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Abstract—In this paper, an optimization based state
feedback design is proposed for polynomial models that
transforms an open-loop system into weakly reversible
kinetic form with minimal deficiency, if possible. There-
fore, the suggested method is able to decide whether
the deficiency zero property and weak reversibility
of the closed loop system (that guarantees a robust
stability property) is achievable by the given feedback
structure. The approach integrates feedback design
and previous computational methods for computing
dynamically equivalent realizations of kinetic systems.
The method assumes a linear input structure of the
open loop system, and uses a polynomial feedback
constructed from the monomials of the original system
possibly extended by new ones. The proposed method
is illustrated on two simple examples.

Index Terms—Computational methods; Optimiza-
tion; Biomolecular systems

I. Introduction

The field of feedback controller design for nonlinear sys-
tems has been continuously developing in recent decades,
because of its practical importance and challenging theo-
retical nature. It is well-known that the utilization of the
physical and/or structural specialties of different nonlinear
system classes greatly helps in obtaining theoretically
well-grounded, powerful and practically still feasible con-
trol methods: e.g. we have sound methods of nonlinear
feedback design for smooth input-affine systems [1], flat
systems [2], Hamiltonian or port-Hamiltonian systems [3],
[4], or that for Euler-Lagrange systems [5].

Deterministic kinetic systems with mass action kinetics
or simply chemical reaction networks (CRNs) form a wide
class of nonnegative polynomial systems. CRNs are able to
produce all the important qualitative phenomena present
in nonlinear systems, so they form a rich-enough sub-class
there. A recent survey shows [6] that CRNs are also widely
used in other areas than chemical reaction kinetics or
process systems that include biological applications, such
as to model the dynamics of intracellular processes and
metabolic or cell signalling pathways [7].

The theory of chemical reaction networks has signifi-
cant results relating network structure and the qualitative
properties of the corresponding dynamics [8], [9]. However,
the network structure corresponding to a given dynamics

is generally not unique [10]. Recently, optimization-based
computational methods were proposed for dynamically
equivalent network structures with given preferred prop-
erties (see, e.g. [11]–[14]).

Therefore, the general purpose of our work is to con-
struct polynomial feedback controllers to polynomial sys-
tems to achieve a kinetic closed loop system with given
advantageous structural properties. In [15], the problem
of obtaining a kinetic closed loop system was addressed
in the framework of mixed integer linear programming. In
this contribution, the deficiency of the preferably weakly
reversible closed loop system is also minimized that is
practically more interesting and, at the same time, a more
complex computational task.

II. Underlying notions and methods

Polynomial systems form a wide and well-studied class
of smooth nonlinear systems that have important appli-
cations in diverse engineering fields, such as (bio)chemical
engineering, process systems engineering, transportation
engineering, etc. Within these fields, positive (or nonneg-
ative) polynomial systems are often considered that is dic-
tated by the physical meaning (e.g. pressure, concentration
or the vehicle number/density) of the signals.

The notion of positive systems builds upon the essential
nonnegativity of a function f = [f1 . . . fn]T : [0,∞)n →
Rn, that holds if, for all i = 1, . . . , n, fi(x) ≥ 0 for all
x ∈ [0,∞)n, whenever xi = 0 [16].

An autonomous nonlinear system defined on the non-
negative orthant [0,∞)n = Rn

+ ⊂ X

ẋ = f(x), x(0) = x0 (1)

where f : X → Rn is locally Lipschitz, X is an open
subset of Rn and x0 ∈ X is nonnegative (or positive)
when the nonnegative (or positive) orthant is invariant for
the dynamics (1). This property holds if and only if f is
essentially nonnegative.

A. Kinetic systems, their dynamics and structure

Deterministic kinetic systems with mass action kinetics
or simply chemical reaction networks (CRNs) form a wide
class of nonnegative polynomial systems, that are able
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to produce all the important qualitative phenomena (e.g.
stable/unstable equilibria, oscillations, limit cycles, mul-
tiplicity of equilibrium points and even chaotic behavior)
present in the dynamics of nonlinear processes [6]. The
structure of CRNs is well characterized by a weighted
directed graph, called the reaction graph, and by their
complex composition matrix.

The problem of kinetic realizability of polynomial vector
fields was first examined and solved in [17] where it was
shown, that the necessary and sufficient condition for
kinetic realizability of a polynomial vector field is that all
coordinates functions of f in (1) must have the form

fi(x) = −xigi(x) + hi(x), i = 1, . . . , n (2)

where gi and hi are polynomials with nonnegative coeffi-
cients. It’s easy to prove that kinetic systems are nonneg-
ative.

The ODE form: If the condition (2) is fulfilled for
a polynomial dynamical system, then it can always be
written into the form

ẋ = Y ·Ak · ψ(x), (3)

where x ∈ Rn is the vector of state variables, Y ∈ Zn×m
≥0

with distinct columns is the so-called complex composi-
tion matrix, Ak ∈ Rm×m contains the information cor-
responding to the weighted directed graph, the reaction
graph, of the reaction network (see below). As it will be
visible later, the generally non-unique factorization (3) is
particularly useful for prescribing structural constraints
using optimization. According to the original chemical
meaning of this system class, the state variables represent
the concentrations of the chemical species denoted by Xi,
i.e. xi = [Xi] for i = 1, . . . , n. Moreover, ψ : Rn 7→ Rm is
a mapping given by

ψj(x) =

n∏
i=1

x
Yij

i , j = 1, . . . ,m. (4)

Ak is a column conservation matrix (i.e. the sum of the
elements in each column is zero) defined as

[Ak]ij =

{
−
∑m

l=1,l 6=i kil, if i = j

kji, if i 6= j.
(5)

Note that Ak is also called as the Kirchhoff matrix of the
network.

The complexes are formally defined as nonnegative lin-
ear combinations of the species in the following way:

Ci =

n∑
j=1

YjiXj , i = 1, . . . , n (6)

Note, that a column (let’s say column i) of the matrix Y
may be equal to the zero vector. In such a case, node Ci

is called the zero complex.

The reaction graph: The weighted directed graph (or
reaction graph) of kinetic systems is G = (V,E), where
V = {C1, C2, . . . , Cm} and E denote the set of vertices and
directed edges, respectively. The directed edge (Ci, Cj)
(also denoted by Ci → Cj) belongs to the reaction graph
if and only if [Ak]j,i > 0. In this case, the weight assigned
to the directed edge Ci → Cj is [Ak]j,i.

The dynamic properties of a CRN depend on some of
the structural properties of the reaction graph. A CRN is
called weakly reversible if whenever there exists a directed
path from Ci to Cj in its reaction graph, then there exists
a directed path from Cj to Ci. In graph theoretic terms,
this means that all components of the reaction graph are
strongly connected components.

Deficiency and the zero deficiency theorem: The defi-
ciency [9] is a fundamental property of a CRN. Its notion
depends on the notion of a reaction vector corresponding
to Ci → Cj , and denoted by ek:

ek = [Y ]·,j − [Y ]·,i, k = 1, . . . , r, (7)

where [Y ]·,i denotes the ith column of Y and r is the num-
ber of reactions. The rank of a reaction network denoted
by s is the rank of the set of vectors H = {e1, e2 . . . , er}.
The stoichiometric subspace, denoted by S, is defined as
S = span{e1, . . . , er}.

The deficiency d of a reaction network is defined as
[9]: d = mni − l − s, where mni is the number of non-
isolated (i.e. reacting) vertices in the reaction graph, l is
the number of linkage classes (graph components) and s
is the rank of the reaction network. The deficiency is a
very useful measure for studying the dynamical proper-
ties of reaction networks and for establishing parameter-
independent global stability conditions.

The Deficiency Zero Theorem [9] shows a very robust
stability property of a certain class of kinetic systems.
It says that deficiency zero weakly reversible networks
possess well-characterizable equilibrium points, and inde-
pendently of the weights of the reaction graph (i.e. as
long as the positive elements of the Ak matrix remain
positive) they are at least locally stable with a known
logarithmic Lyapunov function that is also independent of
the system parameters. According to the so-called Global
Attractor Conjecture (to which no counterexample has
been found), weakly reversible deficiency zero CRNs are
globally stable (within the positive orthant). This conjec-
ture has been proved for CRNs containing one linkage class
[18]. Moreover, weakly reversible deficiency zero models
are input-to-state stable with respect to the off-diagonal
elements of Ak as inputs [19], it is straightforward to
asymptotically stabilize them by additional feedback [20],
and it is possible to construct efficient state observers for
them [21].

B. Dynamical equivalence of CRNs

It is a known result of chemical reaction network theory
that a reaction graph corresponding to a given set of



kinetic ODEs is generally not unique. We will use the
degree of freedom given by this phenomenon for feedback
design. Using the notation M = Y · Ak, equation (3) can
be written in the form

ẋ = M · ψ(x), (8)

where M contains the coefficients of the monomials in the
polynomial ODE (3) describing the time-evolution of the
state variables. We call two reaction networks given by
the matrix pairs (Y (1), A

(1)
k ) and (Y (2), A

(2)
k ) dynamically

equivalent, if

Y (1)A
(1)
k ψ(1)(x) = Y (2)A

(2)
k ψ(2)(x) = f(x), ∀x ∈ Rn

+

(9)

where for i = 1, 2, Y (i) ∈ Rn×mi have nonnegative integer
entries, A

(i)
k are valid Kirchhoff matrices, and

ψ
(i)
j (x) =

n∏
k=1

x
[Y (i)]kj

k , i = 1, 2, j = 1, . . . ,mi. (10)

In this case, (Y (i)A
(i)
k ) for i = 1, 2 are called dynamically

equivalent realizations of the corresponding kinetic vector
field f . It is also appropriate to call (Y (1), A

(1)
k ) a (dynam-

ically equivalent) realization of (Y (2), A
(2)
k ) and vice versa.

C. Computing weakly reversible realizations with minimal
deficiency

In this subsection, the results of [14] are briefly summa-
rized that will be used for feedback design in a straightfor-
ward way. The basis of the method is the recognition that
for weakly reversible networks, it is enough to maximize
the number of linkage classes (i.e. graph components) to
minimize deficiency. An additional applied known result
is that a reaction graph is weakly reversible if and only
if there is a strictly positive vector in the kernel of the
Kirchhoff matrix Ak. Then, the goal of the optimization
task is to allocate complexes between the possible maximal
number of linkage classes while maintaining dynamical
equivalence.

The constraints for dynamical equivalence are easy to
write as follows:

Ỹ · Ãk = M̃∑m
i=1[Ãk]ij = 0, j = 1, . . . ,m

0 ≤ [Ãk]ij ≤ 1/ε, i, j = 1, . . . ,m, i 6= j

(11)

where Ỹ and M̃ are the known complex composition
matrix and coefficient matrix of the right hand side of
the polynomial differential equations, respectively. The
off-diagonal elements of the Kirchhoff matrix Ãk are un-
knowns, and ε is a sufficiently small number used for
bounding the elements of Ak. This bounding is technically
needed because the final optimization problem will contain
integer variables as well. It can be easily shown that
the maximal possible number of linkage classes in any
computed realization is m − s [14]. To track the graph

nodes among the graph components (linkage classes), bi-
nary variables γik, for i = 1, . . .m, k = 1, . . .m − s are
introduced: γik = 1 if and only if Ci belongs to the k-th
linkage class. We also introduce other auxiliary variables
θk ∈ [0, 1], for k = 1, . . . ,m−s, where θk = 0 indicates that
the k-th linkage class is empty. The complete partitioning
of the complexes between linkage classes is expressed by
the constraints:

m−s∑
k=1

γik = 1, i = 1, . . . ,m

m∑
i=1

γik − εθk ≥ 0, k = 1, . . . ,m− s

−
m∑

k=1

γik +
1

ε
θk ≥ 0, k = 1, . . . ,m− s

γik ∈ {0, 1} , i = 1, . . . ,m, k = 1, . . . ,m− s
θk ∈ [0, 1] , k = 1, . . . ,m− s.

(12)

To ensure weak reversibility, we use an m ×m Kirchhoff
matrix Φ that is a column-scaled version of Ak, i.e. Φ =
Ãk · diag(b), where b ∈ Rm is a strictly positive vector in
the kernel of Ãk. It is clear that the positions of zero and
non-zero elements in Ãk and Φ are the same, and therefore
reaction graph encoded by Ãk is weakly reversible if and
only if the m-dimensional vector containing only ones, i.e.
[1 1 . . . 1]T ∈ Rm belongs to the kernel of Φ. Let us add
the following constraint set to the problem:

m∑
l=1
l 6=i

Φil =

m∑
l=1
l 6=i

Φli

Φij ≤
1

ε
(γik − γjk + 1)

Φij ≥ ε[Ãk]ij

Φij ≤
1

ε
[Ãk]ij

i, j = 1, . . . ,m, i 6= j, k = 1, . . . ,m− s.

(13)

The constraints in (13) ensure the following key properties:
1) identical structure of Φ and Ak, 2) weak reversibility of
the reaction graph corresponding to Φ and Ak, 3) there
cannot be directed edges between different linkage classes.
Finally, the uniqueness of solution can be enforced by the
following constraint:

i−1∑
j=1

γjk ≥
m−s∑
l=k+1

γil,

i = 1, . . . ,m, k = 1, . . . ,m− s, k ≤ i.
(14)

By minimizing the following objective function, the defi-
ciency is also minimized (through maximizing the number
of linkage classes):

V (θ) =

m−s∑
k=1

θk (15)



It is visible that constraints (11)-(14) together with the
objective function in (15) form a standard mixed integer
linear programming (MILP) problem.

III. Feedback computation

In this section, the optimization problems for the design
of static and dynamic kinetic feedback are described. First,
the autonomous system model (8) will be extended with
a simple linear input structure.

A. Open loop model form

We assume that the equations of the open loop polyno-
mial system with linear input structure are given as

ẋ = M · ψ1(x) +Bu, (16)

where x ∈ Rn, is the state vector, u ∈ Rp is the input,
ψ1 ∈ Rn → Rm1 contains the monomials of the open-loop
system, B ∈ Rn×p and M ∈ Rn×m1 .

The problem that we will study is to design a static
or dynamic monomial feedback such that the closed loop
system is kinetic, and there exists a realization that ful-
fills a required property (in this particular case, weak
reversibility with minimal deficiency).

B. Static feedback design

We assume a polynomial feedback of the form

u = K · ψ(x), (17)

where ψ(x) = [ψT
1 (x) ψT

2 (x)]T with ψ2 ∈ Rn → Rm2

containing possible additional monomials for the feedback,
B ∈ Rn×p, and K ∈ Rp×(m1+m2). The closed-loop system
can be written as

ẋ = M · ψ1(x) +BK

[
ψ1(x)
ψ2(x)

]
. (18)

We can partition K into two blocks as K = [K1 K2], where
K1 ∈ Rp×m1 and K2 ∈ Rp×m2 . Using this notation, the
closed loop dynamics is given by

ẋ =
[
M +BK1 BK2

]︸ ︷︷ ︸
M

[
ψ1(x)
ψ2(x)

]
= M · ψ(x). (19)

The aim is to set the closed loop coefficient matrix M
such that it defines a kinetic system with ψ. It is clear
from subsection II-A that this is possible if and only if M
can be factorized as M = Y · Ak where Y ∈ Zn×(m1+m2)

≥0 ,

and Ak ∈ R(m1+m2)×(m1+m2) is a valid Kirchhoff matrix.
Based on constructing the so-called canonical realization

of a kinetic system [17], we can give a simple method to
generate matrix Y (and thus ψ2 given by such monomials
that do not appear in (16)) using the monomials of the
open loop system as as described in [15]. After constructing
Y , the kinetic property, minimal deficiency and weak
reversibility of the controlled system can be achieved if
the MILP problem defined by (11)-(14) and (15) can be
solved for Ãk = Ak substituting Ỹ = Y and M̃ = M .

Thus, the feedback gain computation and the search for
weakly reversible realizations with minimal deficiency of
the closed loop system has been integrated into one MILP
optimization problem. It has to be noted that while M̃
is assumed to be known in (11), M contains unknowns,
namely the feedback parameters K1 and K2, but this does
not change the linear nature of the constraints and the
MILP computation framework is still applicable.

C. Computation of dynamic feedbacks

To increase the degrees of freedom in transforming a
polynomial system to kinetic form via feedback, it is a
straightforward idea to apply a dynamic extension. In this
case, let us write the equations of the open-loop system as

ẋ(1) = M11ψ1(x(1)) +Bu, (20)

where x(1) ∈ Rn, M11∈Rn×m1 , ψ1 : Rn → Rm1 , B ∈ Rn×p,
and u ∈ Rp. Let us give the equations of the dynamic
extension as

ẋ(2) = M21ψ1(x(1)) +M22ψ2(x), (21)

where x(2) ∈ Rk, M21 ∈ Rk×m1 , M22 ∈ Rk×m2 . Moreover,

x =

[
x(1)

x(2)

]
∈ Rn+k, ψ(x) =

[
ψ1(x(1))
ψ2(x)

]
, (22)

where ψ2 : Rn+k → Rm2 . Let us again use a monomial
feedback in the form u = Kψ(x) = K1ψ1 + K2ψ2, where
K1 ∈ Rp×m1 , K2 ∈ Rp×m2 , and K = [K1 K2]. The
equations of the closed loop system are given by

ẋ =

[
M11 +BK1 BK2

M21 M22

]
· ψ(x) = M · ψ(x) (23)

The feedback gain computation, the weak reversibility
and minimal deficiency constraint is completely analogous
to the static feedback case described in subsection III-B
with the only exception that we have more unknowns
(i.e. decision variables) in matrices M21 and M22 giving
generally more degrees of freedom to solve the feedback
design problem.

IV. Examples

In the following, we demonstrate our feedback design
algorithms with two simple examples.

A. Designing a dynamic feedback structure for a polyno-
mial system

Let us consider the following polynomial system

ẋ1 = −x1x2 + 2x22x3 (24)

ẋ2 = x1x2 − 4x22x3 − x2x23 + u1 (25)

ẋ3 = 6 + x1x2 − 3x22x3 + u2 (26)

It is easy to see from (26) that for u1 = 0, u2 = 0,
the system has no equilibrium points in the nonnegative



orthant. Using the notations of section III, we have:

ψ1(x(1)) = [1 x1x2 x
2
2x3 x2x

2
3]T , (27)

M11 =

 0 −1 2 0
0 1 −4 −1
6 1 −3 0

 , B =

 0 0
1 0
0 1

 (28)

For a dynamical feedback, let us introduce one new vari-
able x(2) = x4, and an additional monomial as follows:
ψ2(x) = [x23x4]. Then, after performing the procedure
presented in subsection III-C, we find that the MILP
optimization problem is feasible, and

K =

[
1 0 2 0 0
2 0 1 0 −10

]
, M21 = [3 0 0 1], (29)

M22 = [−5]. (30)

This means that the feedback: u1 = 2x22x3, u2 = x22x3 −
10x23x4, and the dynamic extension: ẋ4 = 3+x2x

2
3−5x23x4

results in a closed loop system that has a weakly reversible
realization with zero deficiency. Therefore, the controlled
system has bounded trajectories in the positive orthant
and moreover, it is globally stable with a known logarith-
mic Lyapunov function. The resulting weakly reversible
reaction graph of the closed loop system is depicted in
Fig. 1.

Figure 1. Weakly reversible kinetic structure of the closed loop
system

B. Designing a static feedback structure for the Lorenz
system

Let us consider the extended version of the well-known
3-dimensional Lorenz system by linear input terms as an
open loop polynomial system

ẋ = σ(y − x) + u1 (31)

ẏ = x(ρ− z)− y + u2 (32)

ż = xy − βz + u3 (33)

Let the parameter values be σ = 10, ρ = 28, β = 8/3 that
are known to lead to chaotic behavior for u = 0, that is
also clearly visible from Fig. 3. It is important to note that
the above model is not kinetic.

Using the notations of section III, we have:

ψ1(x, y, z) = [x y z xz xy]T , (34)

M11 =

 −10 10 0 0 0
28 −1 0 −1 0
0 0 −2.6667 0 1

 , (35)

B =

 1 0 0
0 1 0
0 0 1

 (36)

In designing the feedback we are going to use the original
monomials only and we are not using dynamical exten-
sion. Then, after solving the MILP problem described in
subsection III-B, we find that the problem is feasible, and

K =

 9.9 −9.8 0.1 −0.1 −0.1
−27.9 0.8 0.1 1.1 −0.1

0 0.2 2.5667 −0.2 −0.9

 . (37)

The obtained feedback structure results in a closed loop
system that has a weakly reversible realization with zero
deficiency. The resulting weakly reversible reaction graph
of the closed loop system is depicted in Fig. 2, while
Fig. 4 illustrates the stable behavior of the controlled
system. Note that the above feedback completely changes

Figure 2. Weakly reversible kinetic structure of the closed loop
system

the coefficients of the nonlinear terms in the model by
leaving its monomial terms unchanged.

Figure 3. Chaotic behavior of the open-loop Lorenz system



Figure 4. Time-domain behaviour of the controlled Lorenz system

V. Conclusions

A novel optimization based state feedback design
method was proposed in this paper for polynomial sys-
tems that transforms the closed loops system into kinetic
form with minimal deficiency and weak reversibility. Weak
reversibility ensures the boundedness of the trajectories in
the positive orthant, while global stability can be achieved
in the zero deficiency case. Both static and dynamic feed-
back designs are considered. The computational method
uses MILP for jointly determining the feedback parameters
and the preferred dynamically equivalent realization of the
closed loop system as a kinetic system.

The controller structure assumes a linear input structure
of the open loop system, and uses a polynomial feedback
constructed from the monomials of the original system
possibly extended by new ones.

The proposed method is illustrated by two simple ex-
amples, including a Lorenz system with chaotic behavior
in the open-loop case.
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