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Abstract: The paper presents the reduction of mast-vibration of single-mast stacker cranes 

by using a robust controller. During non-stationary movement undesirable mast vibrations 

may occur. These vibrations can reduce the positioning accuracy of the machine. The aim 

of this paper is to present the design procedure from the dynamic modeling to robust 

control design, in which accurate signal tracking and mast-vibration attenuation are 

guaranteed. The dynamic modeling of single-mast stacker cranes by means of multi-body 

modeling approach is summarized. The handling of varying dynamic behavior due to 

varying lifted load position is presented. For control design purposes the order of the 

model is reduced. Based on the modeling technique an appropriate robust H∞ controller 

design method is applied. The trade-off between accurate reference signal tracking and 

mast-vibration attenuation is presented through demonstration example. 
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1 Introduction 

In the last few decades warehouse technology has improved significantly and 

highly automated systems have appeared in this area. The essential elements in 

automated storage/retrieval systems (AS/RS) of warehouses are the stacker cranes, 

which perform directly the storage/retrieval operation into/from the rack position. 

The performance of automated storage/retrieval systems depends on the 

performance of stacker cranes. The advanced stacker cranes therefore must meet 

the fast working cycle and reliable, economical operation requirements. Thus 

these machines often have very high dynamic loads on their frame structures. The 

requirements of economical operation cause the reduction of the dead-weight of 

stacker crane frame structures. The reduction of dead-weight may result in 

decreasing the stiffness of the frame structure. Consequently, this structure is more 
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responsive to dynamic loads. During operation, therefore, undesirable, low-

frequency and high-amplitude mast vibrations may occur in the frame structure 

due to the different inertial forces. The high-amplitude mast vibrations may reduce 

the stability and positioning accuracy of the stacker crane and in an extreme case 

they may damage the structure. A line drawing of a single-mast stacker crane with 

its main components is shown in Figure 1. 

 

Figure 1 

Single mast stacker crane 

For above-mentioned reasons it is necessary to reduce the undesirable mast 

vibrations by controlling the traveling motion of the stacker crane (i.e. the motion 

towards the aisle of the warehouse). In this paper a controller designing technique 

based on H∞ approach is introduced. In the literature of stacker cranes only a few 

examples can be found concerning mast vibration attenuation by motion control 

(see e.g. [4-5]). Unfortunately these works do not take the effects of the lifted load 

position into account. The aim of the work is to introduce a controller design 

method which can handle the uncertainties in a dynamic model (e.g. varying lifted 

load positions and magnitudes) and at the same time it has good reference signal 

tracking and mast-vibration attenuation properties. 

In the work the multi-body modeling approach is applied to describe the dynamic 

behavior of single-mast stacker cranes. It is a widely used method of structural 

dynamics and has a very extensive literature in the area of dynamic investigation 



Acta Polytechnica Hungarica Vol. 11, No. 10, 2014 

 – 137 – 

of engineering structures [7-10] as well as stacker cranes [1-6]. In our model 

structural damping is taken into consideration by means of the so-called 

proportional damping (Rayleigh damping) approach. The determination of the 

attributes of proportional damping is presented in detail by references [15-17]. 

The relatively high-order multi-body model is not suitable for H∞ control design 

methods thus the investigated model is reduced with a suitable model order 

reduction method. Some dynamic model reduction methods are presented in 

references [12-14]. 

The paper is organized as follows: Section 2 introduces the control oriented 

dynamic modeling of single-mast stacker cranes through a multi-body modeling 

approach. The state space representation and the uncertainties of the model are 

also introduced. The model order reduction is also presented in Section 3. In 

Section 4 the robust control design problem is set and the solution method is 

presented. The operation of the designed control system is illustrated through 

simulation examples in Section 5. 

2 Control-oriented Modeling of Single-Mast Stacker 

Cranes 

In this section a linear dynamic model of single-mast stacker cranes is introduced, 

which is suitable for the representation of the dynamic behavior of stacker cranes 

under varying load conditions. For this purpose the Multi-body modeling 

technique is chosen. Besides finite element modeling (FEM) the multi-body 

modeling approach is one of the most frequently applied methods in dynamic 

analysis. The advantages of this method are the lower degree of freedom 

(compared with FEM) and simpler equations of motion. In addition favorable 

characteristic of this method is that the varying lifted load positions and 

magnitudes can be modeled in a very simple way. 

The linear multi-body model of the stacker crane structure is presented in Fig. 2. 

In this model the mast structure (a box girder) is divided into sections between the 

lumped mass components of the stacker crane e.g. the bottom frame, the hoist 

unit, the top guide frame etc. The Euler-Bernoulli beam sections are approximated 

by lumped mass elements. These rigid elements are generated by the division of 

sections (with length li) into Ni pieces. The lumped masses are located in the 

center of elements (in the so-called nodes). All inertia effects are concentrated at 

these nodes. The magnitudes of lumped masses are equal to the masses of 

corresponding beam pieces. The elements are interconnected by elastic but 

massless links. This elasticity approximates the bending elasticity of the original 

Euler-Bernoulli beams. The elasticity is provided by spiral springs (with spring 

stiffness Sei) connected parallel to the ideal, frictionless hinges. The magnitude of 

this spring stiffness is calculated by means of the strength of materials. 
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Figure 2 

Multi-body model of a single-mast stacker crane 

As Figure 2 shows further components of a stacker crane are modeled by lumped 

masses i.e. the gross weight of the bottom frame (with idle and drive wheel 

blocks, the electric box, etc.), the masses of the hoist unit and the top guide frame. 

The mass of bottom the frame is denoted by msb, the mass of the hoist unit by mhd 

and the mass of the top guide frame by mtf. The effect of the lifted load (the mass 

of payload and the lifting carriage) can be taken into consideration by means of 

adding its mass to the proper nodal mass. In this way the lifted load can be placed 

into discrete positions. The elasticity of the bottom frame beam is approximated 

by a spiral spring (Sb) between the lumped mass of the bottom frame and the lower 

end of the mast. 

In the generation of the motion equations of the multi-body model first the 

generalized coordinates must be selected. With the adequate selection of the 

generalized coordinates the mass and stiffness matrices of the motion equations 

can be transformed into a diagonal form. In this way the generation process of the 

motion equations can be simplified significantly. One of the possible choices of 

generalized coordinates (i.e. the qi vertical displacement of each lumped mass) are 

shown in Figure 2. The degree of freedom (DOF) of the model is denoted by Nd. 

The generalized coordinate vector of the model is: 

 TNd
qqq 21q . (1) 
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The differential equations of motion can be determined in several ways e.g. by 

means of using the Euler-Lagrange equations. The detailed derivation of mass and 

stiffness matrices and dynamic equations for the above-mentioned multi-body 

model can be found in [11]. The general form of the matrix equation of motion in 

the case of excited vibrations (i.e. in the presence of external excitation forces) is: 

FSqqDqM   , (2) 

where M is the mass matrix, S is the stiffness matrix and D is the damping matrix 

of the system. Here F in general is the vector of external excitation forces. In this 

paper a single-input system is examined, where the input signal of our model is 

the external force acting in the direction of q1 generalized coordinate. Thus in 

vector F only this coordinate has a value other than zero. 

The input signal of the model is the external force acting in the direction of q1 

generalized coordinate. In the following steps the model is applied in the synthesis 

of the controller which realizes the positioning control of single-mast stacker 

cranes. Therefore the outputs of the investigated state space representation can be 

classified into two groups. The first one is used for analyzing the mast-vibrations 

in arbitrary mast locations. These performance outputs are the inclinations of the 

mast i.e. the horizontal position difference between the lowest point of the mast 

and an arbitrary location of the mast. The second one is the measurement output, 

which is the horizontal position or velocity of the stacker. The state space 

realization of a linear time invariant system in general is described by the 

following equations. 

dDxCy

uDdDxCz

uBdBAxx

212

12111

21

,

,







 (3) 

where x , d , u  are the state vector, disturbance and control input respectively 

and 
nR0x  is the initial state of the system. Here n is known as the number of 

the states and m and p are the number of input and output variables of the system 

respectively. Let us define the state vector with the generalized coordinate vector 

as follows: 

 Tqqx  . (4) 

For design of a robust controller model uncertainties also must be taken into 

account. Pokorádi in his paper [23] gives an overview of types and sources of 

model uncertainties and illustrates model uncertainty examination methods. Model 

uncertainties occur when some of the parameters in the investigated system are 

not precisely known, or can vary in a given range. The system can also have 

complex parameter variations satisfying a given magnitude bound. In this case 

uncertainty is modeled by connecting an unknown but bounded perturbation to the 

plant. Thus generally two kinds of uncertainty structures are used in the area of 

controller design i.e. structured and unstructured uncertainty models. 
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In simpler cases unstructured uncertainty models are used, which require only 

little information about model uncertainty i.e. the magnitude bound and the type 

of connection. The bounded perturbation can be connected to the plant in several 

ways, e.g. in additive, multiplicative, coprime factor uncertainty ways, etc. 

In this case the two main sources of model uncertainty are the neglected dynamics 

due to model order reduction and the variation in load conditions. The dynamic 

properties, e.g. resonance frequencies, mode-shapes etc. of stacker cranes depend 

on the magnitude and position of the lifted load. The dynamic model must also 

take this effect into consideration. In order to solve this problem with the multi-

body modeling technique a series of dynamic models are generated with varying 

lifted load magnitudes and heights. With this model set the variation in the 

dynamic behavior of stacker crane structures can be investigated. In order to take 

into consideration the properties of the entire model set in one model the variation 

of dynamic behavior is modeled as unstructured uncertainty. 

From the several possible choices of connection types in this work the so-called 

output-multiplicative uncertainty model is applied. The formula of this uncertainty 

model is         sssIs Nrm GWΔG  , where  sG  is the normalized uncertain 

neighborhood of the nominal system  sNG ,  smΔ  is unknown but bounded 

perturbation and  srW  is a known weighting function, which reflects the amount 

of uncertainty. The bound of perturbation is defined as   1


smΔ . 

3 Model Order Reduction 

The aim of this section is to find a suitable model order reduction method for this 

large degree of freedom system. In the literature several kinds of model order 

reduction methods can be found and an overview of these methods is presented in 

[14]. 

In the work the modal truncation (MT) method is analyzed, in which the reduced 

order model is derived by truncating a state space transformation as follows: 

   DCTTBTATDCBA ,,,,,, 11  , where nnR T  is a nonsingular 

transformation matrix. The purpose of the MT method is to project the dynamics 

of original model onto an A-invariant subspace corresponding to the dominant 

modes of the system. These dominant modes can be selected by eigenvalues of A 

(i.e. the poles of G). The selection of the dominant modes plays an important role 

since the accuracy of approximation is determined by these modes. In this case the 

first two eigenvalues (with the smallest absolute value) correspond to the rigid 

body motion of the stacker crane, which must be kept in the reduced model. 

Further dominant vibratory modes corresponding to the next three complex 

conjugate eigenvalue-pairs are also involved in the reduced model. This way the 
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accuracy of the reduced model in the relevant frequency range will be acceptable. 

Thus, the order of reduced model in this case is eight. 

The transformation matrices of MT can be computed by means of the following 

considerations. Let us assume that A is assumed to be diagonalizable by the help 

of transformation matrix T, where the columns of T are the eigenvectors 

( njj ..1, t ) of A. Thus the state space representation can be projected onto an 

A-invariant subspace spanned by the r pieces of most dominant eigenvectors. The 

following partition of the transformation matrix T:   rn
l

T

ll R   TLTT
~

,
~~1  

using   nr
ll

T
rl

T
l R 

 TTTTT ,
~~ 1

 and   rn
rrr R  TLTT , . The matrices of 

the reduced order model can be calculated by the following truncation: 














2

1

0

0ˆ

A

A
ATT , 














2

1
ˆ

B

B
BT ,  2

ˆ CCCT  . The error bound of this method 

is calculated as: 

    Remin

1ˆ

2

22
A

BCGG



 . (5) 

The Bode magnitude diagrams of original and reduced systems corresponding to 

the two outputs are shown in Figure 3 a) while the absolute errors between the 

original and the reduced models are presented in Figure 3 b). 

  

 a) Bode Diagrams of models b) Absolute errors 

Figure 3 

Results of model order reduction 

4 Robust Control Design 

For purpose of controller design the so-called H∞ method is chosen. The main 

motivation behind this choice is that this method allows taking the model 

uncertainties into account. In an actual controller design setup the performance 

objectives of controller design are expressed by means of weighting functions. 
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The weighting functions can be considered as penalty functions, i.e. weights 

should be large in the frequency range where small signals are desired and small 

where large performance outputs can be tolerated. The control objectives i.e. the 

weighting strategy of controller design are presented in Figure 4. 

 

Figure 4 

The robust H∞ controller design setup 

The most important requirements for the closed-loop system are good reference 

signal tracking property and mast-vibration attenuation. The reference signal in 

the investigated model is the horizontal position demand of the stacker crane. The 

good reference signal tracking performance objective can be formulated by means 

of the two-degree-of-freedom controller structure. In this structure the controller K 

is partitioned into two parts: Ky and Kr. Here Ky is the feedback part of the 

controller while Kr is the pre-filter part. The ideal model of the closed-loop system 

is represented by the transfer function Wref . 

Usually this function is a second-order transfer function with free parameters  

and : 

22

2

2 rr

r
ref

ss
W






 . (6) 
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This way the bandwidth and the damping of the ideal closed-loop transfer function 

can be adjusted. The error between the ideal and the actual closed-loop transfer 

function is weighted by the penalty function We. Usually a more accurate model is 

desired in the low frequency range thus We is a low-pass filter: 

sT

sT
AW

ed

en
ee






1

1
, (7) 

where ededenen TT 11   . 

The above mentioned two-degree-of-freedom controller is placed on the second 

(position) output of the stacker crane model. This provides for good reference 

signal tracking properties of the positioning control of the stacker crane. The mast-

vibrations are penalized by the Wp weighting function, which acts on the first 

(mast inclination) output of stacker crane model. Since the steady-state value of 

mast inclination must not be penalized, the We transfer function is a high-pass 

filter: 

sT

sT
AW

pd

pn

pp





1

1
, (8) 

where pdpdpnpn TT 11   . 

The control input is limited by using the performance criteria Wu. With this weight 

larger control signals can be penalized and thereby the control activity can be 

minimized. This way the undesired hysteresis effect in the actuator system can be 

avoided. The transfer function Wu , similarly, to the transfer function We is a high-

pass filter with parameters Au, un and ud. The purpose of the weighting function 

Wn is to reflect the sensor noises. This function is also a high-pass filter with 

parameters An, nn and nd. The parameters of this function can be determined 

from experiments or manufacturer measurements of the actual sensor system. 

The robust controller can be calculated the so-called H  synthesis which is 

based on the following optimization problem: 

  KPΔ
K

,min lF , (9) 

where Δ  is a matrix function called the structured singular value (SSV). The 

symbol  KP,lF  denotes the lower linear fractional transformation (LFT) of the 

augmented plant P and controller K. The exact definition of Δ  and LFT can be 

found in e.g. [18-21]. 

The direct computation of Δ  is intractable. Thus, bounds on the SSV are 

typically used in place of the actual SSV during robust performance analysis. The 

following optimization problem provides a tight upper bound on the SSV and can 

be reliably computed. 
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  1

,
,infmin

1



 


DKPD
DDK

l
H

F . (10) 

The stable and minimum phase scaling matrix D is chosen such that ΔDDΔ . 

The optimization problem can be solved iteratively for K and D. This is the so-

called D – K iteration, see [21]. 

For a fixed scaling transfer matrix D 

 


1,min DKPD
K

lF  (11) 

is a standard H∞ optimization problem. For a given stabilizing controller K 

 




 


1

,
,inf

1
DKPD

DD
l

H
F  (12) 

is a standard convex optimization problem and it can be solved iteratively 

pointwise in the frequency domain:    1,infsup 
 ωωDD DKPD

ω
 jFl . 

5 Demonstrational Example 

In this section a design case study is presented with two kinds of weighting 

strategy. The main parameters of the stacker crane are shown in Table 1. In the 

investigations the lifted load position varies in the position range from 41 m  to 44 

m,  which generates the model uncertainty. The nominal model of this model set is 

the one with a lifted load position in the middle of the position range, i.e., 42.5 m. 

The matrix of uncertainty weighting functions is presented in the Bode diagrams 

of Figure 5. These functions are 4
th

 order approximation functions of the relative 

errors in the investigated model set. In these diagrams the amount of 

multiplicative uncertainty is relatively low due to the limited load position range. 

This uncertainty value increases sharply only in the frequency ranges surrounding 

the natural frequencies. 

The model matching function i.e. the ideal model of the closed-loop system is 

given by 
22

2

816

8




ss
Wref . The first weighting strategy (Case #1) focuses the 

reference signal tracking rather than the mast-vibration attenuation. While in the 

second strategy (Case #2) the mast-vibrations are penalized more heavily. The We 

and Wp performance weighting functions in the first and the second weighting 

strategy are presented in the Bode diagrams of Figure 6. 
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Table 1 

Main parameters of investigated stacker crane 

Denomination Denotation Value 

Payload: mp 1200 kg 

Mass of lifting carriage: mlc 410 kg 

Mass of hoist unit: mhd 470 kg 

Mass of top guide frame: mtf 70 kg 

Mass of bottom frame: msb 2418 kg 

Lifted load position: hh 1-44 m 

Length of mast-sections: l1 3,5 m 

l2 11,5 m 

l3 30 m 

Cross-sectional areas of mast-sections: A1; A2 0,02058 m2 

A3 0,01518 m2 

Second moments of areas: Iz1; Iz2 0,00177 m4 

Iz3 0,00106 m4 

 

 

Figure 5 

Uncertainty weighing function matrix 
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 a) Case #1 b) Case #2 

Figure 6 

Performance weighting functions We and Wp 

The weighting functions of control input and sensor noises are presented in Figure 

7 a) and b). These functions are the same in both design cases. 

  

 a) Weighting function Wu b) Weighting function Wn 

Figure 7 

Control input and sensor noises weighting functions 

The validation of the designed controllers can be carried out in the time domain 

analysis. In this simulation the position signal of a general stacker crane moving 

cycle is used as reference signal. In the first session of the moving cycle the 

stacker crane has constant 0,5 m/s
2
 desired acceleration. In the second session the 

desired velocity is 3,5 m/s and the deceleration value of the third session is -0,5 

m/s
2
. The distance covered during the moving cycle is 70 m while the total cycle 

time is 27 seconds. The simulation results, i.e., diagrams of the stacker crane 

position and mast deflection are shown in Figure 8. 



Acta Polytechnica Hungarica Vol. 11, No. 10, 2014 

 – 147 – 

  

 a) Stacker crane position b) Mast deflection 

Figure 8 

Simulation results 

The simulation results show the trade-off between mast-vibration attenuation and 

the cycle time of stacker crane motion. With the controller of the first case the 

closed-loop system produces adequate reference signal tracking properties in 

addition to relatively high mast-vibrations. However, with the second design the 

mast vibrations are attenuated significantly but the cycle time of stacker crane 

motion increased by approximately 1.5 seconds. 

Conclusions 

In the paper a controller design method has been presented which can handle the 

uncertainties in the dynamic model and at the same time it has good reference 

signal tracking and mast-vibration attenuation properties. The first part of this 

paper summarizes the dynamic modeling of single-mast stacker cranes by means 

of the multi body modeling approach. The unstructured uncertainty approach is 

applied to handle varying dynamic behaviors due to varying lifted load positions. 

An H∞ controller design method is proposed, which is suitable for the positioning 

control of stacker cranes with reduced mast vibrations in the presence of model 

uncertainties. In a demonstrational example the trade-off between mast vibration 

attenuation and the cycle time of stacker crane motion is also presented. The 

design method is suitable for finding the controller which produces the desired 

motion cycle time and/or mast-vibration free stacker crane motion. 
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