
Part One

WS-PGRADE/gUSE Science Gate-

way Framework

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48295036?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

1 Introduction to Science Gateways and Sci-

ence Gateway Frameworks

Péter Kacsuk

Abstract. This chapter gives a short introduction to the basic architecture and

functionalities of science gateways, as well as their development methods. It then

briefly describes the EU FP7 SCI-BUS project that is developing a core science

gateway framework called as WS-PGRADE/gUSE. A large number of various us-

er communities have developed application-oriented science gateways by adapting

and customizing the WS-PGRADE/gUSE gateway framework. The chapter also

explains the vision of SCI-BUS on a collaboration-based SG instance develop-

ment methodology. Finally, it gives a guide on how to read the rest of the book.

1.1 Science Gateway Frameworks and Instances

More and more scientific communities use distributed computing infrastruc-

tures (DCI) including grids and clouds. Unfortunately, directly using these infra-

structures is not easy; it requires a lot of expertise and skill, and a good under-

standing of the working mechanisms of these infrastructures. Typical scientists

like chemists, biologists, etc., do not have this required skill, and hence they re-

quire a high-level, scientific domain-specific user interface that hides all the de-

tails of the underlying infrastructure and exposes only the science-specific parts of

the applications to be executed in the various DCIs.

Science gateways are the typical environments that realize these needs. They

are typically provided as a web interface that can be accessed from everywhere in

the world. They have the advantage that scientists do not have to install anything

on their personal desktop machines or mobile devices and no matter where they

travel (conferences, visiting other scientists, etc.), they can access the DCIs and

run applications on them. Recognizing these advantages, more and more scientific

communities have decided to build such gateways in order to simplify their use of

the various DCIs.

Using the terminology introduced by the EGI Science gateway Virtual Team,

science gateways (SG) can be divided into two main categories [Lovas/2013]: SG

frameworks and SG instances. SG frameworks or generic DCI gateway frame-

works are not specialized for a certain scientific area, and hence scientists from

many different areas can use them. National Grid Initiatives (NGIs) are good can-

didates to set up such gateways to support their very heterogeneous user commu-

nities. Typical gateways belonging to this category are the Catania Science Gate-

3

way [Rotondo/2012], GridPort [Thomas/2001], Vine Toolkit [Dziubecki/2012],

and WS-PGRADE/gUSE [Kacsuk/2012]. These gateways usually expose a large

set of low-level services for their users. On the one hand, this is an obvious ad-

vantage, but on the other hand in order to exploit their full power, scientists need a

relatively long learning period to efficiently use all the available features. The

powerful but complex functionalities offered by a generic SG may be too compli-

cated for end-users but could represent the right abstraction level for IT special-

ists, who can develop DCI applications for the scientists.

SG instances or application-specific SGs target a well-defined set of scientists

typically working in a specific field of science. They provide a simplified user in-

terface that is highly tailored to the needs of the given scientific community. As a

result, the scientists do not have to learn too much to use the functionalities pro-

vided by the gateway. On the other hand, these services are limited, and hence if a

scientist needs a more complex service, for example, utilizing a new type of DCI,

this cannot be easily created and managed by these gateways. There are two op-

tions in order to create such SG instances there are two options.

The first option is to write the gateway from scratch. Since the services needed

for a particular community are typically limited, and there are good technologies

for the construction of web portals, like Liferay, it is relatively easy to develop

such SG instances (compared with the development of an SG framework). How-

ever, such simplified gateways typically support the use of only one particular

DCI and possibly do not support some advanced features such as workflow execu-

tion. Some communities selecting this option may underestimate the required

manpower and time to produce a robust gateway that can be provided as a produc-

tion 24/7 service for the large number of members of the community. Problems

that typically arise once the gateway goes into production and becomes successful

are scalability (to cope with more users than initially planned) and flexibility (to

add new functions requested by the users). Moreover, while building and main-

taining such gateways, the different communities usually solve again and again the

same technical issues independently from each other, which could be avoided by

reusing and customizing solutions implemented by SG frameworks.

The other option is to customize an existing versatile SG framework according

to the needs of a certain user community. In this case the full power of the under-

lying portal framework can be exploited, for example, by developing comprehen-

sive and sophisticated workflows for the community and hiding these complex

workflows behind a simplified application-specific user interface. The advantage

of this approach is that the DCI access services are already solved and provided in

a robust way by an SG framework, and hence the user communities can concen-

trate on producing their application-specific layers of the science gateway. In this

way the redundancy of developing the same DCI access mechanisms by many dif-

ferent communities can be avoided. For the same reason, the development time of

SG instances can be significantly reduced, and there is a good chance that within

the lifetime of the requiring project the science gateway can be built and provided

as a production service. Another advantage is that the cost of producing such a

4

gateway is usually lower than in the case of the first approach. Since the gateway

is a customization of an existing robust and scalable SG framework, the resulting

production SG instance will also be robust and scalable. The sustainability of such

an SG instance is more certain than in the case of the first method since the large

set of user communities involved in the adaptation and maybe further develop-

ment of the framework represents a strong lobbing force to get further funding for

maintenance and development. It is also important that the gateway framework

should be open source and should involve community members in the develop-

ment and maintenance of the code. When the SG framework is sustainable, the

community of the SG instance should maintain only a narrow set of user-specific

services, and the rest should be maintained by the SG framework developer com-

munity.

1.2 Architecture of Science Gateways

In both SG frameworks and SG instances two main components should be dis-

tinguished:

 Front-end

 Back-end

The role of the front-end is to provide the necessary user interface. In the case

of SG instances the interface is very much customized to the particular needs of

the scientific user community. For example, chemists and biologists would like to

see visualization tools for molecules, whereas meteorologists need various types

of map visualizations. The major focus of SG instances should be to develop this

kind of specialized user interface to provide the right front-end for the target user

community. In the case of an SG framework the interface is typically more gener-

ic, providing user interface for generic features that might be needed for many dif-

ferent user communities and SG instances. For example, these could include user

interfaces for certificate management, file and data management, job submission,

workflow creation and management, monitoring, etc. These generic parts of the

front-end could also be reused from an SG framework for the implementation of

customized SG instances. Quality requirements for a front-end are as follows:

 User-friendliness: provides intuitive user interface.

 Efficiency: provides fast response time even for complex user requests.

 Scalability: provides fast response time even for a large number of

simultaneous user requests.

 Robustness: keeps working under any circumstances and recovers

gracefully from exceptions.

 Extensibility: it must be easy to extend with new interfaces and

functionalities.

Notice that the main difficulty of building an SG front-end is not the pretty de-

sign of the user interface but the achievement of the quality requirements listed

5

above. These become really important when the SG is used in production by a

large number of scientists. Gateways created from scratch in many cases reach on-

ly the prototype level, or if they go into production, they face a lot of difficulties to

meet these quality requirements.

The back-end provides the necessary DCI access mechanisms that are needed

to realize the typical gateway functionalities like certificate management, file and

data management, job submission, workflow management, monitoring, etc., for

various DCIs. The back-end is typically generic, i.e., the same back-end can be

used by many different SG instances. Therefore the main advantage of developing

SG frameworks and deriving the SG instances for them appears in the field of de-

veloping the back-ends. If a generic back-end is developed in a robust way by an

SG framework, all the SG instances derived from it can take the benefit from its

robustness with no or little development effort. A good back-end can support sev-

eral DCI types (clusters, grids, desktop grids, clouds, etc.); therefore one of the

distinguishing features of SG frameworks is how many different DCIs they can

support and how easily these DCIs can be accessed via the functionalities provid-

ed by the SG framework.

Quality requirements for a back-end are similar to the front-end requirements,

although their meaning could be quite different since the front-end serves users

and the back-end manages jobs and service calls:

 Efficiency: provides fast response time even for complex submitted

jobs or service calls.

 Scalability: provides fast response time even for a very large number

(even for millions) of simultaneously submitted jobs or services calls.

 Robustness: keeps working under any circumstances and recovers

gracefully from exceptions.

 Flexibility: ability to manage many different types of DCIs and many

concrete instances of DCIs.

 Extensibility: it must be easy to extend with the support of new types

of DCIs, with new concrete DCIs, and new back-end services.

1.3 Functionalities of Science Gateways

A science gateway can have many different functionalities. In fact, each user

community typically requires some new functionalities according to their specific

needs compared to the original, generic functionalities of the SG framework from

which they derive their own SG instance. Therefore here we show only the typical

functionalities that are commonly used by many different SG frameworks and SG

instances. These functionalities can be grouped according to their relationship to

the users and the DCIs:

 DCI-oriented functionalities:
o Certificate proxy management

6

o Job submission

o Data management

o Workflow management

o Monitoring the usage of DCIs

o Accounting the usage of DCIs

 User-oriented functionalities:
o User certificate management

o Workflow editing

o Job and workflow execution progress visualization

o Scientific visualization where requested

o User collaboration support

In many DCIs accessing resources requires user authentication, and, unfortu-

nately, different DCIs require different types of authentication mechanisms. If a

gateway is to support access to different kinds of DCIs, then it should support all

the user authentication methods required by the different DCIs. These methods in-

clude, for example, X509 certificate management and certificate proxy manage-

ment. Chapter 6 “WS-PGRADE/gUSE security” describes the major authentica-

tion methods and their support in the WS-PGRADE/gUSE SG framework.

Users typically want to submit jobs to the different DCIs, and hence the job

submission mechanism is a basic service in every science gateway. Again, differ-

ent DCI types implement different types of job submission protocols, and a gener-

ic gateway framework should be prepared to handle all these different kinds of

protocols. The WS-PGRADE/gUSE SG framework contains a generic job submis-

sion service that can submit jobs to all the major DCI types. This service, called

the DCI Bridge, is described in detail in Chap. 4. Other SG frameworks also sup-

port access to several DCIs, but in a much more restricted way than is supported in

WS-PGRADE/gUSE.

Jobs require access to data storage when they are executed. In many cases the

different DCIs apply different storage access protocols, which also cause difficul-

ties for gateway developers who must cope with the variety of these protocols.

Executing a job in a certain DCI can require access to data storage maintained in

other DCIs. To solve these problems, SCI-BUS developed the Data Avenue ser-

vice that enables access to the most important storage types, even if jobs running

in other DCIs. This service and its use in the WS-PGRADE/gUSE SG framework

is explained in Chap. 5. Other SG frameworks typically lack this generic approach

of accessing various types of data storages. Recently, the EUDAT EU FP7 project

also started to develop a generic solution for this problem [Riedel/2013].

Beyond simple job submissions and service calls, applications solving complex

problems like scientific simulations require the creation and execution of scientific

workflows. To support these more advanced types of applications, SG frameworks

should provide workflow editing and execution services. Recently, more and more

SG frameworks have such workflow support. The WS-PGRADE/gUSE SG

7

framework was designed from the very beginning to include workflow manage-

ment. This capability of WS-PGRADE/gUSE is described in detail in Chap. 3.

As jobs and workflows are executed in the various DCIs, users should be able

to observe how their execution is progressing. Therefore the gateway back-end

should be able to collect execution monitoring information from the DCIs, and the

front-end component should be able to present this information to the users in a

comprehensive way. This is such a basic requirement that it is typically supported

by every SG framework. On the other hand providing accounting information on

how many resources for what price have been used during job and workflow exe-

cution is also an important service of science gateways but is frequently neglected

and not supported. The WS-PGRADE/gUSE SG framework provides such ac-

counting service for commercial clouds when it is used together with the Cloud-

Broker platform. This facility is explained in Chap. 6.

User collaboration is needed both inside a user community and among several

user communities. WS-PGRADE/gUSE provides an internal application reposito-

ry for collaboration inside a user community, and access to the SHIWA Workflow

Repository in order to help external collaboration among different user communi-

ties. These services of WS-PGRADE/gUSE are described in Chap. 9.

Tools for scientific visualization are typically provided by SG instances and not

by SG frameworks since scientific visualization is application-dependent. There-

fore such tools and services are described in Chaps. 10–15, where the SG instanc-

es derived from the WS-PGRADE/gUSE SG framework are introduced.

1.4 Developers and Users of Science Gateways

People involved in the creation, operation, and usage of gateways have differ-

ent roles, and a good gateway should provide support for all the roles.

The first category is the gateway developers, who develop the gateways. Here

we have to distinguish SG framework developers and SG instance developers. The

primary goal of SG framework developers is to develop the SG framework back-

end in a portable way that enables SG instance developers to use it without modi-

fications. Their second goal is to develop the generic part of the front-end, and ob-

viously also generate and maintain up-to-date documentation. Beyond these tasks

directly related to the gateway framework development, they should also provide

user support, including the evaluation of feature requests and further developing

the gateway framework according to the new functionality requirements. Develop-

ing an SG framework requires very deep understanding of the underlying infra-

structures and the required web technologies. Therefore, to develop an SG frame-

work the developer community should invest in a long-running and constant

learning process, which is very costly. As a result, there are only very few SG

frameworks, and the number of gateway framework developers is also very low.

The main task of the SG instance developers is either to customize an existing

SG framework for their user community, i.e., to extend the SG framework with

new application-specific interfaces, or to develop the SG instance from scratch. In

8

the former – and recommended – case SG instance developers can concentrate on

the application domain-specific features of their SG. In the latter case, they need

to learn all those aspects of the underlying DCI middleware and web technologies

that are needed for the SG framework developers. As a result, they usually create

the SG instance much more slowly and with more efforts than those SG instance

developers who choose the customization development method. The number of

SG instance developers is about an order of magnitude larger than the number of

SG framework developers, but in the ideal case, the difference would be even two

orders of magnitude. In the case of the WS-PGRADE/gUSE framework we get

close to this ideal case, since the framework has been adapted by more than 90 dif-

ferent communities who develop SG instances based on the framework. The WS-

PGRADE/gUSE framework helps this customization process by providing a spe-

cial API called Application Specific Module (ASM) API by which existing work-

flows can easily be embedded in application specific portlets (see details in Chap.

3).

Once the SG frameworks or SG instances are developed, they should be set up

and operated. Here the role of gateway operators comes into play. They should be

able to deploy, configure, run, and maintain the gateway service for the user

communities. For these purposes, good gateways provide complete and up-to-date

documentation, installation and configuration wizards, user management support

interfaces, etc. These can be developed in a generic way within an SG framework

and just be used (and maybe adapted) by SG instances.

Once the SG frameworks or SG instances are set up and operating, they are

ready for use. We must distinguish two user categories: end-users and application

developers. In fact, they need different front-ends. The application developers de-

velop DCI applications, for example, new workflows, which are used by the end-

users. The application developers are typically IT people or scientists (chemists,

etc.) with good understanding of the underlying IT technology. They should have

relatively detailed information on the underlying DCIs, while this information

could partially or completely be hidden from the end-users. Therefore, the SG

frameworks are primarily targeted to the application developers, and the SG in-

stances are typically designed for the end-users. Of course, this typical usage does

not exclude the possibility that some SG frameworks can be used by end-users and

SG instances can provide front-ends necessary for DCI application development.

However, a good practice is the clear separation and support of these two user

types, and WS-PGRADE/gUSE supports this concept. It provides a full-scale user

interface for workflow developers (called power users) that enables the fast and

efficient development of DCI-oriented workflows. On the other hand, its end-user

interface concept enables the automatic creation of an end-user interface with lim-

ited functionality that can be easily used by scientists who do not know the under-

lying DCIs. This aspect of the WS-PGRADE/gUSE gateway framework is de-

scribed in a more detailed way in Chaps. 2 and 8.

9

1.5 The SCI-BUS Project

As written in Sect. 1.1, the recommended way to develop SG instances is the

customization methodology. This approach is followed by the SCI-BUS (Science

Gateway Based User Support, https://www.sci-bus.eu) EU FP7 project that devel-

ops the WS-PGRADE/gUSE SG framework and also a customization technology

by which a large number of scientific user communities can easily adapt the

framework and develop their SG instance. The structure of the project and the re-

lated applied technologies are shown in Fig. 1.1.

The central component of the project is the WS-PGRADE/gUSE gateway

framework. This is the basis of all the SG instances developed by project partners,

subcontractors, and associated partners. During the project the WS-

PGRADE/gUSE framework has been significantly further developed, including

the following main features:

1. Cloud integration via the CloudBroker Platform (this is described in detail

in Chap. 7) to access a large variety of commercial and academic clouds

2. Direct cloud integration to access academic clouds (see details in Chap. 4)

3. To provide robot certificates (see details in Chap. 6)

4. To provide an efficient and flexible data management system over various

DCIs (see details in Chap. 5)

5. To extend the workflow management system with workflow debugging

capabilities (see details in Chap. 2)

10

Fig. 1.1 SG instance development methodology and required services (with permis-

sion of CloudBroker GmbH)

Of course, not only was the functional extension a major goal in the project but

it also made the framework robust and efficient in the sense that a large number of

users (in the range of 100–1000) could simultaneously use it with short response

times and the gateway should be able to handle even millions of simultaneous job

submissions. Another important aspect was the improvement of the gateway in-

stallation procedure, for which an installation and a service wizard have been de-

veloped. The documentation of the framework was also significantly improved. It

contains 14 documents in the following 4 series:

1. Blue series for end-users (2 documents)

2. Green series for gateway administrators (5 documents)

3. Red series for workflow developers (3 documents)

4. Orange series for general purposes (4 documents)

The gateway framework is published at SourceForge

(https://sourceforge.net/projects/guse/) and has become very popular. There have

been over 15,000 downloads as of the writing this book. The user forum is very

active, and nearly 200 different topics are discussed by a large number of partici-

pants. The further development of the WS-PGRADE/gUSE gateway framework

will not be stopped when the SCI-BUS project is over at the end of September

2014. The project has also developed a sustainability plan that, together with the

11

large number of users, guarantees the further progress of the WS-PGRADE/gUSE

gateway framework. A roadmap of development goals with their expected dead-

line is found on the SCI-BUS web page (http://www.sci-bus.eu), which will be

maintained even after SCI-BUS project is finished.

As Fig. 1.1 shows, 11 communities as project partners have develop applica-

tion-specific SG instances based on the WS-PGRADE/gUSE gateway framework.

These SG instances are the following:

1. Swiss proteomics gateway

2. MoSGrid gateway (see details in Chap. 11)

3. Statistical seismology gateway (see details in Chap. 12)

4. Business process gateway

5. Computational neuroscience gateway developed by Amsterdam Medical

Center (see details in Chap. 10)

6. Blender rendering gateway

7. VisIVO astrophysics gateway (see details in Chap. 13)

8. PireGrid commercial community gateway

9. Software building and testing gateway (see details in Chap. 19)

10. Document Archiving Gateway for citizen web community (see details in

Chap. 19)

11. Heliophysics gateway (see details in Chap. 14)

Subcontractors of SCI-BUS have also developed SG instances as listed below:

1. Science gateway for condensed matter physics community (see details in

Chap. 15)

2. Weather Research and Forecasting science gateway developed by Univer-

sity of Cantabria

3. Academic Grid Malaysia Scientific Gateway

4. AdriaScience Gateway developed by Ruđer Bošković Institute

5. Metal physics science gateway of the G.V.Kurdyumov Institute for Metal

Physics

6. ChartEX Gateway developed by Leiden University

The condensed matter physics gateway is described in detail in Chap. 15 but

the other subcontractors’ gateways are not detailed in this book due to the size

limitations of the book. The interested reader can find details of these gateways in

the public deliverable D6.2 of SCI-BUS under the title “Report on developed and

ported applications and application-specific gateways” that is accessible at the

SCI-BUS web page. Figure 1.2 shows those communities who have some rela-

tionship with SCI-BUS to build their science gateway instances. Beyond these

communities there are many others without any relationship with SCI-BUS that

also intensively use the SCI-BUS gateway technology.

12

Fig. 1.2 SG instance developer communities using SCI-BUS technology (with permis-

sion of Elisa Cauhé Martín)

1.6 Collaboration-based SG Instance Develop-
ment Methodology

SCI-BUS technology helps the collaboration among the different types of peo-

ple developing and using the gateway technology. As already mentioned, two dif-

ferent level repositories help collaboration between workflow developers and

workflow users. Inside a community using the same gateway, the internal gUSE

Application Repository can be used for workflow developers to publish the ready-

to-use workflows, and scientists in the end-user mode of the gateway can import

these ready-to-use workflows from the Application Repository. After parameteriz-

ing the workflows they can be executed in the target DCIs. Of course, the Applica-

tion Repository can also be used to support collaboration between workflow de-

velopers. A workflow stored in the Application Repository can be taken by any

workflow developer belonging to the same gateway’s community and can extend

or further develop the imported workflow. Similar activities are supported among

workflow developers and end-users belonging to different gateway communities

via the SHIWA Workflow Repository. Using the coarse-grained workflow in-

teroperability technique developed in the SHIWA project, this repository and the

WS-PGRADE/gUSE gateway enable collaboration even in cases when the differ-

ent communities use different workflow systems (see details in Chap. 8).

13

Collaboration is supported not only among workflow developers and workflow

users but also among gateway developers. For this purpose SCI-BUS developed

and set up the SCI-BUS Portlet Repository. This enables the sharing of Liferay

portlets between SG instance developers (see details in Chap. 9). This sharing of

existing portlets can further accelerate the customization process of gateway

frameworks.

In fact, these repositories, the SG framework stored in the open source Source-

Forge repository and the customization concept of SCI-BUS enable the introduc-

tion of a collaborative SG instance development methodology. Figure 1.3 shows

the services required for the SG instance development methodology as well as the

different types of developers and users related to the SG instance. The steps in de-

veloping an SG instance according to this SG instance development methodology

are as follow:

 Step 1: An SG instance developer downloads the WS-PGRADE/gUSE

framework from SourceForge and deploys it as a general purpose science

gateway. It contains the major functionalities to develop and run work-

flows by the workflow developers and to run workflows by the end-user

scientists.

 Step 2: An SG instance developer downloads several domain-specific

portlets from the SCI-BUS Portlet Repository that are needed for the tar-

get user community. At this stage, without any development the commu-

nity already has a domain-specific gateway. Although it may not be per-

fectly what they want, the users can start to work with it.

 Step 3: An SG instance developer downloads several domain-specific

workflows from the SHIWA Workflow repository and develops new

domain-specific portlets on top of them. At this stage, without any work-

flow development the community already has an improved domain-

specific gateway; although it is not perfectly what they want, the users

can have more portlets to work with. For the sake of mutual collabora-

tion, the SG instance developer uploads the new portlets into the SCI-

BUS Portlet Repository so other communities can take advantage of us-

ing these new portlets.

 Step 4: The workflow developer develops new domain-specific work-

flows and uploads them to the SHIWA Workflow Repository. She might

download other workflows from the SHIWA Repository and use them to

develop new workflows.

 Step 5: An SG instance developer develops new domain-specific portlets

on top of the workflows developed in step 4. At this stage the domain-

specific gateway is extended with new portlets specifically designed ac-

cording to the needs of this community. For the sake of mutual collabora-

tion, the SG instance developer uploads the new portlets into the SCI-

BUS Portlet Repository so other communities can take advantage of us-

ing these new portlets.

14

Of course, steps 2-5 can be repeated in as many times as required. Every itera-

tion results in a further improved and extended SG instance for the user communi-

ty.

Fig. 1.3 Collaboration-based SG instance development methodology and required ser-

vices

1.7 How to Read this Book?

The main goal of the book is to transfer the knowledge of building science

gateways for those communities who would like to develop their own science

gateway instance in the future or who would like to extend or improve their exist-

ing science gateway with new functionalities, services, portlets, and workflows.

The book summarizes those technologies that we have developed in the SCI-BUS

project concerning building general-purpose science gateway frameworks as well

as customizing the framework toward domain- and application-specific science

gateway instances. Since workflows play more and more important roles in IT-

based scientific research, we also show how the SCI-BUS workflow technology

can be used and extended with other workflows by using the workflow interopera-

bility technology developed in the EU FP7 SHIWA project and currently actively

used in the EU FP7 ER-Flow project (see Chap. 8).

The book is divided into three main parts. After the current chapter, the first

part describes the core SCI-BUS gateway framework technology, WS-

PGRADE/gUSE. Chapter 2 gives a generic introduction to WS-PGRADE/gUSE

science gateway framework technology and summarizes the main features of WS-

15

PGRADE/gUSE. Since all the other chapters are built on the knowledge described

in this chapter it is recommended that everyone read this chapter. Similarly, read-

ing of Chap. 8 is also recommended for every reader since it explains all the major

use-case scenarios where the gateway framework can be applied.

Chapter 4 describes the DCI Bridge service that enables access to a large set of

DCIs via a common interface based on the OGF standard BES. Since any work-

flow systems and existing gateways can be extended to be able to exploit this ser-

vice, any reader who is interested in extending their workflow system and gateway

with access to such a large set of DCIs should read this chapter. Similarly, Chapter

7 describes the Data Avenue service that enables file transfer between different

DCI storages having different protocols. This is a very generic service that can be

used independently from WS-PGRADE/gUSE, and hence readers who would like

to extend their workflow manager and gateway to exploit this service should read

this chapter.

The following chapters should be read by those readers who are interested in

learning more on the following aspects of WS-PGRADE/gUSE:

 Workflow concepts of WS-PGRADE/gUSE (Chap. 3)

 Executing WS-PGRADE workflows in various Distributed Compu-

ting Infrastructures and the DCI Bridge service (Chap. 4).

 Security aspects of WS-PGRADE/gUSE (Chap. 6)

 Integration of WS-PGRADE/gUSE and clouds via the CloudBroker

Platform (Chap. 7)

 Data management in WS-PGRADE/gUSE and the Data Avenue ser-

vice (Chap. 5)

 Usage scenarios by WS-PGRADE/gUSE (Chap. 8)

 Community activity support in WS-PGRADE/gUSE via the SHIWA

technology and ER-Flow experience (Chap. 9)

The second part of the book contains concrete use cases that describe how the

WS-PGRADE/gUSE gateway framework was customized by SCI-BUS project

partners and subcontractors to develop a domain-specific science gateway in-

stance. These chapters are completely independent from each other but they use

different features of the WS-PGRADE/gUSE framework; hence they are built on

information described in various chapters in the first part of the book. These chap-

ters are very useful for those readers who also want to develop a domain-specific

science gateway instances because here they can find many good ideas on how to

adapt WS-PGRADE/gUSE gateway for their own purposes.

Some further gateway instance examples that were developed in other EU FP7

projects like agINFRA, DRIHM, and VERCE are shown in Chap. 17 in the third

part of the book. Chapter 18 even shows how different user communities can

come together and create a science gateway alliance based on the same gateway

technology. Notice that there are many more science gateway instances developed

based on the WS-PGRADE/gUSE gateway framework, but due to the restricted

size of the book those are not described here. However, the interested reader can

find those further use cases via the SCI-BUS web page. Part 3 also describes some

16

further application areas of the SCI-BUS gateway technology. These include edu-

cational and commercial uses. Those readers who are interested in the use of SCI-

BUS technology in university courses are recommended to read Chap. 16. The

commercial use of SCI-BUS technology is also possible and was exploited by

several companies in the SCI-BUS project; there are other companies that are cur-

rently working on the commercial applications inside the EU FP7 CloudSME pro-

ject. These commercial applications of the SCI-BUS technology are described in

Chap. 19.

The book ends with a short Conclusions and outlook in which the future of the

SCI-BUS technology is covered.

1.8 Conclusions

The goal of the current book is to describe the WS-PGRADE/gUSE SG

framework, its customization technology and to show use cases for several user

communities where this technology was successfully applied to create application-

specific SG instances. Within the SCI-BUS project 11 partner user communities

established their own SG instances as production services, another 6 communities

as sub-contractors have developed their gateways and 7 associated partners also

use the SCI-BUS gateway technology. The WS-PGRADE/gUSE SG framework is

an open source software that can be downloaded from SourceForge. The number

of downloads is over 15.000 as of writing this book and constantly grows. There

are more than 90 SG instances are deployed world-wide as shown by the google

map at https://guse.sztaki.hu/MapService/. The technology therefore matured

enough to be used by large number of user communities and hence the signifi-

cance of this book is to disseminate this know-how for the scientific communities

who are interested in building gateways based on such a matured technology that

SCI-BUS can provide.

https://guse.sztaki.hu/MapService/

