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Abstract. Volunteer systems pose difficult challenges for data storage.
Because of the extremely low reliability of volunteer nodes, these systems
require so high redundancy that replication is infeasible. Erasure coding
has been proposed to cope with this problem as it needs much less redun-
dancy to achieve the same reliability. Its downside is that the reparation
of the system creates high overhead, as fully decoding the original data
is required to generate new coded data.
Random linear coding has been proposed to be used as a data storage
method, as it provides a better redundancy/reliability ratio, and less
control overhead. We propose that it also helps in the reparation of the
system, as decoding is not required; instead, coded data can be generated
from already existing coded data. However, it may be possible that this
iterative reparation leads to degradation of data over time; even more
so, if sparse coding is used to increase compute efficiency.
This paper examines the effects of random linear coding and the iterative
reparation of the system. It shows the reliability that can be achieved
with random linear coding in a highly volatile distributed system. We
conclude that random linear coding can achieve high reliability even in
highly volatile systems.

1 Introduction

Volunteer and community compute systems use the donated compute capacity
of people or organisations. This scheme provides immense computational power
for extremely low cost. These volunteers can also contribute storage space to the
system; however, this poses difficult architectural challenges.

The main problem is that the nodes of the system are highly unreliable, and
that no policy can be enforced on these nodes (cf. grids or clusters). This is
not a concern for computation, as any task can be restarted on another node
if fails. In data storage however, this unreliability necessitates high redundancy
and, therefore, high storage overhead.

More reliable systems, like Hadoop[9] and MapReduce[10] have proven that
using cheap commodity hardware is a feasible alternative to expensive RAID
storages, but even these systems may require high redundancy overhead to store
data reliably. The BOINC[7] volunteer compute middleware is used widely to
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support compute intensive applications for the fraction of the cost of owning
a cluster, and it would have ample resources for data intensive applications.[8]
However, BOINC does not support data intensive applications well. Although
it has support for raw block storage[6], and a data archival solution is being
developed[5], it yet lacks a working distributed storage. In any case, the dis-
tributed storage system will require redundancy, which decreases the effective
storage capacity.

1.1 Achieving Redundancy

The basic way to introduce redundancy is to replicate the blocks of the data.
Although it is the simplest solution, this approach has major drawbacks. First,
the raw storage space required to store some data is the (integer) multiple of the
size of the data; and this factor of redundancy has to be very high if the nodes’
reliability is low. Second, as failing nodes remove replicas of a block of the data
from the system, that block may become rare, impairing locality.

Erasure coding (EC) is an alternative to replication that alleviates both prob-
lems of replication, at the cost of CPU time. Erasure coding algorithms—e.g.
Reed–Solomon[18] or Fountain codes[17]—create n > k coded blocks from the
original data in a way that any k′ >= k coded blocks will be sufficient for re-
construction. That is, they are block codes with a coding rate (n, k). Because
any k′ block is sufficient for reconstruction, a much lower factor of redundancy
is sufficient than in case of replication[21].

Furthermore, in erasure coding, the factor of redundancy does not have to
be an integer. Although this seems to be a trifle, but, for instance, the difference
between a theoretically required redundancy—given a set of QoS parameters—of
2.1 (erasure coding) and d2.1e = 3 (replication) can be substantial when there
are peta-bytes of data.

The problem with erasure coding is the design complexity of the system,
and the overhead required for its reparation[19]. In both cases (replication and
EC), when blocks go missing, they have to be complemented. In case of replica-
tion, only rare blocks have to be further replicated. In case of erasure coding, to
complement the missing blocks, the whole data has to be reconstructed, so new
coded blocks can be generated from it[19][12]. Dimakis et al. propose regenerat-
ing codes[11] to remedy this problem. Regenerating codes use network coding[4]
to communicate encoded packets, which enables the reparation of redundancy
without reconstructing the original data. However, if the data is very dispersed
and each node stores only one piece of a data object, this approach may not
provide many benefits. This can happen in large volunteer systems, which are of
particular interest to us. Furthermore, if a deterministic erasure coding scheme
is used, then each block will have its own identity, and when a block goes miss-
ing, that particular block must be complemented. This requires each individual
block to be identifiable, which imposes managment overhead on the system.

A promising approach is to use random linear coding (RLC) to store the
data. Linear coding treats the blocks of data as vectors—and the data itself as
a matrix—over a finite field F (2w) (w ≥ 1). Coding is performed by creating



linear combinations of the original blocks, while decoding is done by solving the
corresponding linear system. Linear coding has been well studied in the area
of networking, as an alternative to routing[15, 13]; and random network coding
has been proposed as a simple solution for finding suitable coefficients for linear
combinations[14].

Random linear coding can be considered to be a rateless erasure coding
method, as n > k randomly encoded packets can be generated from the original
file for any n (rateless), of which any k′ >= k will be sufficient for reconstruction
(erasure coding). Furthermore, it is stochastically optimal, and it converges to
optimal with increasing field size[14]; that is, P [k′ = k] −→ 1(q −→∞).

As a rateless erasure coding, RLC could solve the problems of replication; it
would even perform better in terms of redundancy than traditional erasure cod-
ing schemes [3]. Also, the problem of reparation in a RLC system would become
quite straight-forward: as stored blocks are random linear combinations (r.l.c.)
of the original data blocks, a r.l.c. of the coded blocks will also be a r.l.c. of the
original blocks. That is, reparation can be done by randomly selecting existing
coded blocks from the system, and creating r.l.c.-s of them—we call this itera-
tive reparation. With iterative reparation no reconstruction is needed to generate
coded data. These properties make RLC a great candidate for coding data in
distributed storage scenarios.

A drawback of RLC is that it’s CPU intensive. The more blocks we cut the
data into (as we increase n), the more reliable the RLC scheme becomes—but
increasing n also increases decoding time (linearly). Intuitively, coding ,,trades”
redundancy requirements for CPU requirements. Although this may be prob-
lematic in HPC, we have shown[2] that RLC can provide reasonable throughput
with the right parameter set.

Furthermore, storage media have considerable delay, particularly when seek-
ing. Therefore, it is but reasonable to perform coding and decoding solely in
working memory, which limits the file size. The solution for this is to cut data
into segments that are coded and encoded independently. This enables us to
store arbitrarily large files using RLC.

While a given RLC scheme provides a predictable throughput, segmenting
enables us to control the initial delay (decoding the first segment) when decoding
successive segments in a stream. Seeking in the stream is also possible, but with
the time cost of the initial delay.

In this paper, file and data refer to such a segment.

1.2 Reliability of a System Using Random Linear Coding

The most interesting question about RLC is what reliability/redundancy ratio
can it achieve when the nodes of the underlying system are extremely unreliable;
e.g. when 50-90% of the blocks fail between maintenance events.

This question is even more interesting when sparse coding is used. In sparse
coding, the coefficients in the coding matrix will be set to 0 with a given proba-
bility. This alleviates the CPU overhead of RLC (as multiplications with 0 can
be omitted), but decreases reliability (greater probability of singular coefficient



matrices). Therefore, we hypothesize that the reliability of the system would
decrease when the iterative reparation is used with sparse coding because of
gradual information loss.

These questions has been addressed in network transfer scenarios[20, 16]. In
this paper we present our simulational results showing how RLC performs under
specific conditions we consider to represent volunteer storage scenarios.

2 Simulation Framework

2.1 Storage Scheme

We have conceived the following model of a RLC distributed storage system.
The system itself is considered as a bag of coded blocks. When storing a file,
it is loaded into memory, cut into N blocks, and R coded blocks are generated
from it. The coded blocks are generated using linear combinations; each linear
combination is a result of multiplying the set of original blocks with a randomly
chosen vector of N elements. As sparse coding is used, each coefficient is set to
0 with probability (1−A); that is, about A ·N coefficients will be non-zero.

The system has to be maintained, which means that the coded blocks are
replenished from time to time. Between replenishing blocks, each block may fail
with probability F . That is, our system is a simple iteration of replenishing
blocks, where about 100 · F% percent of the blocks fail between iterations. Re-
plenishing blocks takes place only when the number of blocks fall under a certain
threshold T , and when it does, so many blocks are generated that the total num-
ber of blocks becomes again R. The special case is when T = R, that is, when a
certain level of redundancy is maintained.

The iteration described is shown in Figure 1; the catalog of parameters is
shown in Table 1.

N ∈ {4, 8, ..., 128} The number of blocks the file is cut into.
A ∈ {0.1, 0.2, ..., 1} Probability of a coefficient is selected randomly

from F
(
216

)
. Otherwise, it is set to 0.

F ∈ {0, 0.1, ..., 0.9} Probability of a block failing between mainte-
nance events.

T ∈
{
N, 3

2
N, 2N, 3N, 4N

}
Threshold for replenishing blocks.

R ∈
{
N, 3

2
N, 2N, 3N, 4N

}
;R > T Target redundancy.

Table 1: Parameters of the simulation

Reconstruction and replenishment requires at least N coded blocks to be
gathered, as any less than that would produce an under-determined rectangular
matrix, which cannot be inverted. On the other hand, RLC is stochastically opti-
mal; that is, with high probability, N coded blocks will be sufficient. Depending
on the parameters, it is more or less likely to gather N blocks whose coefficient



matrix is singular. In this case, it is not necessary to gather another N blocks.
If there is a single vector that is a linear combination of the others, it can be
exchanged with a new, randomly selected block. However, finding the offending
vector(s) is computationally demanding and is not necessary. The simplest solu-
tion is to drop either a randomly selected block, or the one where the Gaussian
elimination has failed, and then complement it with one randomly selected from
the system. After this change, the probability of the matrix being still singular
is even lower.

Therefore, in the unfortunate case when a singular matrix is found, instead of
trying every possible combination of vectors (which is infeasible in a distributed
system), we try dropping a block from the gathered set and complement it with
a random one from the system, never using a block twice. We repeat this process
until either we have found a non-singular matrix or we have tried all blocks with
no avail. This means an ω(N)–O(R) communication cost, but the upper bound
may further be restricted in a particular implementation if necessary. It should
also be noted that this overhead is very low, as these operations—that is, the
matrix inversion—require transferring only the coefficient vectors, but not the
corresponding data blocks.

This strategy is shown in Figure 2.

Input: file
Output: replenish failed | ∅

1 file blocks := load file(file);
2 block set := replenish(file blocks, R);
3 while not replenish failed do
4 block set =

remove randomly(block set, F);
5 if length(block set) < T then
6 block set =

replenish(block set, R);
7 end

8 end

Fig. 1: System maintenance cycle

Input: block set
Output: working set | failure

1 candidates := block set;
2 for i = 1 to N do
3 move random(
4 candidates → working set);

5 end
6 while singular(working set)
7 and length(candidates) 6= 0 do
8 remove random(working set);
9 move random(

10 candidates → working set);

11 end
12 if singular(working set)
13 and length(candidates) = 0 then
14 failure := true;
15 end

Fig. 2: Strategy for gathering a
usable block set

2.2 Measurements

We have used our RLC library[1] to implement a simulation framework. This
library can perform finite field operations over F

(
28
)

and F
(
216

)
using discrete



logarithm tables. We have used the finite field F
(
216

)
as it is faster and produces

a more reliable RLC scheme than F
(
28
)
[2].

In our measurements, we have used one small file of 256 bytes (i.e. 128 finite
field elements) with random content, which we cut into N ∈ {4, 8, ..., 128} blocks.
The reason to use a small file was that the actual size of the file does not affect
its reliability whatsoever; it only affects the de/coding time.

We have performed two kinds of measurements. First, we have measured the
reliability of RLC as a function of sparsity (A), without a time dimension (single
step). And second, we have measured the reliability of a simulated system over
time.

In the single step scenario, the following restrictions were applied to the
model. As there is no time dimension, redundancy in the system does not fluc-
tuate; therefore, the redundancy threshold (T ) has no meaning, only the target
redundancy (R). In this case, lines [3..8] in Figure 1 are not executed; instead,
after the generating initial blocks, the data is immediately attempted to be re-
constructed using the strategy shown in Figure 2. Also, the failure ratio (F ) has
no meaning in this case either.

In the simulational scenario, F is introduced in the system to model block
failures. The case where F = 0 is not evaluated, as it would be identical to the
single step scenario. When F > 0, the redundancy threshold must be greater
than the number of blocks: if N = T and F > 0, the system is bound to fail
before the first maintenance event. Therefore, the N = T case is not evaluated
either.

In both cases, the goal was to measure the reliability of the system. Defining
reliability as the general ability to reconstruct the original file is not feasible for
either of these measurement—neither is in a real world scenario. Denoting the
set of coded blocks available in the system with BlkSet, this general definition
can be formulated as follows: ∃S ⊂ BlkSet : |S| = N ∧det(coeff matrix(S)) 6= 0;
that is, there is a way to reconstruct the data. However, the size of BlkSet can
be huge, it is between T and R at any time, and trying all possible combinations
(ω

(
T
N

)
and O

(
R
N

)
) is not feasible. Thus, we define the feasibility of a system as the

ability to reconstruct the file using the strategy shown in Figure 2. We measure
reliability as the fraction of test cases in which a) the file could be reconstructed
from coded data – single step scenario; and b) the file could be reconstructed after
several maintenance iterations – simulation scenario. Thus, we define reliability
as the estimated probability of a file being reconstructable in the system using the
aforementioned algorithm. In these measurements, the total number of iterations
were limited to 100, and a simulation for each parameter set was repeated 50
times.

As it is possible that this strategy needs to use more than N blocks to recon-
struct the data, we also measured wasted communication, which we define as
the number of extra blocks needed to reconstruct the data: total blocks needed−
N .



3 Simulation Results

In this section we present the results of our measurements. Most of the figures
presented show the reliability of a system, based on a two-dimensional param-
eter set, while the reliability (as defined in 2.2) is a value between 0 and 1.
These figures present this function in the following way: the two axes of the
diagrams pertain to the two dimensions of the parameter space, while the value
of reliability is represented as a shade of gray. The black regions (reliability=0)
mean that for that parameter set, all experiments have failed, the data could not
be reconstructed; while white regions (reliability=1) mean that, in those cases,
RLC have not failed at all. As we will show, gray areas are surprisingly narrow,
and therefore, we believe that this form of presentation can convey all essential
information to the reader.

3.1 Single Step Scenario

This scenario is intended to measure the reliability of RLC itself, without a time
dimension. In this scenario, F and T are meaningless. The file is cut into N
blocks, R blocks are generated, from which the file is attempted to be recon-
structed.

The results of these measurements are shown in Figure 3. The three charts
show the results with redundancy factors 1 (no redundancy), 1.5 and 2 respec-
tively. The black area shows the parameter sets where the file could not be
reconstructed at all (infeasible parameters). The white area shows the experi-
ments where the file could always be reconstructed (reliable parameters). What
immediately meets the eye is that there is little or no gradient between reli-
able and unfeasible parameter sets (feasible but unreliable parameters). This
implicates that if a parameter set is feasible, it is very likely to be reliable too.

Another observation is that for higher values of N , even extremely sparse,
A = 0.1 coding is feasible. This means that each coefficient is set to 0 with
90% probability, which can theoretically decrease coding time to 1/10th of the
non-sparse case.

As stated before, it is possible, that reconstructing a file requires the transfer
of more than N blocks. Figure 4 shows the wasted communication cost (as
defined in 2.2). Using parameters outside the dashed line (lower left corner),
in no experiment were we able to reconstruct the file (infeasible parameters).
As these parameters are infeasible, wasted communication is undefined. Inside
the dashed line, the lightness of a point represents the average number of extra
blocks transferred to reconstruct the file (in this figure, darker is better). Again,
the transient area is very narrow, which means that either a parameter set is not
feasible (no reconstruction is possible), or it likely generates negligible wasted
communication.

3.2 Simulational Scenario

In this scenario we measured the reliability of the system over time, with main-
tenance events in each interval. We did 100 iterations, and recorded the instant



Fig. 3: Reliability as a function of sparsity (A) and the number of original blocks (N).

Fig. 4: Average number of wasted blocks as a function of sparsity (A) and the number
of original blocks (N).

when the file became unavailable. We considered an experiment successful, if the
data did not become unavailable in this time.

For experiments that were not successful, we have measured for how long the
file was available; that is, we recorded the iteration in which the experiment has
failed. In Figure 5, we show how many experiments have failed in that iteration
overall. Each line corresponds to a specific value of F ; the inner figure is a
magnification of the outer one.

In the outer figure, we can see that almost all failed experiment have failed
at the beginning. Of the failed experiments, 68% has failed in the first iteration,
and more than 90% has failed in the first 15 iteration.

In the inner, magnified figure, we can see that for F = 0.9 and 0.8, failure
is imminent at the beginning, while for lower values, failure is 1) less likely as
time goes on, and 2) the actual value of F does not affect failure much (lines
converge together).

In Figure 6 the reliability of the system is shown as a function of N and
F , for different factors of redundancy and for two factors of sparsity. In these
cases, we used the same values for maintenance threshold and target redundancy
(R = T ). The first row shows the results for A = 1, that is, when sparse coding



Fig. 5: Number of failed experiments in each iteration (t), for specific values of F .

is not used. The second row corresponds to A = 0.5. From left to right in a row,
redundancy increases.

It can be seen that the two rows look very much alike, the only considerable
difference being at the “corners” of the reliable sets (white area). This matches
the observation of the single step case, that RLC can be very reliable even with
low values for A—especially when N is high.

In terms of N , reliability increases with N up to a point, where it plateaus.
This peak is reached later if A is lower. This means that to achieve reliability,
there is a lower bound on N depending on the reliability of the system (F ) and
the value we choose for A.

It is also clear—and expected—that using higher factors of redundancy in-
creases the reliability of the system, in that higher values of F can be tolerated
(see the increasing plateaus of the white areas). We would like to note here
that, for example, Hadoop uses a replication factor of 3 in cluster environments,
while our measurements show that, with the same level of redundancy, a failure
rate of 50% (F = 0.5) can be tolerated by RLC even with sparse coding. Us-
ing three-fold replication, losing 50% of blocks would very likely make the data
unrecoverable.

Also note that although F depends on the properties of the particular sys-
tem, it is not entirely out of our control. By increasing the frequency of main-
tenance events, we can decrease the value of F , and therefore we can trade off
maintenance network cost for redundancy; that is, network overhead for storage
overhead.

We have also examined a scenario where the reparation threshold T was lower
than the target redundancy R (3N and 4N respectively). We have found that
this system behaves the same way as when R and T were both chosen to be
4N : it plateaus at the same point (N = 32), and at the same level (F = 0.6).
The difference is so subtle, that we have omitted a figures about this case, as
the reader could not distinguish them from the right side charts in Figure 6: the
average reliability over all cases is slightly lower when T < R, the difference is
10−3 when A = 1 and 3 · 10−2 when A = 0.5. Graphically, this means that gray
points would be unnoticeably darker, but the “white area” would be essentially
the same. Note that the similar case is the one with the higher redundancy; that



Fig. 6: Reliability as a function of N and F , for specific values of T and A. First row:
A = 1, second row: A = 0.5.

is, although we allow the system to degrade to a block count of T , it essentially
works like if it was repaired in every maintenance event.

4 Conclusion

In this paper, our goal was to determine the reliability of a distributed storage
system employing random linear coding. With random linear coding we are
trying to address the extreme challenges posed by volunteer storage systems,
which stem from the nodes of a volunteer system being unreliable.

We have experimented with a model which, we believe, captures the main
properties of a volunteer storage reasonably well; and used parameters that em-
ulate the unreliability of such a system.

We have shown that random linear coding performs surprisingly well under
such conditions, and can tolerate huge loss of data even when redundancy is
relatively low. We have also shown that it achieves this reliability with virtually
no wasted bandwidth. Furthermore, while using sparse coding is good solution
for random linear coding being CPU intensive, its effects on the reliability are
negligible.

Based on these results we conclude that random linear coding is a suitable
solution for volunteer storage systems; therefore, we feel confident implementing
such a storage system in the future on top of the BOINC middleware to support
data intensive applications on volunteer computing platforms.
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