, fault tolerance, trust and many others.

Performance analysis of parallel computing environments has been studied
extensively in the past (e.g., [9] [15] [10] [13] [2] just to mention a few.). Novel
distributed paradigms obsolete parallel performance analysis models and new
approaches and tools for characterizing large-scale inhomogeneous and dynamic
distributed systems are required [4][11]. The advent of cloud computing intro-
duced new features that rendered performance evaluation largely unsolved and
target of intensive research.

The challenges of cloud performance analysis largely stem from virtualization,
the complete separation of the physical and virtual entities. All former perfor-
mance evaluation approaches were focusing on the physical infrastructure and
the physical performance profile of resources. Virtualization, a characteristic and
inherent feature of clouds however, introduces another dimension of complexity:
the measured and evaluated performance, i.e. what a consumer gets, are not of
a physical machine. This requires new approaches and potential, new definitions
for performance evaluation for the following reasons. (i) Service providers may
split or merge physical resources to accommodate virtual machines. Hence, per-
formance measured at the physical level does not characterize the performance of
virtual machines. (ii) Service providers may offer different instance types. Thus,
performance of virtual machines is loosely coupled to physical machines: it is
a characteristics of a hypothetical (volatile) infrastructure and potentially not
characteristic to the entire or physical infrastructure. (iii) Multi-tenancy adds a
large uncertainty factor. (iv) Due to all these reasons, for the time being, there
are no widely accepted performance analysis techniques for cloud infrastructures.
Performance itself is multi-dimensional, composed of many facets, performance
metrics are not standardized, not comparable, sometimes even hard to interpret
and cannot be measured at the physical level.

Our work is aimed at establishing a framework that enables the performance
characterization of IaaS providers so that services of different providers or in-
stance types of the same provider became comparable by metrics that are (i)
symbolic for easy interpretation (ii) aggregated to cut down dimensions and data
volume (iii) comparable to each other. Furthermore, our method is (iv) especially
tailored for the virtualized machines. We apply logic and fuzzy inference to cre-
ate the abstract, symbolic performance characterizations from raw performance
data. The result is a readable, abstract yet precise and comparable description
of virtual machines.

As it was stated we try to characterize and compare cloud services from
performance point of view. This is not identical to the notion of performance
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analysis that typically refers to the performance of an application. On the other
hand, it is not benchmarking either. Benchmarking is a comparison of the per-
formance of the infrastructure as a whole to an established, industry-leading
reference point (such as the TOP500 list) where performance tests are carried
out in a standardised way in a closed environment (the number and specifications
of the hardware elements are known and static) under controlled (preferably non-
existent) loads and eliminating all intrusive effects. Hence, informally we call our
approach as performance characterization as opposed to, and differentiate from,
benchmarking or performance evaluation.

Furthermore, benchmarking is a questionable technique (as has been for grid
computing [11]) due to the fact that performance figures cannot be representa-
tive to the entire cloud, just for some services — potentially a very small subset
of the cloud — actually utilized in the experiment and virtualization adds an-
other factor to unreproducible experiments. Hence, in our view, the traditional
notion of benchmarking physical resources is not applicable for the entire cloud.
On the other hand we do use benchmark tools but not for measuring the infras-
tructure rather, for providing raw data on the performance of a VM instance.
Benchmarking in this setting is part of the process but not the process itself.

In the followings, in Section 2 the related work is intorduced, in Section 3
the concept, design principles and technical details of our proposed performance
characterization method are presented. Test cases in Section 4 give a practical
validation of the approach and Section 5 concludes the paper.

2 Related work

An overview of grid performance analysis and its tools [4] already surveyed the
difficulties of measuring any dynamic, heterogeneous computing infrastructure
and pointed out that well-established methods of (parallel) benchmarking are
not applicable where virtualization is present.

The primary goal of the CloudHarmony [1] is to make cloud services com-
parable, therefore they provide objective, independent performance comparisons
between different cloud providers. Using these data, customers can quickly com-
pare providers and have reasonable expectations for cloud performance. How-
ever, CloudHarmony can only provide quantitative performance data in a raw
form produced by benchmark tools and can not present refined qualitative in-
formation created from processed benchmark results. As performance data are
produced by multiple benchmark tools, they quite often contain discrepancies,
contradictions or simply not easily interpretable by a human.

Garg et al. [3] also recognize the difficulty for customers to select service
providers. In their paper, they propose a mechanism and a framework to measure
the quality and prioritize Cloud services. This solution evaluates Cloud offerings
and rank them based on their ability to meet the users Quality of Service (QoS)
requirements. This work addresses slightly different aspects of characterizing a
service than our work: less emphasis on the performance and more on the quality.
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The notion of fuzzy inference for resource modeling appears in [18] in a dif-
ferent setting. The work is aimed at realizing a two-level resource management
system with autonomic resource allocation. To this end, local and global con-
trollers are using fuzzy logic to deal with the complexity of the virtualized data
center and the uncertainties of the dynamically changing workloads. Virtual con-
tainers are treated as black boxes and their behaviour is modeled without any
a priori knowledge using fuzzy logic. Ultimately, workload and related resource
needs to meet QoS criteria are learned by the system. Albeit strongly related to
our work, in this setting the fuzzy inference is used for resource control and not
for performance characterisation — performance data are simply input to the
mechanism.

Another aspect of fuzzy resource management appears in [17], namely ful-
filling performance guarantees in the presence of interference of requests (espe-
cially, for non-partitionable resources) of co-hosted VMs. The aim of the fuzzy
model is to detect the performance coupling of co-hosted VMs using a fuzzy a
multi-input-multi-output model. The model quantifies the contention of com-
peting resources and this information is used for VM placement and resource
allocation. This approach is also similar to ours but analyses performance in a
broader sense: capturing the relationship between resource allocations and the
performance of the hosted applications.

The work presented in [8] applies the same mechanism to a different problem:
trust and trust management but defines performance as a component of trust.
Other factors are financial and agility and each such factor has many sub-metrics.
The similarity to our work appears in unifying the diverse quantities into a
single metrics of trust. They also propose a hierarchical (2-stage) fuzzy inference
framework. This work differs mainly in the scope and the level of details of
performance characterisation.

A.Vanitha et al., [6] investigate the cloud infrastructures as test bed envi-
ronments for software developments. They presented a similar notion of fuzzy
logic for performance evaluation. The most important difference to our work is in
the fuzzy inference mechanism: they apply multidimensional inference whereas
we propose hierarchical one. Their model uses a few input parameters only and
they do not take the CPU performance into account in the procedure. This
presumably could be the consequence of the complexity of multidimensional in-
ference. Our solution is aimed at eliminating this obstacle by a hierarchy and
hence, it can provide a generic framework for performance evaluation in cloud
environments.

3 A Novel Approach to Cloud Performance
characterization

3.1 Principles

The theoretical and technical difficulties of performance characterization of a
complex infrastructure were presented in Section 1. In this section we narrow
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the scope to processing, presenting and interpreting the performance metrics.
We assume, raw performance data are gathered by some monitoring and/or
benchmarking tool. Still, this data set is inappropriate due to its large dimen-
sionality, incomparable and incompatible data types and lack of any structure.
Common approaches apply statistical methods, noise filtering, feature extraction
and similar numerical procedures to reduce the information to the most essential
details and get readable and comparable performance figures. Performance char-
acterisation has many dimensions and these are not independent. For instance,
comparing two CPUs is possible but comparing two CPUs so that the memory
is also taken into consideration is surprisingly complex: neither the CPU nor
the memory speeds determine the performance but their interaction via subtle
details in the actual application. These correlations are present in practically
all dimensions of performance yet, their exact formulation is extremely hard
analytically.

Fuzzy techniques have a vast range of features and potential application
fields. We focus on their ability to transform quantitative information into qual-
itative one so that the resulted data is concise, readable, interpretable and com-
parable. Fuzzy techniques are based on the negation of the basic principle in set
theory as ’a certain element is either element of a set or not’. Instead, fuzzy set
theory assumes a metric, how much, or in what degree a certain element belongs
to a set. This metric called membership function ranges between 0 (not element
of the set) and 1 (element of the set). In such a way uncertain values, subjective
measures can be captured and handled in a mathematical framework.

Fuzzy logic is a many-valued logic based on the fuzzy sets where logic vari-
ables have values between 0 (false) and 1 (true). It allows reasoning on uncertain
or partial information where different degrees of ’true’ is possible [20]. Fuzzy
values may also be assigned symbolic or linguistic tags resembling intuitive clas-
sification. A fuzzy inference is a method where fuzzificated (values assigned to
fuzzy sets) input variables are mapped onto output variables and the result is
defuzzificated.

Recall the example above, a CPU of architecture A and frequency f1 with
memory of size M1 and bandwidth b1 is hardly comparable numerically to a CPU
of architecture B and frequency f2 with memory of size M2 and bandwidth b2;
none of the numerical comparisons would yield a definite answer. However, after
fuzzification – transforming the values into fuzzy sets – this question is reduced to
a more comprehensible form of comparing an ’upper mediocre’ processor with
’large and fast’ memory to a ’lower top’ processor with ’small and very fast’
memory. The relationship between these sets can be precisely described by fuzzy
rules resulting a similarly readable and easily comparable result.

A fundamental problem in a fuzzy inference system is that the number of
rules increases exponentially with the system variables involved. The hierarchi-
cal fuzzy systems (HFS) [19] [7] have the advantage that the total number of
rules is greatly reduced by a hierarchical structure, linear with the number of
input variables [12]. A HFS divides the inference into stages so that a subset
of input variables produce intermediate results and these results are taken as
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inputs in subsequent stages whereas, the intermediate results may also possess
interpretable meaning.

The core of our concept is to build a hierarchical fuzzy system so that the
stages of the hierarchy correspond to certain aspects of performance. We consider
CPU, memory, disk and network as main determining factors. In an experimental
setup these were captured by 157 parameters. In a flat fuzzy inference system the
number of corresponding fuzzy rules would be in the magnitude of n157 where n
is proportional to the number of fuzzy sets (i.e., granularity of rules, how finely
the sets are described). We categorized the parameters according to the four
main aspects and established sub-categories within each (cf. Figure 2.) In such a
way input parameters to an inference stage do not exceed 7 and thus, the overall
number of rules in the system is bounded by c ∗ n7 where c is the number of
inference stages.

3.2 Framework Design

Figure 1 provides an architectural overview and presents the components of the
proposed system. At the lowest level of hierarchy input data called ”raw perfor-
mance data” are produced by benchmarking probes. These probes are realised
as virtual machines (VM instances) and executed on some cloud resources, in-
volving steps of authentication, deployment, and VM control. On one hand the
system core (depicted as Core & Valuator) provides a part of these essential
functions. The Image Repository and the IaaS client/API interface (top right)
are responsible for storing the disk image for the probes and handling (deploying,
launching and stopping) VM instances. The disk image contains a preconfigured
Phoronix Test Suite (PTS) application (a probe) for realizing the raw measure-
ment procedures on the infrastructure. Images are deployed on target clouds
(Cloud#1, Cloud#2, etc.) prepared and run as VM instances, called PerfVMs
in the followings. PerfVMs execute the appropriately configured benchmark suite
and push the raw results into the central object store. The Valuator part of the
Core & Valuator component realises database handling as well as evaluating
fuzzy results (to be described in details in Section 3.3).

3.3 Details of Valuator

The Valuator realizes the essential functionality of the performance characteriza-
tion as it aggregates raw benchmark data and associates symbolic performance
values with the IaaS clouds. It provides the fuzzy inferences systems and stores
the results in a database. The corresponding fuzzy rules are described in a stan-
dardized control language [5].

Figure 2 presents the proposed three layered HFS. In the first layer (L0), the
raw benchmark results produced by the probes of PerfVM are taken as inputs.
These are already processed by the probes so that erroneous measurements and
noise are filtered out and the deviation of the results are within limits. Data are
grouped by benchmark tools such as compilation performance, database per-
formance, disk write performance, numeric performance, etc. A fuzzy inference
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Fig. 1: Framework components

Fig. 2: Hierarchical fuzzy system
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Fig. 3: Example

produces a single output per input groups. The outputs of the first layer are the
inputs of the second layer (L1) where these values are grouped again by probe
types and a fuzzy inference is initiated on these inputs. For instance, first level
inputs are the execution times of three CPU benchmark tool. As an output, a
single fuzzy metric is produced that represents the CPU performance. Similar
tests are carried out for disk, memory and network. From the numerous raw
data items four outputs are generated representing each categories.

The last layer groups the component level values and provides a single value
(L3) that we consider characteristic to the cloud infrastructure in scope.

A key aspect is how fuzzy rules are constructed. The knowledge base contains
the membership functions, rules and reference benchmark values. These reference
values are used to establish the fuzzy sets and are empiric as a common practice
for designing and tuning fuzzy logic based systems and services. References were
established on a local IaaS cloud system running production services and also
used for developing and testing new products so the workload of the cloud is
diverse in different time periods (e.g., it is usually more utilized in the daytime).
Therefore, the infrastructure was measured during a month and the reference
values were calculated as averages of the benchmark results.

All fuzzy rules and membership functions are based on the same template.
The weighted rules with the membership functions, presented in Figure 3, pro-
vide an appropriate characteristic, because they make the system insensitive
against the peak results and they penalize the low performance.

3.4 Implementation

For implementing the prototype of the framework, we solely relied on open source
components. The PerfVM uses Debian GNU/Linux operating system and PTS
for producing benchmark data from the target clouds. These data are stored in
central storage that is accessible via a Simple Storage Service (S3) compatible
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interface. The proposed framework is implemented in Python [16] and it uses
the freely available draft version of Fuzzy Control Language (FCL) and pyfuzzy
(a Python fuzzy library package). The FCLs describes (i) the requested input
variables and their fuzzy membership functions; (ii) the output variables; (iii)
the defuzzification method and rules. The system uses the Central of Gravity
(CoG) defuzzification method. The fuzzy inference results are stored in a MySQL
database. For the evaluation, the Fuzzy Toolbox of Matlab [14] was used.

4 Proof of Concept

In this section, we demonstrate the effectiveness of our proposed performance
characterization method by explaining a part of the whole procedure, the disk
performance process as an example. Experiments were carried out on raw per-
formance data collected from the SZTAKI Cloud and from the European region
of Amazon EC2. The experiment is a hypothetic performance (wrt. disk I/O)
comparison of the two services running on the general purpose m1.medium in-
stance type. We present the benchmark results both representing the ’common
approaches’ and the characterization produced by our method and contrast the
two. They are examined in terms of correctness, comparability and readability.

Figure 3 shows our example, the disk evaluation sub-process composed of a
two layered HFS.

DBench and fs mark produce the raw benchmark data (L0). The tool uses
I/O patterns that are similar to what a particular application performs. It can
simulate concurrent clients in order to predict the robustness and I/O through-
put of the underlying storage system. The fs mark tool can test synchronous
write workloads with different running options such as number of files, file size,
directory depth or number of used threads (for instance the third column in Ta-
ble 1, where the test wrote 5000 files through 4 threads with 1 MB size per file)
that makes it adequate for benchmarking I/O performance. Both tools provide
reliable information about the I/O system of the tested machines as presented
in Tables 1 and 2. Recall our aim as it was put forward in Section 1: customers
are curious if a service meet the expectations, if the performance of two services
can be compared objectively. If one examines the figures in Tables 1 and 2, no
clear conclusion can be drawn. For instance, raw performance figures in Table 1
suggest that SZTAKI Cloud is superior to Amazon EC2 yet, it is impossible to
trace how much it is better (differences are not proportional); in what measure it
exceeds the limits declared in SLAs. Roughly the same applies to measurements
presented in Table 2. Hence, it is a difficult to infer the performance character-
istic of clouds solely from the raw benchmark data at level L0. On the other
hand, performance metrics at level L1 produced by our method (denoted as Cal-
culated value in Tables 1 and 2) are a result of fuzzy inference, normalisation
and defuzzification.

Understanding and analysing raw benchmark data requires domain knowl-
edge whereas the calculated values are easily comprehensible: instead of a vector
of metrics, a single aggregated value between 0 and 100 represents the charac-
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terization. Hence, comparison is straightforward. Reference values (e.g., limits)
can also be transformed into the [0-100] scale that makes it possible to compare
the performance wrt. SLA minimums. In this particular example the reference
value was set to 50. Furthermore, these performance metrics produced by a
fuzzy calculation can be easily transformed to symbolic, easy-to-read values for
human interpretation such ”medium performance”, ”high performance”, ”upper
medium performance” and similar tags in arbitrary details and resolution. Ac-
cordingly, if reference values are introduced into the system, one may compare
symbolicaly as ”above the reference point”, ”close to the reference point”, etc.
At the next level of hierarchy these calculated values at level L1 are taken as
inputs and values for level 2 (component level in this example) are produced in
a similar way, cf. Table 3 for the summary of L1 and L2 values.

Important to notice the properties of the raw and calculated performance
metrics as compared in Table 3. While benchmark tools typicaly generate out-
puts by simply averaging the measurements, HFS is a more elaborate calculation
that is able to highlight or dampen (reward or penalize) certain aspects or de-
tails of the performance characteristics. Observing the results and the generated
level L2 system output surface, presented in Figure 3, it can be seen that the
HFS or its rules cannot be substituted by any linear approximation schemes.

In this particular experiment SZTAKI Cloud performed better than the ref-
erence system because both of the DBench and fs mark resulted a score above
than 50. In case of Amazon EC2, the DBench performance was better than the
reference value, however the fs mark was below. The introduced example and its
results demonstrated that the fuzzy inference method generated a performance
characterization that enabled the straightforward comparison or classification of
services based on their performances and the created HFS meets the require-
ments set in Section 1.

5 Conclusion and future work

In this paper, we discussed the difficulties of the performance characterisation
of IaaS clouds that originate mainly from virtualization. There is an evident
need for consumers to compare the cloud services in terms of ”performance”
on the other hand, it is not easy to capture the notion of ”cloud performance”

Table 1: fs mark results

Args [Options] 1000 Files,
1MB size

5000 Files,
1MB Size,
4 Threads

4000 Files,
32 Sub

Dirs, 1MB
Size

1000 Files,
1MB Size,
No Sync /

FSync

Calculated
value

[0-100]

SZTAKI [Files/s] 58.55 93.87 68.33 132.63 62.55
Amazon [Files/s] 38.87 49.73 40.83 119.07 43.60



XI

Table 2: Dbench results

Arguments [Client(s)] 1 6 12 48 128 256 Calculated
value

[0-100]

SZTAKI [MB/s] 113.385 225.64 242.08 220.02 185.53 134.38 72.16
Amazon [MB/s] 80.14 174.37 166.09 176.74 177.51 119.48 62.06

Table 3: Aggregated results

Tool DBench fs mark Calculated value

SZTAKI [0-100] 72.16 62.55 62.98
Amazon [0-100] 62.06 43.60 47.05

and the conventional performance tools such as benchmarks deliver large sets of
numeric data that are not necessarily consistent and hard to analyse or compare.
We analysed the reasons and background of this issue. Our work is aimed at
establishing a framework for normalized, comparable and readable performance
analysis of IaaS providers so that services of the different providers become easily
characterized.

Our method also builds on benchmark tools at the low level but perfor-
mance data are processed in a hierarchical fuzzy systems. The fuzzy framework
allows to transform multi-dimensional numeric (quantitative) values into sym-
bolic (qualitative) metrics of lesser dimensionality. This transformation is based
on fuzzy inference governed by fuzzy rules. The large number of variables may
lead to unacceptable exponential complexity of rules. We alleviated this issue by
a hierarchical fuzzy inference system that both reduces the complexity of a sin-
gle inference stage and also classifies performance variables so that meaningful
performance characterization can be established at different levels and different
details of the system.

Finally, we evaluated the prototype by comparing the Amazon EC2 and
SZTAKI IaaS clouds that confirmed the applicability of the framework. In the
future, we plan to improve our framework by refining FCLs for more comprehen-
sive evaluations. Moreover, we plan to extend the framework with the capability
of assessing other aspects of performance (see Sections 1 and 2) such as Service
Level Agreement (SLA) violations of IaaS providers.
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