
9 Sharing Science Gateway Artefacts through

Repositories

Gábor Terstyánszky, Edward Michniak, Tamás Kiss, and Ákos Balaskó

Abstract. Researchers want to run scientific experiments focusing on their disci-

plines; they do not necessarily want to know how and where the experiments are

executed. Science gateways hide details by coordinating the execution of experi-

ments using different infrastructures and workflow systems. ER-flow/SHIWA and

the SCI-BUS project developed repositories to share artefacts such as applications,

portlets, workflows, etc. inside and among research communities. Sharing arte-

facts in repositories enables gateway developers to reuse them when building a

new gateway and/or creating a new application.

9.1 Introduction

Researchers simply want to run scientific experiments focusing on their disci-

plines. Science gateways hide details how and where experiments are run by coor-

dinating the execution of experiments using different infrastructures and workflow

systems. Using a science gateway framework significantly speeds up the gateway

development process when compared to development from scratch. Most gateway

frameworks provide such common services as authentication, job/workflow sub-

mission to various DCIs, monitoring and information system capabilities, or exe-

cution statistics, just to mention a few. These services are provided by the frame-

work itself and are typically tightly coupled with the underlying technology.

Different artefacts, for example, applications, portlets, workflows, etc., that

could be specific to a particular application domain or science gateway could also

be efficiently shared and reused between multiple developer and research commu-

nities. Sharing these various artefacts in repositories, for example, in application,

workflow, or portlet repositories enables gateway developers to reuse these exist-

ing artefacts when building a new gateway and/or creating a new application.

Moreover, these building blocks can, in many cases, be utilized by developers us-

ing different gateway frameworks, and in this way facilitate an even wider collab-

oration between communities. Sharing and reuse of these artefacts via repositories

significantly shortens the development. There are two major scenarios in sharing

artefacts:

 cooperation inside a particular research disciplinary, and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48295034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

 inter- or multidisciplinary research cooperation among different research

communities.

The WS-PGRADE/gUSE framework [Kacsuk/2012] contains internal reposi-

tories that allow researchers of one community, who are registered with a gUSE

gateway, to publish and share artefacts (Sect. 9.3). To support inter- or multidisci-

plinary research cooperation, the gUSE framework can be connected to external

repositories containing portlets and workflows (Sects. 9.4 and 9.5). Developers

can upload and publish porlets and workflows in these repositories. Both develop-

ers and researchers of different communities can access these repositories to find

and download those portlets and workflows they want to use. To further improve

the user experience, the framework incorporates a portal and a workflow system to

make transparent the execution and infrastructure details. The portal provides a

power-user view for developers to create and test experiments, and an end-user

view for researchers to run these experiments. To further improve the researchers’

experience, the framework offers the application-specific module (ASM) concept,

which enables developers to create customized portlets that are tailored to re-

searchers’ requirements to run particular experiments.

9.2 SCI-BUS Community Gateways

The SCI-BUS gateway’s environment is shown in Fig. 9.1. The key compo-

nent is the customized community science gateway. The customization incorpo-

rates configuring the DCI Bridge to enable access to the infrastructure(s) required

by the community and extending the gateway with ASM portlets [ASM] to run the

scientific experiments in a community-specific way. SCI-BUS communities de-

ploy, customize, and operate the community gateways. To support sharing appli-

cations, files, portlets and workflows in the development and execution phase, the

environment provides internal repositories such as the application repository, file

storage, workflow storage and access to external repositories such as the SCI-BUS

portlet repository and the SHIWA Workflow Repository. The SHIWA workflow

repository allows for management of workflows developed by communities.

Workflow developers can upload workflows either automatically (export opera-

tion) through the gateway, or manually through the repository GUI. Workflow de-

velopers can search the workflow repository, and then select and download the

workflows they want to incorporate in the customized ASM portlets. They can

publish the portlets manually in the SCI-BUS portlet repository. Community

gateway system administrators can manually download and add these customized

ASM portlets to their community gateways.

3

Fig. 9.1 SCI-BUS environment

There are two possible SCI-BUS development scenarios. In the first scenario,

workflow developers first create workflows on the community science gateway

and then upload them to the workflow repository. Next, the portlet developers

elaborate ASM portlets. They either select workflows from the workflow reposito-

ry, or develop them from scratch, and incorporate the workflows into ASM port-

lets. Finally, they publish these portlets in the portlet repository. In the second

scenario a different community develops its own community portal. They can ei-

ther develop all portlets and workflows from scratch, or search the repositories

and find portlets and workflows they want to reuse. Reusing portlets and work-

flows that have been published in repositories can simplify and speed up the sci-

ence gateway development process. Therefore, the main aim of the repositories is

to support developers and system administrators both inside one community and

among different research communities to share portlets and workflows.

4

9.3 Sharing Workflows

The gUSE gateway framework enables sharing of workflows inside a commu-

nity using the gateway’s local storage services (Sect. 9.3.1) and among communi-

ties using the external SHIWA Workflow Repository (Sect. 9.3.2). Having these

two types of storage services, users can upload (or export), search, find, select, and

download (or import) workflows.

9.3.1 Workflow Storage in the gUSE Gateway

There are three internal repositories in the gUSE framework: the application

repository, the File Storage and the workflow storage. They manage workflows

and their data, and also support sharing WS-PGRADE workflows among the sci-

ence gateway users. These repositories provide basic functionalities such as up-

loading or downloading files and workflows.

File storage manages the uploaded input files and executables, and it addition-

ally may store the generated output files in the gateway’s file system using its

folder structure.

Workflow storage (WFS): The workflow configuration is stored in a database

handled by the WFS. It manages a database consisting of several tables that store

the workflow’s property set, such as the required resource, the type of workflow

node (for example, binary, service or workflow), etc. It means that the workflow

description itself is not stored explicitly; instead, it is generated on-demand by

WFS when the user downloads a workflow.

Application Repository: The application repository enables the users of the

same gateway to publish their workflows internally or to import workflows that

others have exported. In technical terms, exporting a workflow into the application

repository means first getting the workflow description from the WFS and its files

from the file storage, and then sending them as a zip file to the application reposi-

tory which saves this file in a particular folder on the server. There is no role man-

agement implemented in this repository: the users have the same privileges, so

everyone can see the workflows exported by everyone else. Beside its main scope,

the application repository plays a role in two additional scenarios. In the first sce-

nario it supports sharing workflows among gateway users who run workflows

through end- or power-use views. In the second scenario users execute shared

workflows through ASM portlets. In both scenarios the workflow systems imports

workflows from the application repository to enable their execution.

Usage scenarios: We distinguish between development and execution scenari-

os. In the first case, as shown in Fig. 9.2 these storage entities have different roles

in the three phases of the workflow development: graph creation, concrete work-

flow configuration, and workflow exportation. Creating the abstract graph of the

workflow using the graph editor defines the workflow skeleton by adding its

nodes and the relations among them. This step does not indicate any file transfer.

Therefore, this step uses the workflow storage only, which stores the given infor-

5

mation in the database. In the workflow configuration phase users can add argu-

ments to specify the resources to be used or the types of workflow nodes and so

on. In this phase input files and executables can be also uploaded. These opera-

tions invoke the file storage to transfer these files into the proper folders. Infor-

mation storage in the workflow configuration step is supported by both the File

Storage and the workflow storage services. Finally, the export process requires

cooperation of all three storage components. First of all, the workflow configura-

tion and its data must be collected from the file storage and the workflow storage.

Next this data is compressed and is exported to the application repository as a sin-

gle zip file.

Fig. 9.2 gUSE workflow storage

In the execution scenario the Application Repository supports sharing work-

flows among gateway users. They import the workflows from the Application Re-

pository in order to parameterize and execute them.

9.3.2 SHIWA Workflow Repository

The “Sharing Interoperable Workflows for Large-Scale Scientific Simulations

on Available DCIs” (SHIWA) project [SHIWA/2014] developed and deployed the

SHIWA Repository. The repository allows users to manage workflows including

upload, upgrade, and delete workflow operations and use workflows including

browse, search, and download workflow operations.

Repository users: There are three types of repository users: domain researchers,

workflow developers and repository system administrators. Workflow developers

are familiar with workflow systems and infrastructures where workflows are exe-

cuted. They can create workflows and can support researchers to run these work-

6

flows. To achieve this, they define and publish workflows in the workflow reposi-

tory. Researchers can browse/search the workflow repository, select and download

workflows from the repository, and run these workflows on DCIs. The repository

system administrators manage the repository. They have the highest privileges

among the repository users.

Workflow data: The repository manages four data entities: abstract workflows

(or workflows), concrete workflows (or implementations), configurations and

workflow engines. The abstract workflow describes the workflow behavior. It

specifies the workflow graph, including workflow nodes and edges, node inputs

and outputs. However, it does not actually contain any binaries or data needed to

run the workflow because any abstract workflow may have been implemented in

different workflow systems. Concrete workflows strictly follow the definitions of

the abstract workflow. They contain binaries/executables, and input data or refer-

ences for input data are defined by the configurations. The configurations contain

data, parameters, and files, for example, default or sample data or references to

these data entities. The workflow engine includes or references files and any other

data required to execute a workflow engine on an infrastructure.

Repository domains: The repository has a private and public domain. In the

private domain developers can manage workflows having both read and write ac-

cess rights. They can specify, upload, modify and delete them. The content of this

domain is available only for registered users. In contrast, the public domain does

not require any registration. It allows browsing/searching workflows in the reposi-

tory, and also downloading them.

Repository views: The SHIWA Repository offers two views: researcher (or

browse) and developer (or table) views. The researcher view (Fig. 9.3) presents

workflow data assuming a basic user-level understanding of workflows. It enables

users to find workflows they need to run scientific experiments. In this view the

repository displays the summary (domain, application, owner, description, graph,

etc.), the number and types of inputs and outputs, data sets, and details of the ex-

isting concrete workflows. Users can search workflows, either selecting a domain

via the domain list or by specifying workflow names. The developer view allows

workflow developers to upload workflows manually, edit workflow data, and de-

lete workflows. This view displays the name, owner, status, and description of the

workflow, and also the group to which the workflow belongs in a table format. Af-

ter selecting a particular abstract workflow, further details such as attributes and

its implementations are also displayed.

Repository usage scenarios: Users can use the repository in three scenarios. In

the first scenario workflow developers can upload, upgrade, and delete workflows.

They can publish workflows either automatically or manually. In the first case

they upload workflows from the WS-PGRADE/gUSE-based science gateway us-

ing the export operation. In the second case they enter workflow data manually us-

ing the developer (or table) view. The repository offers two major operations to

find workflows: browse and search operations. The browse operation enables

checking the list of workflows, selecting them, and displaying their details. The

7

search operation allows users to specify search criteria, for example, domain name

or workflow name to filter the search operation. Users can browse and/or search

the repository in both the researcher (or browse) and developer (or table) view,

and select workflows they want to execute. They can access the repository through

either the repository GUI or the repository portlet of the WS-PGRADE/gUSE-

based science gateway. In the third scenario users can automatically or manually

download workflows from the repository. The WS-PGRADE/gUSE-based science

gateway enables users to automatically import workflows from the repository.

Workflow developers can also manually download workflows through the devel-

oper (or table) view.

Fig. 9.3 Researcher (or browse) view of the SHIWA repository, containing description

and metadata about the abstract workflow (left) and two implementations (right)

9.4 SCI-BUS Portlet Repository

Much like the SHIWA Repository, the SCI-BUS portlet repository offers a

service that aims to simplify the way in which developers and researchers use dis-

tributed computing infrastructures. This repository increases the availability of

portlets, providing a service to aid their discoverability, uploading, and download-

ing.

Repository users: There are three main user groups for this service; portlet de-

velopers, portlet users, and repository administrators. Portlet developers use the

8

repository to publish their portlet. From the interface they can describe the portlet,

assign its attributes, relate its dependencies, and release – and upload files for –

different versions of their portlet. The portlet users can search, investigate, and ul-

timately download and install a portlet of their choice through the repository GUI.

Finally, the repository system administrator has super-user powers over all the in-

formation stored and the users registered. The overall design of the repository is

centered on assumptions made about each user’s specific knowledge domain.

Again, like the SHIWA Repository, certain views are only applicable to specific

user types.

Repository data: The portlet repository and the SHIWA Repository share

many of the design concepts, and the back-end infrastructures are similar. There

are three main data constructs used in the portlet repository: portlet, portlet version

(or implementation), and attributes that can be assigned to both the portlets and

their versions. The portlet can be seen as an abstract definition of the application’s

behavior. This is aided by a set of attributes to store a description and several

URLs that point to support or documentation. In addition, developers can assign

their portlet to a category or define a set of attributes (or tags), both of which aim

at helping the users search for and discover portlets relating to their specific

knowledge domain or need. To aid the process of selection and discoverability the

developer can also upload screenshots of their portal in use (Fig. 9.4). The portlet

version specifies a concrete implementation of the portlet. This has a version

number, a set of dependencies, and any files or other information that help de-

scribe this particular version. The dependencies describe the environment that the

user must have in order to install and run the portlet. They could be a gUSE ver-

sion, a Liferay portal version, or a link to a workflow on the SHIWA Repository.

Portlet visibility: Both a portlet and its versions have a visibility status attached

to them, which can be either public or private. After creation this value is always

private assuming the portlet is under development. Next, the developers have to

set manually the visibility to public to enable it to be seen by users, effectively

publishing their portlet. This can work the other way around, in order to hide a

portlet or version from public viewing.

Repository usage scenario: There are two main usage scenarios. In the first

scenario a portlet developer wants to publish a portlet. The repository gives

him/her the ability to create a new portlet entity, specify its attributes, upload its

files, and manage any data he/she decides to store. After creating and describing

any portlets or their versions, they can associate tags and a category to portlets and

their versions to help repository users browse and search effectively. In addition to

this the portlet repository can act as a hub for releasing updates to maintained port-

lets throughout the development lifecycle. The second scenario involves a user, ei-

ther a researcher or a portlet developer, who does not have to be registered in the

portlet repository. They can click on the “Portlets” tab and can browse all the pub-

lic portlets. They can also search by knowledge domain (category) or by keywords

(tags) to find a suitable portlet. They then have access to the files for each publi-

cally available version and links to documentation or support.

9

Fig. 9.4 User view of a publicly accessible portlet

10

9.5 Supporting Workflow Interoperability

To address workflow interoperability the SHIWA project developed the coarse-

grained interoperability (CGI) approach [Terstyanszky/2014]. SHIWA created and

deployed a production-level CGI service, called the SHIWA Simulation Platform

(SSP) [Korkhov/2013] to enable execution of workflows created in different

workflow systems and executed on different distributed computing infrastructures

(DCI). Several research communities use the CGI concept to create, integrate,

share and run workflows.

CGI concept: CGI is based on workflow engine integration approach. It man-

ages non-native workflows as black boxes. These workflows are described as leg-

acy applications and their descriptions are uploaded to the SHIWA Repository.

These descriptions identify the workflow engine that can execute the workflow.

The CGI concept manages two workflow types: native and non-native workflows.

Workflows of the host workflow system are called native workflows, while all

others are considered as non-native ones. In the gUSE gateways, the native work-

flow system is the WS-PGRADE workflow system. All others such as Galaxy,

Kepler, MOTEUR, Taverna, etc., are managed as non-native workflows. Accord-

ing to the CGI concept, the native workflow engine (workflow engine A) contacts

a submission service when it identifies a workflow of a non-native workflow en-

gine (workflow engine B) and forwards the workflow ID to the submission ser-

vice. It retrieves the non-native workflow from the repository and associates it

with the workflow engine that can run it. Finally, the submission service forwards

the workflow to the associated workflow engine, which then executes the work-

flow. To support the CGI concept, a gateway based on WS-PGRADE can be con-

nected to two SHIWA services: SHIWA Repository, to publish and import work-

flows, and SHIWA Submission Service, to run non-native workflows.

SHIWA architecture: The simulation platform (Fig. 9.5) contains a portal

(SHIWA Portal), a submission service (SHIWA Submission Service), and a work-

flow repository (SHIWA Repository). The SHIWA portal is a general purpose

gateway based on the WS-PGRADE/gUSE framework. It has a built-in workflow

system: the WS-PGRADE workflow system, which is used as the native workflow

engine. The SHIWA Repository stores the formal description of abstract and con-

crete workflows and data needed to execute them. Workflow developers can de-

scribe, modify, and delete workflows through the repository GUI.

To support non-native workflow execution, the SHIWA Submission Service

imports the previously uploaded non-native workflow from the SHIWA Reposito-

ry and associates with the non-native workflow engine that can execute this work-

flow. This service either invokes locally or remotely predeployed workflow en-

gines, or submits workflow engines with the workflow to local or remote

resources to execute workflows. The “Building an European Research Community

through Interoperable Workflows and Data” (ER-flow) project [ER-flow/2014],

which is the follow-up of the SHIWA project, has been managing the SHIWA

Simulation Platform since September 2012. ER-flow and SCI-BUS offer a combi-

11

nation of a development and an execution environment. ER-flow provides the

SHIWA Simulation Platform as a development environment where workflow de-

velopers can create workflows, including native, non-native, and meta-workflows.

SCI-BUS offers the technology to create and run SCI-BUS community gateways

as an execution environment. Researchers can execute workflows through the end-

user interface of the SHIWA Portal or through ASM portlets in the SCI-BUS

community gateways.

Fig. 9.5 SHIWA Simulation Platform

SHIWA usage scenario: The simulation can be used in SCI-BUS community

gateways to run non-native workflows based on the CGI concept. First, users

search the SHIWA Repository and select a workflow they want to execute. Next

they download the selected workflow from the repository to the SHIWA portal us-

ing the import operation. They either embed the non-native workflow as a single

job in a WS-PGRADE workflow, or create a meta-workflow combining WS-

PGRADE jobs and workflows with non-native workflows using the portal’s work-

flow editor. Then they submit this workflow to the gateway’s WS-PGRADE

workflow engine, which forwards it to the DCI Bridge. The DCI Bridge sends the

submission request of the non-native workflow to the SHIWA Submission Ser-

vice. This service retrieves the workflow from the SHIWA Repository, associates

12

it with the workflow engine that executes it, and returns it to the DCI Bridge. Fi-

nally, the DCI Bridge either sends the workflow to a predeployed workflow en-

gine or submits the workflow engine with the workflow to be executed on the tar-

get infrastructure.

9.6 Sharing Portlets and Workflows: A Case
Study

In this section we presented a case study in which various components of an

existing gateway published in the SCI-BUS repositories were reused for the de-

velopment and customization of another one. These repositories facilitate sharing

various artefacts (applications, workflows, and portlets) of science gateways to

speed up the development of new applications and gateways.

The University of Westminster developed the Westminster Desktop Grid

Gateway to support various local user communities. This gateway is connected to

the University of Westminster Local Desktop Grid (WLDG), utilizing the free

computing capacity of up to 2000 laboratory computers. The gateway offers cus-

tom ASM portlets for molecular docking and 3D animation rendering used in both

teaching and research. The workflows and portlets developed for this gateway

have been uploaded to the SHIWA Workflow Repository and the SCI-BUS Portlet

Repository, respectively.

Molecular docking has been identified as one of the key application areas that

could be supported by publicly available science gateways that would attract po-

tentially large user communities. However, supporting users in an open policy is

not acceptable in a closed university resource such as the WLDG. Also, a public

gateway requires significant resources to serve the expected large number of end-

users. Within the SCI-BUS project, MTA SZTAKI developed and set up a cus-

tomized molecular docking gateway based on the WS-PGRADE/gUSE framework

that is operated on the EDGeS@home public desktop grid. Instead of developing

the gateway from scratch, SZTAKI utilized various repositories to download, in-

stall, and customize the applications, workflows, and portlets already available.

First, SZTAKI selected the three molecular docking portlets that form part of

the University of Westminster Desktop Grid Gateway. Although the Westminster

gateway also includes additional portlets, the docking portlets are separate entities

and are uploaded independently to the SCI-BUS Portlet Repository. Therefore,

these portlets can be installed on other gateways too. The docking portlets call

three workflows that are available from the SHIWA Workflow Repository. Next,

SZTAKI developers downloaded these workflows and applied some necessary

transformations to the workflow jobs. As SZTAKI planned to operate a public

gateway, they remapped all jobs running on the local submitter (which may be

disadvantageous from both performance and security points of view in a public

gateway) to run on the EDGeS@home desktop grid. Such remapping of workflow

jobs does not interfere with the ASM-based portlets that call the workflows.

13

Therefore, no further programming or modification of the user interface was re-

quired. Finally, the workflows call BOINC desktop grid applications that were

downloaded and installed on the EDGeS@home desktop grid server.

9.7 Conclusions

Internal and external repositories used by gUSE gateways enable and support

sharing and reusing applications, portlets, and workflows. As a result, the gate-

ways support two different levels of research cooperation: inside a community and

among communities belonging to different disciplines. Sharing and reuse of these

artefacts via repositories significantly shortens the development time and im-

proves the user experience.

The current repositories have three limitations. First, they do not manage prov-

enance as expected and required by the research communities. Second, the work-

flow repository does not have proper support for workflow execution on the cloud.

Workflow developers can upload virtual images of workflows as files to the work-

flow repository but there is no GUI to manage them properly. Third, the portlet

repository does not enable automatic portlet export and import operations. These

limitations should be addressed by MTA SZTAKI and the University of Westmin-

ster to further improve sharing portlets and workflows inside and among research

communities.

