
8 Developing Science Gateways at Various

Levels of Granularity Using WS-

PGRADE/gUSE

Tamás Kiss, Gábor Terstyánszky, Péter Borsody, Péter Kacsuk, and Ákos

Balaskó

Abstract. Science gateways can provide access to distributed computing resources

and applications at very different levels of granularity. Some gateways do not

even hide the details of the underlying infrastructure, while on the other hand

some provide completely customized high-level interfaces to end-users. In this

chapter the different granularity levels at which science gateways can be devel-

oped with WS-PGRADE/gUSE are analysed. The differences between these vari-

ous granularity levels are also illustrated via the example of a molecular docking

gateway and its four different implementations.

8.1 Introduction

Science gateways, such as gateways built using the WS-PGRADE/gUSE

framework [Kacsuk/2012], have the potential to offer transparent and user-

friendly access to a wide variety of distributed computing resources. These tools

hide the complexity of the underlying infrastructure from the scientist end-users

and let them concentrate on their scientific research problem instead of requiring a

steep and sometimes impossible learning curve in complex computing paradigms.

Many web and desktop-based tools have been developed in the past few years

that have been labelled as science gateways. However, close examination of these

tools reveals that the level of granularity at which end-users can access the appli-

cations is rather varied. There are solutions which do not aim to hide the details of

the original command line interface, and simply provide web-based access to the

underlying distributed computing infrastructure. On the other extreme, there are

custom-built portals supporting a single or a small family of applications and

providing highly intuitive graphical user interfaces incorporating visualization

tools, for example. Science gateways can be developed at various levels of granu-

larity, significantly influencing how and by which category of users these tools

can be utilized.

Part of the research carried out in the SCI-BUS European project was to inves-

tigate the level of granularity of science gateways that a particular user community

requires. As the WS-PGRADE/gUSE framework supports the development of sci-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SZTAKI Publication Repository

https://core.ac.uk/display/48295031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

ence gateways at different levels of granularity, once the required level was identi-

fied, SCI-BUS supported the development of various end-user gateways in diverse

disciplines and at the required granularity levels. This chapter gives an overview

of the various granularity levels offered by WS-PGRADE/gUSE, and illustrates

via the example of a molecular docking gateway [Kiss/2010] the advantages and

disadvantages of the different levels and approaches.

8.2 Granularity Levels Supported by WS-
PGRADE/gUSE

There are two main approaches when developing science gateways: developing

from scratch or adapting and customizing an existing gateway framework.

When developed from scratch, software engineers create a custom gateway so-

lution for a particular user community with no or minimal reuse of existing com-

ponents. This can result in a highly customized and specialized gateway. On the

other hand, development typically requires significant time, effort, and resources.

Also, these gateways are typically highly specialized, making it hard to reuse and

extend them for additional user scenarios. Changing the level of granularity in

case of these custom gateways is not supported since any modification of the de-

veloped solution requires major software engineering effort.

The second approach to building a science gateway is to adapt and customize a

generic science gateway framework. These frameworks (for example, WS-

PGRADE/gUSE [Kacsuk/2012], the Catania Science Gateway Framework [Bar-

bera/2010], or the HubZero framework [McLennan/2010]) provide readily availa-

ble services, significantly decreasing development time and effort. Additionally, if

these frameworks were extended with customization methodologies then highly

specific gateways could also be built on top of them. Therefore, gateways at dif-

ferent levels of granularity can be created requiring various levels of effort from

the developers, and providing various levels of customization for end-users.

WS-PGRADE/gUSE supports the development of science gateways at four dif-

ferent levels of granularity. These levels are:

1. Out of the box: Deploy the generic WS-PGRADE/gUSE framework and

provide it “out of the box” for end-users.

2. Predeveloped workflows: Deploy the generic WS-PGRADE/gUSE

framework and also predevelop and provide the necessary workflows to

be executed by the end-users.

3. End-user view: Use the end-user view of WS-PGRADE/gUSE to hide the

complexity of workflow creation and parameterisation from the end-user.

4. Custom user interface: Develop a completely customized gateway using

the Application-Specific Module (ASM) API or the Remote API

[Balasko/2013] of the WS-PGRADE/gUSE framework.

The effort required from application developers and system administrators to

create and set up a gateway increases as we move from option 1 toward option 4,

3

with the lowest level of developer/system administrator effort being required for

the first option. On the other hand, the level of effort and expertise required from

the end-user decreases significantly as we move toward option 4. The remaining

part of this chapter analyses and describes the different options via the example of

a molecular docking gateway.

8.3 A Gateway for Molecular Docking

Molecular docking simulation programs have significant potential to contribute

to a wide area of molecular and biomedical research, including drug design, envi-

ronmental studies, or psychology. AutoDock [Morris/1998] is one example of a

program which allows in silico modeling of intermolecular interactions. Emerging

literature shows that AutoDock can be successfully utilized in research strategies

for the study of molecular interactions in cancer [Ali/2007] and for designing drug

inhibitors for HIV [Teixeira/2007], for example. AutoDock is a suite of automated

docking tools. It is designed to predict how small molecules, such as substrates or

drug candidates, bind to a receptor of known 3D structure. AutoDock currently

comprises two discrete generations of software: AutoDock 4 and AutoDock Vina.

The latter provides several enhancements over the former, increasing average

simulation accuracy while also being up to two orders of magnitude faster.

Autodock Vina is particularly useful for virtual screening, whereby a large set

of ligands can be compared for docking suitability with a single receptor. In this

instance parallelism is achieved by first breaking the set of all ligands into equal

sized disjoint subsets. Each computing job then uses a different subset as an input.

The ligands in each subset are simulated/docked sequentially on the computing

node using the single receptor, while a postprocessing stage can be used to com-

pare the results from all computing jobs.

AutoDock 4 is typically used to accurately model the molecular docking of a

single ligand to a single receptor. In this instance the process is composed of three

discrete stages. First, a low complexity sequential preprocessing stage defines a

random starting location in 3D space for both the ligand and receptor. This is

achieved using a tool within AutoDockTools (ADT) called AutoGrid. The second

stage can comprise many parallel jobs, each receiving a copy of the ligand and re-

ceptor starting locations which form the input to a genetic algorithm. The algo-

rithm acts to randomly rotate/reposition the ligand and then determine likely dock-

ing/binding sites based upon energy levels which are calculated from the original

starting locations. This process can be considered a parameter sweep, where the

varied input parameter is the initial random rotation of the ligand. Finally, a single

low complexity sequential post-processing stage can be used to identify the most

likely binding site by comparing energies from all jobs of the preceding stage.

Above described scenarios are supported in four different granularity level im-

plementations, using the WS-PGRADE/gUSE framework described next.

4

8.4 Granularity Level 1: Out of the Box

Granularity level 1 simply means installing the generic WS-PGRADE/gUSE

framework by a system administrator (including the connection and configuration

of the gateway to suitable distributed computing resources), and providing access

for potential end-users in the form of power-user accounts. After getting access to

the gateway, it is the task of the end-users to design and develop the necessary

workflow applications to run the docking scenarios.

WS-PGRADE/gUSE provides an intuitive and high-level user interface for this

scenario that supports complex workflow development without needing to deal

with low-level details, such as job submission mechanisms, job monitoring, file

transfers, etc. There is no need to write complex programs or to use command line

interfaces and understand the low-level details of various DCIs. On the other hand,

this scenario is still well above the expertise of most bioscientists and requires a

specific and rather long training period. As the target end-users are scientists, they

typically do not wish to be diverted from their research with such extra activities

and requirements.

The typical tasks needed to be carried out by the user in this scenario are illus-

trated on Fig. 8.1. The graph editor is required to design the workflow graph, and

then the concrete workflow needs to be configured, including the upload of exe-

cutables, definition of command line parameters, selection of DCIs, definition of

ports, etc. Figure 8.1 shows a three-job AutoDock Vina workflow and its configu-

ration, as a representative example. The first job of this workflow is the Generator

that runs only once and prepares the necessary input files for the simulation. The

second job is the actual docking simulation application, in this case AutoDock Vi-

na. This job runs as many times there are input ligands uploaded to the workflow.

In each run, a different ligand is docked on the target receptor molecule. The right-

hand side of the figure shows the configuration of this job that is mapped to a

BOINC-based desktop grid resource. Using the desktop grid the parameter sweep

can be effectively parallelized. Finally, the third collector job analyses the results

of all docking simulations and selects the required number of best docking results.

While significant effort and expertise is required from the end-users, the tasks

and responsibilities of gateway operators and application developers are kept at

the minimum in this scenario. If in the target community are experienced work-

flow and application developers, then a suitable gateway can be set up very quick-

ly by installing the framework as it comes “out of the box”.

5

Fig. 8.1 Graph creation and concrete workflow configuration are done by end-user at

granularity level 1

8.5 Granularity Level 2: Predeveloped Workflows

Granularity level 2 is an extension of the first scenario when not only is the

gateway installed for the end-users, but the necessary workflows are also prede-

veloped and exported to a suitable workflow repository. WS-PGRADE offers ac-

cess to both an internal workflow repository and the external SHIWA repository

(see chapter 9 for details).

In this scenario, end-users need to import the predeveloped workflows to their

accounts, parameterize and execute them. Users also have the possibility to cus-

tomize, modify, or even extend the workflows if they wish. End-users do not have

to design or implement the workflows as these are precreated by workflow devel-

opment experts. However, users still need to be familiar with some concepts of the

gateway framework, e.g., they do need to understand the workflow concept and

should have some awareness of distributed computing infrastructures. We recom-

mend that at least an introductory gateway course is recommended to be undertak-

en. Figure 8.2 illustrates that the user only needs to configure the workflow (typi-

cally providing input files only) at this granularity level, but no workflow creation

is required. However, the configuration interface (as it facilitates full workflow

configuration) is rather complex, with different panels for jobs and ports.

6

Fig. 8.2 Only concrete workflow configuration is carried out by the end-user at granu-

larity level 2

On the provider side, this scenario, besides system administrators who deploy

the gateway, also requires specialized workflow application developers who de-

sign, implement and maintain the workflows for the users.

The common feature of the first two granularity levels is that no custom inter-

faces are created for the applications. Only the standard WS-PGRADE/gUSE

submission interfaces are used in the form that these features were described in the

previous chapters of this book.

8.6 Granularity Level 3: End-User View

Granularity level 3 utilizes the end-user view of WS-PGRADE/gUSE. This

view enables the generation of customized user interfaces without writing addi-

tional code.

In this scenario, system administrators deploy the gateway, workflow develop-

ers develop the necessary workflows, and then the end-user interfaces are auto-

matically created by WS-PGRADE/gUSE, based on the workflow settings provid-

ed by the developers. The framework enables workflow developers to define

templates on top of concrete workflows (by differentiating between fixed and

open parameters from the end-user’s point of view), and how to create applica-

tions from these templates. Once these applications are exported to the application

7

repository, in end-user view the gateway presents these applications as simple

web-forms for parameterization by the scientist.

This view completely hides the complex details of workflows and DCIs from

the end-user. On the other hand, creating an application suitable for end-user view

is only a few more clicks when compared to granularity level 2. As a drawback,

the automatically generated forms are relatively rigid, and do not allow much cus-

tomization. Also, the user still needs to import the workflows from the internal re-

pository to the individual account. Altogether, the end-user view provides a viable

solution for quickly developing customized science gateways without any pro-

gramming or code development. Therefore, this option is suitable to develop end-

user oriented gateways.

Figure 8.3 illustrates the user interface of the previously introduced molecular

docking experiments using the end-user view. The major difference between the

this view and the concrete workflow configuration windows utilized at Granularity

Levels 1 and 2 is that in the end-user view scientist end-users are restricted to pro-

vide and upload input files and additional other parameters that are required to run

the application. More specifically, users cannot edit the workflow, specify the

DCIs these workflows will be executed on, or upload executables. These charac-

teristics of the application are all pre-defined and fixed. However, users can up-

load and define all input files and parameters in a more user-friendly way. Com-

mand line parameters are separated and their long names can be provided. Files

are uploaded from the same form. When such a simple form is compared to the

complex configuration interface demonstrated in Fig. 8.2, it well shows why such

a simplified input form is beneficial for end-users.

In the random docking example shown in Fig. 8.3, bioscientists can upload the

necessary input molecule files (receptor and ligand files in PDB format), and also

the grid and docking configuration files (docking.gpf and docking.dpf). They also

specify some other parameters such as the number of work units to be created

(specifying the number of random docking experiments), and the required number

of best (lowest energy level) solutions that they wish to receive back.

Fig. 8.3 User interface for molecular docking based on the end-user view

8

8.7 Granularity Level 4: Custom User Interface

WS-PGRADE/gUSE offers specific APIs that allow the connection of existing

user interfaces to various DCIs via predefined workflows (remote API), or the de-

velopment of new custom portlets within the WS-PGRADE/gUSE framework

(ASM API). Granularity level 4 represents custom gateways that were developed

using these APIs that provide access to low level WS-PGRADE/gUSE function-

alities. Using the ASM or the remote API, customized gateways that incorporate

visualization tools and highly specific user interfaces can be built with reasonable

development effort (typically 2–4 weeks development time for a customized

gateway). In this section, first we provide short overviews of the ASM and remote

APIs, followed by the example of the custom user interface developed for the mo-

lecular docking gateway.

8.7.1 Application-Specific Module API

The aim of the application-specific module (ASM) API is to hide complex

workflows from end-user scientists and provide for them the most convenient, ap-

plication-oriented interface via a domain-specific portlet. In order to achieve this

goal, the ASM API provides access to a set of well parameterized Java methods to

utilize low-level gUSE services. This component enables passing information be-

tween customized portlets and the gateway framework without requiring complex

algorithms or web-service calls, thus significantly simplifying the development of

such custom interfaces. Portlets developed with the help of the ASM API enable

end-users to upload new input files, specify parameters, or visualize results. How-

ever, end-users cannot edit or modify workflow structures, or define executables

behind workflow nodes.

Functionalities of the ASM API fall into three different categories:

1. Methods covering application management issues and getting in-

formation about workflows stored in the application repository, such

as getting a list of application developers and applications according

to a specified developer ID, importing an application to local user

space, and getting a list of applications that have already been

imported.

2. Methods that can be used for input/output data manipulation, such as

uploading a file to a specified port, setting a file that currently exists

on the portal server as input for a job, setting command-line

parameters for a job, and fetching outputs of calculations.

3. Methods for handling user activities during execution such as

workflow submission; getting workflow execution status in simple or

in detailed format; and for aborting, rescuing, or removing a

workflow.

As portlets in general are deployed in portlet containers that supervise the

most common user activities and manage user sessions, ASM does not have to

9

provide any security features with the exception of issues related to the underlying

infrastructures and complex systems. These security features are provided via the

certificate management capabilities of gUSE (see Chap. 6).

The ASM API also helps to separate the work of the workflow developers and

portlet developers. Workflow developers create the ready-to-use workflows and

publish them in the gUSE internal application repository. Portlet developers can

develop the customized, application-oriented portlets that use and hide these

workflows taken from the gUSE internal application repository. In this way, end-

user scientists do not have to be even aware that behind their customized portlet a

complex workflow is running on several DCIs. The ASM API is intensively used

by almost every user community who builds customized science gateways based

on WS-PGRADE/gUSE. Good examples can be found in Chaps 10–14 and Chap.

17. Detailed description of the actual usage of the ASM API’s features can be

found in the “ASM Developer Guide” document.1

8.7.2 Remote API

The Remote API facilitates the execution of complex workflows from an exist-

ing graphical user interface, circumventing the original WS-PGRADE GUI. If a

community already has a science gateway (called the primary gateway) built with

the help of a different technology and can access only one particular DCI, and

there is no workflow development and execution facility built-in, then such a pri-

mary gateway can be extended with a secondary WS-PGRADE/gUSE gateway

that is used for two purposes:

1. To develop the workflows needed for the community and to provide

access to all those new DCIs needed for the community.

2. To execute the workflows developed on the secondary WS-

PGRADE/gUSE gateway but that are launched from the existing

primary community gateway.

Technically the remote API is a component of the WS-PGRADE web appli-

cation enabling such remote workflow execution on the secondary WS-

PGRADE/gUSE gateway. With the help of the Remote API client, existing gate-

ways and other kind of programming environments can be extended with the rich

capabilities of executing WS-PGRADE/gUSE workflows and utilizing various

DCIs.

Remote API is implemented as a simple servlet that is available on every in-

stalled WS-PGRADE/gUSE gateway. This servlet can be switched on if the WS-

PGRADE/gUSE gateway is intended to be used as a secondary gateway. Notice

1 Latest release at the time of writing this book:

http://sourceforge.net/projects/asmsp.guse.p/files/3.4.10/ASM_Developer_Guide_

v3.4.10.pdf/download; generic format of URL: http://sourceforge.net/projects/

guse/files/<VersionNumber>/Documentation/ASM_Developer_Guide_v3.4.10.

pdf/download

10

that the same gateway can be used both as primary and secondary gateway if the

remote API servlet is switched on. This feature is exploited in the SHIWA Simu-

lation Platform gateway (Chap. 9).

The switched on Remote API feature on the secondary WS-PGRADE/gUSE

gateway enables the execution of previously created WS-PGRADE workflows on-

ly. Moreover, all workflows must be available on the primary community gateway

beforehand. The API call on the primary gateway automatically creates a new

temporary portal user on whose behalf the workflows are executed. Once the user

downloads the output of the calculation, the entire temporary user environment is

cleared up on the primary gateway.

Each call of the Remote API servlet can go with different parameterization.

The API includes methods for workflow submission, querying the status of a

submitted workflow (e.g., submitted, running, finished, error), suspending, rescu-

ing and aborting workflows, as well as downloading the results of a workflow in a

zip file that contains both the output and the log files. The remote API servlet is

intensively used by several user communities in their gateways as described in

Chaps 13, 15, and 19. Detailed description of the actual usage of the remote API

feature can be found in the “Remote Access Configuration Manual” document.2

8.7.3 Molecular Docking Gateway with Custom User Interfaces

At Granularity Level 4 the generic framework can be fully customized using

the previously described high level APIs to provide an attractive and rich user en-

vironment for task execution, monitoring and visualization. Although gateway de-

velopment effort is required to provide this customized solution, the utilization of

the generic framework and its APIs significantly reduces the development time

and effort that is needed. When compared to developing the same gateway from

scratch, relying on the generic gateway framework typically results in a scalable

and extendable solution with less than 10% of the effort required otherwise.

At Granularity Level 4 the task of system administrators and application devel-

opers is rather complex as they have to develop the fully customized gateway (in-

cluding gateway deployment, workflow development, and user interface develop-

ment or connection using the ASM or Remote APIs). However, these tasks are

significantly supported by the gateway framework. On the other hand, end-users

can fully concentrate on their research tasks and require no training to use or un-

derstand the gateway.

Figure 8.4 illustrates the custom user interface of the molecular docking gate-

way that was developed using the ASM API. The customized gateway enables bi-

2 Latest release at the time of writing this book:

http://sourceforge.net/projects/guse/files/3.6.7/Documentation/RemoteAPI_Config

_Manual.pdf /download; generic format of URL: http://sourceforge.net/projects/

guse/files/<Version Number>/Documentation/RemoteAPI_Config_Manual.pdf/

download

11

oscientists to easily parameterize, submit, and monitor docking experiments, and

they can also visualize input and output molecules.

The upper panel of the figure shows the configuration phase, where input pa-

rameters and files of the docking experiment are specified and uploaded. The in-

terface provides detailed description of the required file or parameter and performs

basic checks regarding the provided values. The lower panel shows the results of

the simulations. The generated output and log files can be easily downloaded by

the user for further analysis. Moreover, the molecules can be visualized providing,

a more intuitive way for bioscientists to analyze the results.

Fig. 8.4 Custom user interface for the molecular docking gateway

12

8.8 Summary and Conclusions

This chapter explained how gateways at different levels of granularity can be

developed utilizing the WS-PGRADE/gUSE framework. Required granularity is

one of the first questions that needs to be addressed when developing a science

gateway. Selecting the right level of granularity is crucial for providing a usable

tool for the targeted community without engaging in unnecessary and time-

consuming development efforts while still providing end-users with suitable solu-

tions that best fit their needs and requirements. As WS-PGRADE/gUSE supports

gateway development at various granularity levels, it fits well to a very large

number of scenarios and enables gateway developers to select and apply the best

approach.

