
4 DCI Bridge: Executing WS-PGRADE Work-

flows in Distributed Computing Infrastruc-

tures

Miklos Kozlovszky, Krisztián Karóczkai, István Márton, Péter Kacsuk, and

Tibor Gottdank

Abstract. Solving distributed computing infrastructure (DCI) incompatibility is-

sues in a generic way is a challenging and complex task. Gateways and workflow

management systems are often tightly bound to some limited number of supported

DCIs. To enable gateways access to many different DCIs and to solve DCI com-

patibility among the very different workflow management systems, we have de-

veloped a generic solution, the DCI Bridge. In this chapter we describe its internal

architecture, provide usage scenario and show how the DCI Bridge resolves in-

teroperability issues between various middleware-based DCIs. We also provide

insight about the capabilities of the realized system. The generic DCI Bridge ser-

vice seamlessly enables the execution of workflows (and jobs) on major DCI plat-

forms such as ARC, Globus, gLite, UNICORE, SGE, PBS, as well as web ser-

vices or clouds.

4.1 Introduction

In most cases, gateways and workflow management systems (and therefore

their workflows) are tightly bound to some small number of specific distributed

computing infrastructures (DCIs), and effort is required to enable additional DCI

support. As a result, solving workflow management systems’ DCI incompatibility,

or their workflow interoperability [Krefting/2011] issues are very challenging and

complex tasks. In this chapter we show a concept of how to enable generic DCI

compatibility, which is feasible for many major gateways and grid workflow man-

agement systems (such as ASKALON [Duan/2005], MOTEUR [Glatard/2008],

WS-PGRADE/gUSE [Kacsuk/2012], etc.) on workflow level (and also on the job

level). To enable DCI compatibility among the different gateways and workflow

management systems, we have developed the DCI Bridge, which is also one of the

main components of the so-called fine-grained interoperability approach (FGI)

developed by the SHIWA (SHaring Interoperable Workflows for large-scale sci-

entific simulations on Available DCIs) project [Plankensteiner/2013]. In this chap-

ter we target the generic DCI Bridge service component and describe its internal

architecture, provide usage scenarios, and show how the DCI Bridge can resolve

http://link.springer.com/search?facet-author=%22Kassian+Plankensteiner%22

2

the DCI interoperability issues between various middleware types (e.g., between

gLite, ARC, and UNICORE).

4.2 The Generic Concept of DCI Bridge

In the WS-PGRADE/gUSE portal framework, the DCI Bridge provides flexible

and versatile access to all the important applied DCIs within Europe. In the previ-

ous versions of gUSE, as many submitters had to be developed as there were dif-

ferent DCIs to be supported. The DCI Bridge component originally was developed

to support only SHIWA’s FGI solution; however, later on it turned out that it is

useful for any OGSA Basic Execution Service 1.0 (BES) enabled workflow man-

agement system to solve their DCI interoperability issues. The DCI Bridge is a

web service based application, which provides standard access to various distrib-

uted computing infrastructures such as: service/desktop grids, clusters, clouds and

web service-based computational resources (it connects through its DCI plugins to

the external DCI resources). The main advantage of using the DCI Bridge as a

web application component of workflow management systems is that it enables

the workflow management systems access to various DCIs using the same well-

defined communication interface (Fig. 4.1). When a user submits a workflow, its

job components can be submitted transparently into the various DCI systems using

the OGSA Basic Execution Service 1.0 (BES) interface. As a result, the access

protocol and all the technical details of the various DCI systems are completely

hidden behind the BES interface. The standardized job description language of

BES is JSDL [Anjomshoaa/2006]. Additionally, DCI Bridge grants access to a

MetaBroker service called Generic Metabroker Service (GMBS) [Kertesz/2010].

This service acts as a broker among different types of DCIs: upon user request it

selects an adequate DCI (and, depending on the DCI, an execution resource as

well) for executing the user’s job. Just like the DCI Bridge, GMBS accepts JSDL

job descriptions and makes use of the DCI Bridge service to actually run the job

on the selected DCI.

3

Fig. 4.1 DCI Bridge architecture overview

The DCI Bridge can be used as a stand-alone service [DCIBRIDGE] and also

as part of the WS-PGRADE/gUSE gateway framework service set. In the current

chapter we focus on the features that are used inside WS-PGRADE/gUSE. In this

context WS-PGRADE/gUSE and the DCI Bridge have the following three main

important roles and properties:

1. WS-PGRADE provides the user interface where the references to the

DCI resources can be defined. Consequently, only those DCI re-

sources are visible during workflow/job configurations that have been

defined by the System Administrator of WS-PGRADE.

2. WS-PGRADE contains the default base parameters for remote re-

sources. Consequently, the actual job submissions can be controlled

and observed via the DCI Bridge.

3. DCI Bridge can provide an interface for external brokering services.

As a unique and single interface the DCI Bridge is an ideal insertion

point for "meta-brokering". Meta-brokering means to call a special

service which performs the eventual late binding of jobs to resources,

upon a smart algorithm trying to match “free” resources and jobs.

4

4.2.1 DCI Compatibility

A wide range of different middleware types are supported by the DCI Bridge

(Table 4.1). The number of supported DCI is growing constantly. So far the fol-

lowing DCI types are supported: service grids (gLite, GT2, GT4, GT5, ARC,

UNICORE), clusters (PBS, LSF, SGE, MOAB), BOINC desktop grids, clouds

(EC2, CloudBroker), web services, Google App Engine, GEMLCA, and local re-

sources. As future work the connection to XSEDE grid and DIRAC based DCIs is

planned.

Table 4.1 DCIs supported by the DCI Bridge

4.2.2 Cascading DCI Bridges

Several DCI Bridge objects may coexist within the same gUSE environment.

These DCI Bridges can be connected together in a treelike way (Fig. 4.2). Notice

that this cascading of DCI Bridge services is possible because they all use the

JSDL job submission description which contains information on the resource and

target storages required for input and output file staging. This feature of the DCI

Bridge is exploited in creating a solution for the direct connection of gUSE with

clouds (Sect. 4.5). The first connected DCI Bridge (object) is distinguished, and

we call it the Master DCI Bridge (this is the root of the DCI Bridge tree). It can be

configured via the Information portlet (Resource tab) within the WS-PGRADE

portal. All other eventual DCI Bridges must be configured by using their explicit

URLs. All visible resources should be presented by their names within the Master

DCI Bridge. This rather restrictive condition has a very simple cause: the front end

of the WS-PGRADE/gUSE system is not able (for the time being) to walk over

the internal chains of the connected DCI Bridge objects, i.e., it “sees” only the

Master DCI Bridge. However, the real access properties of the mentioned re-

sources may be described in different DCI Bridges.

5

The use of several DCI Bridges can provide seamless load-balancing between

multiple DCIs. The load-balancing is implemented through the Master DCI

Bridge, which can distribute the incoming jobs in a treelike arrangement to other

DCI Bridges. The outline of the load-balancing scenario is shown in Fig. 4.2. The

core gUSE services are aware of only one DCI Bridge installation. Although this

DCI Bridge service is not connected to any DCI, it may forward the jobs it re-

ceives to other DCI Bridge deployments as they are using the same submission in-

terface and job description language. In this way the central DCI Bridge service

may distribute the incoming jobs among the other services of which it is aware.

After the jobs are distributed, they have the possibility to report job status back to

the central gUSE services using the callback JSDL extension we described at the

beginning of this section.

Fig. 4.1 Treelike connection of DCI Bridges to provide load-balancing between DCIs

4.3 Internal Architecture and Main Components of
the DCI Bridge

The DCI Bridge contains a set of components as shown in Fig. 4.3. All compo-

nents of the DCI Bridge must run within a generic web container (such as Tomcat

or Glassfish).

6

Fig. 4.2 Internal architecture of the DCI Bridge

The DCI Bridge can be called by the BES Web Services Description Language

(WSDL) and it executes the operations defined by the Open Grid Services Archi-

tecture (OGSA) Basic Execution Service (BES) 1.0 specification on different

grid/cloud/service-based middleware. The separate DCIs can be handled by plug-

ins and their numbers can be increased without any restriction. Main components

of the DCI Bridge are:

 BES Service

 Job Registry

 Proxy Cache

 DCI Plugin Manager (Fig 4.2 shows the gLite plugin manager as an ex-

ample)

 Job Temporary Directory (not shown in Fig. 4.2 to simplify the figure)

The plugin manager is the main service of the DCI Bridge; it contains four

types of queues: Input Queue, Submit Queue, Status Queue (DCI and Job Status

queues) and Output Queue (DCI and Job Output queues). All of them are pro-

cessed by several threads that are created dynamically according to the load of the

DCI Bridge. The DCI Bridge administrator can define the maximum number of

queue-handling threads. There are as many Plugin Manager instances as there are

DCIs connected to the given gateway. For example, if a gateway is connected to a

gLite and a BOINC grid, then it has two plugin manager instances.

The BES service of DCI Bridge accepts standardized JSDL job description

documents, which are based on well-defined XML schemes, and which contain in-

7

formation about the job inputs, binaries, runtime settings, and output locations.

The core JSDL itself is not powerful enough to fit all needs, but various exten-

sions are used to overcome this issue. The DCI Bridge makes use of three legacy

extensions: one for defining execution resources, one for proxy service, and one

for callback service access. The execution resource extension is needed both for

the core DCI Bridge in order to define specific execution resource needs and for

the metabroker service. The proxy service extension is needed for security man-

agement and credential handling (see below). The callback service extension is

needed if status change callback functionality is needed: the DCI Bridge will initi-

ate a call to the service specified in the extension upon every job status change.

Incoming BES jobs are placed in the job registry and their references are

passed to the other DCI Bridge services. The job’s reference is immediately

placed into the input queue of the corresponding Plugin Manager. The processing

of a job consists of the following steps:

 Security management

 Input file management

 Submission

 Status inquiry

 Transfer status information to gUSE workflow interpreter (WFI)

 Output inquiry

 Result files upload to gUSE storage

4.3.1 Security Management – Credential Handling

User credentials (proxies or SAML assertions) are handled by the proxy cache

using the JSDL extension that identifies the virtual organization (VO) where the

job should be executed. Based on the user and VO identifiers, the proxy cache

service of DCI Bridge downloads the authentication file from the certificate ser-

vice of WS-PGRADE (see Chap. 6). Depending on the type of the authentication

file, the following actions will be executed:

 User login/password: no action is required.

 SAML: Expiration time is checked.

 X509: Expiration time is checked, and if it is for gLite then the Virtual

Organization Membership service (VOMS) extension needed for the

VO is added based on the information in JSDL file.

 Secure Shell (SSH) key: no action is required.

If any problem occurs an error message is placed in the error log. If the authen-

tication file check is successful, then the processed authentication file is placed in-

to the proxy cache and the job receives this information. Storing the processed au-

thentication file in the proxy cache reduces the time of further authentication

checks of new jobs having the same user–VO pair in their JSDL.

8

4.3.2 Input File Management

Input file management can be done at two places. The generic solution is to do

it inside the DCI Bridge, but for optimization purposes this activity can be post-

poned and executed by special wrappers in the target DCI resources. In the latter

case, the DCI Bridge administrator should set this optimization parameter provid-

ed that the required firewall conditions are met. In this case, there is no need for

file management activities in the DCI Bridge. This is also the case when the user

specified remote file access for the job.

In the generic case, JSDL contains the description of the required input files,

and the input queue service inside the plugin manager downloads the input files to

the job temporary directory, either from the storage service of gUSE or from an

HTTP server. At this point the job is prepared to be submitted to the target DCI,

and hence the job is placed into the submit queue of the plugin manager.

4.3.3 Job Submission and Execution

Jobs in the submit queue are already prepared for the target DCI with all the in-

formation needed to submit there, and hence the submission is a straightforward

activity by the DCI-specific plugin thread. Meanwhile, as the job is executed in

the target DCI, the thread handling the DCI status queue periodically polls the sta-

tus of the job execution and places the status information into the queue. Whenev-

er the status is changed in the DCI status queue it is written back to the job status

queue and then passed back to the gUSE workflow interpreter. Once the status is

success or failed, the output file management step is initiated, where the output

files of the job execution are collected into the DCI output queue.

4.3.4 Output File Management

Output file management can also be done at two places. The generic solution is

to do it inside the DCI Bridge, but for optimization purposes this activity can be

executed by special wrappers in the target resources. In the latter case, the DCI

Bridge administrator should set the same optimization parameter that was men-

tioned in the case of the input file management. In this case there is no need for

file management activities in the DCI Bridge. This is also the case when the user

specifies remote file access for the output of the job.

In the generic case JSDL describes the place of the output files, and the job

output queue service inside the plugin manager uploads the output files to the

storage service of gUSE or to an HTTP server.

9

4.4 Configuration of the DCI Bridge

In order to control the operation of the DCI Bridge and to configure the con-

nected resources the DCI Bridge administration interface has been introduced.

The administration interface has two main parts (Fig. 4.4):

1. The base part, where the configuration affects the generic settings of DCI

Bridge, and

2. The middleware-specific part, where the settings are unique for each in-

dividual middleware.

Fig. 4.3 The two main menus of the DCI Bridge administrator interface

1. The Base menus (Manager, Settings, Log entries) – from the DCI Bridge tab

– are responsible for

a. Managing DCI Bridge generic operation by enabling or disabling the

flow of jobs between the workflow interpreter and DCI Bridge (in

Manager menu). In case of troubleshooting, it is useful to disable the

DCI Bridge to accept jobs from the workflow interpreter. In this case

the DCI Bridge is still able to accept the status and outputs of the

jobs already sent to the connected DCIs. As a result, the gateway

administrator can check how the previously allocated jobs are exe-

10

cuted in their target DCIs. In fact, these status information and result

files are transferred back to the gUSE storage.

b. Setting the work directory of DCI Bridge where all the temporary

files of DCI Bridge are stored. Its default value is the

CATALINA_HOME of the web container where the DCI Bridge as

a web application can be found (in Settings menu).

c. Providing the opportunity to give an external URL of the DCI Bridge

for middleware plugins to speed up the status sending process. This

is particularly useful in the case of gLite resources, where it often

happens that the job is finished but it takes a long time to get the sta-

tus and result via the gLite middleware. In this case a special job

wrapper script can immediately send back the status and result files

via the provided external URL of the DCI Bridge when the job is fin-

ished on the gLite resource.

d. Debugging and error handling. When the Debug mode is set to Ena-

bled, then the temporary job directory will not be deleted after job

execution, and hence the DCI Bridge administrator can search for a

given error. Since this solution significantly loads the local storage it

is not recommended to be enabled in production systems (in the Set-

tings menu).

e. Access a log file where the main user activities can be traced by the

DCI Bridge administrator (in the Log entries menu).

2. The middleware menus are responsible for separating settings of all supported

and connected middleware. Every middleware setting belongs to a single tab,

and there are five submenus within each middleware tab (Fig. 4.4):

a. The Add new menu is responsible for adding new resource refer-

ences for the selected DCI type.

b. The Edit menu is responsible for the selection or modification of an

existing resource.

c. The Monitor, Middleware settings and Log entries menus are gener-

ic. The Monitor menu opens the Job History Database, where only

those jobs are visible that belong to the selected type of middleware.

The Middleware settings function defines the middleware plugin de-

tails (see Figure 5). Very importantly, this is the place where the re-

quired authentication proxy types should be defined. From the point

of view of performance, the number of threads used inside a certain

plugin to handle the internal queues can be defined here. The Log en-

tries menu shows only those events of the general log that are related

to the given middleware.

11

Fig. 4.4 A sample view of the DCI Bridge administration interface

4.5 Direct Cloud Access via the DCI Bridge

4.5.1 Concept of Direct Cloud Access

The main goal of the direct cloud solution is to access directly cloud infrastruc-

ture (without using CloudBroker Platform) and launch in the cloud any type of

services/jobs defined previously in WS-PGRADE workflows. The direct cloud so-

lution works according to a Master/Slave arrangement of DCI Bridges (Sect.

4.2.2) and does not use the CloudBroker Platform service to access cloud infra-

structure. The direct cloud access is based on the capability of creating distributed

DCI Bridge deployment and on job forwarding from master to slave DCI

Bridge(s). The master DCI Bridge that directly connects to gUSE, forwards jobs

through Amazon Elastic Compute Cloud (EC2)-based front-end cloud service to

the slave DCI Bridge located in the cloud. Technically, the master DCI Bridge

starts the virtual machine (VM) via EC2-based service. The started VM contains a

Slave DCI Bridge that is configured to run jobs via the local submission facility,

i.e., in the VM where the slave DCI Bridge runs. The VM containing the slave

DCI Bridge should previously be created and saved as an image in the cloud re-

pository (Fig. 4.6). This solution can be applied on all Amazon EC2-compatible

cloud services.

12

Fig. 4.5 The roles and processes of the direct cloud access solution

The direct cloud access process contains the following tasks and roles:

 Task 1: The DCI Bridge administrator downloads a public base image

containing a properly configured DCI Bridge (this will be the slave DCI

Bridge) from a corresponding repository. This image will be saved in the

target cloud environment. (The cloud service provided by the cloud pro-

vider must contain an Amazon EC2 front-end).

 Task 2: The DCI Bridge administrator properly configures the master

(root) DCI Bridge (which connects to gUSE).

 Task 3: The user obtains an account from the Cloud Provider to the cloud

where the image was imported from the Repository (the Cloud Provider

can provide information about the exact way to get a cloud account).

From this point, the user can use the WS-PGRADE portal for job sub-

mission to the target cloud.

4.5.2 Scalability

The master DCI Bridge can start more VMs in the connected cloud service.

There is a parameter by which the gateway system administrator can define the

maximum number of slave DCI Bridge VMs that can be started in parallel in the

cloud. Notice that in this way, parameter sweep applications can run in parallel on

many cloud resources. Moreover, the slave DCI Bridge images can be started in

13

parallel in several connected clouds. As a result, this solution gives the same mul-

ti-cloud functionality that is provided by CloudBroker as discussed in Chap. 7.

4.5.3 Current Restrictions

Direct cloud access from the network point of view does not need any contex-

tualization. It operates on publicly accessible (not private) IP addresses. The main

reason for this is that the portal calls the virtual machine (VM) by an IP address

that comes from the cloud service, and the VM doesn’t call back to the portal. Ac-

cording to this, the currently available gateway–cloud communication directions

are: private gateway --> private cloud, private gateway --> public cloud, public

gateway --> public cloud.

However, the situation when the gateway and its master DCI Bridges are on

public networks, while the slave DCI Bridges are on private network clouds re-

quire a special workaround (e.g., dynamic DNS usage).

The current direct cloud solution can be used in clouds that

 implement the EC2 protocol

 contain Kernel-based Virtual Machine (KVM) hypervisor.

The direct cloud access supports all OpenNebula-based and OpenStack-based

clouds that fit to these requirements above. However, the current image is not usa-

ble for VMware-based or Xen-based hypervisors.

Robot certification is currently not available for direct cloud job submissions.

In the near future this restriction will be eliminated by a new release of WS-

PGRADE/gUSE.

4.6 Performance

We have done several performance tests to systematically check how well the

DCI Bridge works under heavy loads. Our test environment consists of a test ap-

plication written in Java, script languages, and the DCI Bridge itself. Our test ap-

plications are able to automatically send thousands of jobs (with various job pa-

rameters (e.g., job owner, job type) in high frequency to measure the performance

metrics and the job handling capacity of the DCI Bridge.

From the performance point of view one of the most important DCI Bridge

components is the BES Factory. During our first example performance test we

sent 9 samples of 1000 configured single jobs with predefined amounts of inputs

into the DCI Bridge. According to our assumptions, the amount of input influ-

ences the performance parameter because each input should be retrieved by the

input queue before submitting the job into the targeted DCI. We have launched

our tests with various input sizes (zero, 10, 20, 30, 40, 50, 100, 500, and 1000 in-

puts). All the other job and input parameters were similarly configured. The start-

ing phase of the DCI Bridge services (due to the network topology and services)

requires longer processing time, so we manually eliminated this transient period

14

from our performance results. As can be seen from Fig. 4.7, (please note that the

horizontal axis is not linear), BESFactory service scales smoothly, thus the in-

creased number of inputs causes only about a linear processing time increase.

Fig. 4.6 BESFactory service performance test results

Our second example performance test focused on how effectively the load balanc-

ing algorithm used the pool of slave DCI Bridges that can be started in cloud in-

frastructure.

We used a complex synthetic workflow to set up this testing environment: the

workflow was built up by consecutively connected jobs to create the testing envi-

ronment (10x0 sec job, 1x10 min job, 100x0 sec jobs, 1x10 min jobs, 2x0 sec jobs,

1x1 min job, 100x0 sec jobs, 1000x1 min jobs, 1x0 sec job). We have measured

how many jobs ran on the DCI Bridges and what their wall clock times were (exe-

cution time + submission time). As can be seen from Fig. 4.8, the load was equally

distributed among the slave DCI Bridges. On the horizontal axis we show the

elapsed time, and on the vertical axis the number of the allocated jobs for the vari-

ous slave DCI Bridges. All VMs are depicted with a different line.

15

Figure 4.7 DCI Bridge load balancing test

4.7 Conclusions and Future Works

In this chapter we have given an overview of the DCI Bridge approach, which

enables seamless DCI access in a generic way. The DCI Bridge is already a prov-

en concept. It is based on the standard OGSA BES interface, and as such can be

used with many major grid workflow management systems (such as ASKALON,

MOTEUR, WS-PGRADE/gUSE, and others) as was demonstrated in the EU FP7

SHIWA project. We have described its internal architecture and provided infor-

mation on how its components work together. According to our tests, the DCI

Bridge implementation is able to successfully resolve DCI compatibility issues in

an effective way. The implemented DCI Bridge solution was used successfully in

numerous projects (SHIWA, SCI-BUS, HP-SEE, etc.) as an internal service at the

back-end to resolve the DCI interoperability issues between various middleware

types. The modular, plugin-like internal architecture enables the DCI Bridge ser-

vice to be extended easily with new plugins, and hence to provide access for fur-

ther DCIs. As a result, various communities have already developed new plugins

for the DCI Bridge:

 University of Tubingen has developed the MOAB plugin

 Ruđer Bošković Institute has developed the SGE plugin

These plugins are now part of the recent WS-PGRADE/gUSE releases. As future

work we are planning to:

 Extend the capabilities of the DCI Bridge with additional middleware

support (for example, XSEDE and DIRAC grid plugins);

 Enable seamless data transport between various storage architectures (a

collaboration between the DCI Bridge and the Data Avenue services);

 Support advanced and effective brokering and scheduling services;

 Enable the usage of the public gateway --> private cloud connection of

WS-PGRADE gUSE and clouds;

 Enable robot certificates in the direct cloud access mechanism of DCI

Bridge.

