
LODmilla: shared visualization of Linked Open Data

András Micsik, Zoltán Tóth, Sándor Turbucz

MTA SZTAKI, Budapest, Hungary

 {andras.micsik,zoltan.toth,sandor.turbucz}@sztaki.mta.hu

Abstract. Most current visualizations for Linked Open Data are created for a

single purpose or a single dataset. These ad hoc approaches can hardly exploit

the linkedness of LOD, and we miss the tools for comfortable and enjoyable

LOD browsing. On the other hand WWW has mature generic visualization: the

web browsers. With the LODmilla browser we try to find the basic commodity

features for generic LOD browsing including views, graph manipulation,

searching, etc. With our browser users can navigate and explore multiple LOD

datasets and they can also save LOD views and share them with other users.

This feature set enables the visualization of provenance and context for LOD

entities as well as to navigate on the links between entities such as documents

or datasets.

Keywords. Linked Open Data, Semantic Web, graph visualization, graph ex-

ploration, Javascript, HTML5, SPARQL, RDF

1 Introduction

The Semantic Web initiative provided the framework and the tools for sharing ma-

chine-understandable data on the Web. A lot of semantic data appeared since then on

the Web, but most of these data were segmented and there were no uniform method

for connecting facts and resources from different data sets. In 2006 Tim Berners-Lee

outlined a set of best practices for publishing and connecting structured data on the

Web: the Linked Data principles [1]. This bases the identification and linking of se-

mantic entities on so-called dereferenceable URIs, which can be used to retrieve more

and meaningful information on the referenced object. On the other hand, Open Data

refers to the open access to data in open (non-proprietary) formats. The merge of the

two concepts became very popular in last years and was named as Linked Open Data

(LOD) [2]. The LOD cloud diagram [3] recorded the growth of available LOD data,

and counted 295 datasets containing more than 31,000 million triples.

Usually, these LOD datasets are built using RDF, which is a general method for

conceptual description or modeling of information for web resources. The basic piece

of RDF is a triple (or statement) which consists of three elements: a subject, a predi-

cate, and an object. With this approach, we are able to store not only data, but state-

ments about the resources. All the three parts of a statement are resources themselves

as well.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48294941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Although the Semantic Web and LOD are meant for machine processable data,

their use by humans cannot be avoided. Semantic data is often the only available

place for the information sought, and furthermore it is usually more accurate and

richer than any human-readable representation. Therefore, it is the task of the IT to

provide nice and useful visualizations of Semantic Data for humans. The problem

with these visualizations is that they are not generic, but ad-hoc; they are capable of

presenting limited types of datasets only. While the World Wide Web had its generic

visualization method, the web browser since the very beginning, the LOD cloud is

still missing a generic visual browser. In this paper we investigate previous generic

LOD visualization approaches and present our own ideas in this respect which were

implemented in the LODmilla prototype.

2 Related work

There are quite a lot of approaches for presenting LOD data for humans. Most of

these however are dedicated to specific purpose and specific datasets (see for example

[4]). The obvious solution for all-purpose LOD browsing is a pure text-based ap-

proach (e.g. Virtuoso faceted browser or Graphity [5]). In this case, we usually see a

single resource with all its referring triples listed. In this case we can read all data

properties such as names, birthdate, etc., and we see all connected resources as links.

Clicking on a connected resource brings up the tabular or list view of the selected new

resource.

The disadvantage of the pure textual approach is that we see one resource only and

the graph structure of connections cannot be seen. In case of hypertext, this is not a

problem, but in RDF the connections carry much more information, for which users

should have an overview. Therefore, the combination of graphical and textual brows-

ers is a more popular approach, and in the rest of the section we provide an overview

of these.

One thing that differentiates the applications using the semantic web is the level

where it handles the data. As [6] points out, the grouping by the granularity of infor-

mation can be the following:

• Collection level

• Resource level

• Intra-resource level

While the collection level approach focuses on providing a general overview of a set

of data, and mostly used for predictions, the resource level shows the attributes of the

individual resources, and visualizes the connections between them, hence it provides

more details on individual resources. Intra-resource level approaches show the distri-

bution of the topics and attributes in a single resource, and they are used mostly for

deeper analysis. In this work we aim at the resource level and try to point out the

strong and weak points of related other work.

LodLive [7] represents the LOD resources and their connections in a graph struc-

ture. The visual design here is plain and simple, so it is relatively easy to understand

the whole concept. Even so, the resources, represented by circles, do not contain

enough information for the first sight. We only see a circle, with the resource’s labels

listed in different languages, plus some other circles around it. If we would like to

know more about a resource, we have to open its detail box on the right. Here we can

see the data properties attached to the selected node in a pre-processed format, for

example image URLs are detected and shown, geographical location is extracted and

put on map, etc. The major drawback of LodLive is the pure navigation on connec-

tions. Connections are grouped by property, and visualized as expanding small circles

around the resource circle. This gives a limitation on the number of connections that

can be shown, and in fact, LodLive truncates the shown connections to the first 30-40

for each connection type which results in information loss. It is also hard to see where

the connection points, as only the resource URIs are shown as a hover for each small

circle. Resource URIs can be quite cryptic for humans when they contain numeric

identifiers. Therefore, in LODmilla we aim at showing the labels or titles of connec-

tion endpoint resources. LodLive has a nice design, but quite often the usability is

sacrificed on the design. As an advantage, it is made as a pure HTML5 browser,

which can be run in any modern browser.

OOBIAN [8] is a feature-rich, well-designed and useful LOD browser imple-

mented in Silverlight. Technically this is a drawback as Silverlight is not available in

all browsers. OOBIAN consists of several views: a graph view, a textual reader, a file

explorer and a map. This application combines the visual and text based approaches,

but it can’t be used for advanced purposes. It is a good LOD browser to jump from

one node to another or to filter properties. The main drawback is that we can see only

a single resource and its connections in the graph view.

Microsoft Academic Search is a special tool for finding researchers, their publica-

tions, and the relations between these. It includes a Silverlight-based graph module

named Visual Explorer [9] where we can visualize the connections between people,

show the links between co-authors, and see the citations graph of a person. The main

problem with this approach is that it is limited to a given scenario and requires the

internal database of Microsoft which is not open for any other organizations.

The VisualDataWeb project produced a set of very interesting graphical user inter-

faces for the Semantic Web [10]. The RelFinder helps to find connection paths be-

tween selected resources. This is a very useful function if we want to know how two

objects are related to each other. In LODmilla, we implemented a similar function,

but with a different solution we are able to find longer paths and paths can also in-

clude nodes from different RDF stores.

gFacet and tFacet [10] are the graph-based and textual implementation of faceted

browsing of RDF data. SemLens [10] provides tables and plots to analyse trends and

correlations in RDF data. These tools cover specific needs for RDF data consumers,

and may be applied as add-ons in future generic LOD browsers.

3 A generic LOD browser

Browsing the web is a commodity today with a number of web browsers on the mar-

ket. These browsers share some default, fundamental controls and functions, which

provide the basic browsing experience, as a result of crystallization during the last

two decades. The basic functions are:

• Opening documents,

• Following links in documents,

• Going back to the previously seen document in the history,

• Searching for text in a document,

• Saving a local copy of the document.

Although the LOD has a much shorter existence than WWW, we cannot find a tool

that provides comfortable and visual browsing of semantic data and LOD resources.

The tools we examined are either built for specific datasets or they are difficult to use

and lack important visualization features. We believe that there is a need for generic

LOD browsers, with a set of common basic features the users can learn and get used

to. This would greatly increase the impact and usefulness of LOD.

The following basic actions for generic LOD browsers have been identified:

• Visual representation of multiple resources and properties (most probably as a

graph),

• Opening resources, viewing object and data properties,

• Searching in the resources,

• Searching in the graph,

• Manipulating a set of documents,

• Saving current LOD view,

• Sharing LOD views with others,

• Undoing previous actions (replacement of web browser history).

We implemented LODmilla as our prototype solution for the above listed goals of

generic LOD browsing. LODmilla is a graph based browser, running in conventional

web browsers, developed using HTML, CSS and Javascript. While it is primarily

visual, it also contains textual representations of resource properties in order to com-

bine the best of both worlds. Its goal is to provide a simple, yet feature-rich applica-

tion for the interactive exploration of LOD content residing in multiple knowledge

bases.

By its design, LODmilla does not hide any information available in RDF from the

users, but it tries to organize and pre-process presented data. For example, incoming

and outgoing properties are grouped by property type, and for the data properties

URLs are made clickable, image URLs are shown inline and geographic locations are

shown on a map. The work in the field of user experience is still in progress, but our

long-term approach is to extend the interface with more advanced operations in a

palette-like fashion, which work similarly to usual image manipulation software (e.g.

Gimp).

3.1 Frontend

As the goal was to implement a solution for a wide set of browsers, first we had to

choose from available drawing options (Flash, Java and Silverlight were excluded

because they need separate plug-ins): SVG (Scalable Vector Graphics), HTML5 can-

vas, or plain HTML+CSS based graphics. Each of these have their own advantages

and disadvantages regarding printing, zooming and other features; so finally we found

that a mixed approach fits our needs the best. We used jsPlumb [11] as the visual

engine, along with jQuery [12] as the most popular Javascript library. JsPlumb uses

pure HTML+CSS for visualizing the graph nodes, and SVG for the links between

them. With this approach we lost the ability to use built-in zooming and panning, but

we could substitute these with our own implementation in Javascript. On the other

hand, handling buttons, text and events got much easier with the HTML and CSS

basis of the implementation.

Fig. 1. LODmilla user interface

Figure 1 shows the four main parts of the web application:

• canvas

• palettes (top left)

• toolbar (bottom left)

• inspector (right)

The canvas is the background, on which the graph structure is drawn. The palettes

contain various actions, grouped into “accordion” styled menu items. We have a tool-

bar at the bottom, with the standard operations like load, save, etc. Every node (LOD

resource) has a lot of information; these can be viewed in the inspector window on the

right, which opens by clicking the “I” (information) button in any node. The inspector

window - unlike the other three main elements - can be moved, resized, and closed.

Complex operations can be started from the palettes, while simple ones can be

found in every node. Each node has the following basic information in it: the source

of the resource, its title or label, and the number of data properties and object proper-

ties associated with the resource. Additionally, an image representation (if found) or

an icon based on the resource type is put in the middle of the node box. The selection

of the image or icon to be shown is based on heuristics, which contain both generic

and ad-hoc (dataset-specific) rules.

Nodes have three actions, which affect only the particular node:

• remove it from the canvas

• open details in the inspector window

• select/highlight it (with the star icon)

Furthermore nodes can be moved around, and we can zoom or pan the whole graph

view. Actions in the toolbar affect the whole view, while palette actions are used to

manipulate a set of (highlighted) nodes or to add new nodes.

Opening resources

The first step in using the LOD browser is to open some nodes. This can be done by

pasting a resource URI, but for some datasets we offer an easier way: by typing the

label of the resource, we can choose one with autocomplete. We can then start reading

the content of the resource in the inspector window, and open some new nodes by

clicking on selected connections in the list.

Searching in open resources

Resources may contain a lot of properties and long texts, which we don’t want to read

through. One palette item serves for searching text patterns in the content of all shown

graph nodes. Figure 2 shows this menu in the left menu box, and the search result in

the right inspector window, with red colored text.

Searching for new resources

When we don’t find the requested information in open nodes, we can try to expand

our graph view with new nodes. This is a different search function; it finds the re-

sources which contain the given query word(s), and are connected to a selected re-

source. Figure 3 shows the use case of searching of the word “KOPI” (a plagiarism

search service), from the starting document named “Máté Pataki”, shown in the mid-

dle. All the resources surrounding are the search results containing the word “KOPI”

in their content.

Saving/Sharing/Loading

The graph of currently open resources may demonstrate a new finding, or record a

certain state of knowledge, which may be useful in the future for the user who created

it. We offer the ability to fully save a graph state under user-given title, and load it

later into the browser. Saved graphs can be shared via a unique URL (similarly to

Google documents).

Fig. 2. Finding text in resources

Undo

As some actions may unexpectedly cover the canvas with many new nodes, an Undo

function has also been implemented, which reverts the last action the user made.

Marking/highlighting (selection)

All resources on the canvas can be marked one-by-one or in groups. One method to

achieve this is clicking on the star in the top-left corner of the nodes. Another method

is using the “Select nodes” palette on the left, which can mark all nodes or nodes of

the same type. Marking nodes provide the starting points for operations on node

groups such as search. For example, we can select the person type resources, and

perform a search with the word “KOPI” in those nodes, this way finding the people in

a department, who are somehow related to “KOPI”, which is the name of a project

running in our department.

Fig. 3. Expanding the graph via text search

3.2 Backend

Most of the browsing functionality does not rely on a server, and thus our tool could

have been run standalone in a browser without a dedicated server. In order to support

saving and sharing users’ views, we had to implement a server side component as

well. The backend has an additional benefit for performance as it can load informa-

tion faster and cache visited nodes. Finally, we moved most of the search operations

to the backend because of these reasons. Search operations use both graph traversal

and SPARQL querying, as we cannot always rely on a SPARQL endpoint for data-

sets.

We put a requirement that our solution should work on as many datasets as possi-

ble, and it should use the latest information available, so harvesting and pre-

processing datasets was not an option unlike in approaches such as [13]. These pre-

sumptions lead us to a graph traversal which can use either a SPARQL query

(DESCRIBE for example), or HTTP GET method and dereferenceable URI mecha-

nism to fetch the connections of resources. By using the Jena toolkit, we can parse

incoming RDF as Turtle, RDF/XML, JSON, etc.

Three variations of LOD graph search have been implemented:

• Content search: we are searching neighbour nodes with data properties containing

the given search pattern,

• Connection search: the nodes are expanded via object properties with names

matching the search patterns,

• Path finder: paths are sought between selected nodes.

In all cases we wanted to avoid solutions that work in single datasets only and so-

lutions which use pre-processing of whole datasets. These requirements lead to sev-

eral problems: first, the quality of the RDF stores is quite different in capabilities,

availability and speed, which has big impact on the performance and quality of the

graph traversing and building process. Some of the RDF nodes might not be available

during the search process, or they can be slowly harvested. The second problem is

that the world-wide LOD graph is huge: nodes may have 500 or 1000 connections,

and a 2-step path may cover 3 different RDF stores. The third problem also comes

from the heterogeneity of our data sources: links between graph nodes sitting at dif-

ferent RDF stores are known only by one of the nodes (i.e. incoming links are not

stored).

Because of these limitations, we chose to generate our graphs dynamically. When a

user explores a part of the LOD graph, several search operations may be started in a

sequence. These queries may be slow at first due to dynamic loading of nodes, but

will get faster and faster after the graph area is cached.

As we only see a part of the whole graph at search time, most of the well-known

fast graph search algorithms are not applicable in our case. We have to go back to A*

style traversal and adapt it to our needs. It is hardly possible to estimate the distance

to the goal node, but we can use some heuristics based on connection types. As a

specificity of this task, there are paths we are simply not interested in, for example

Book resources are all connected to the Book RDF type. Therefore, we simply not

follow a set of trivial links denoting type, language or format of nodes. The traversal

of the remaining links may be ordered heuristically based on learning, this remains as

future work in the project.

In the case of remote content search our task is to answer the question: does a node

containing a given string in a data property exists in the neighbourhood of a given

node? To answer this question breadth-first traversal in the RDF graph structure is

applied. We have to limit this algorithm in several ways. We specified a maximum

depth until the algorithm tries to find results. As the result set may easily grow to

hundreds of nodes, which is incomprehensible for the user, we limit the number of

result nodes as well. The result of the search is shown as highlighted nodes in the

graph for which the shortest paths from the start node are also displayed.

In the case of connection search only those connection types are followed which

are matching with the given search text(s). Multiple search items might be added

divided by a separator. The traversal of links is also breadth-first. The result of the

query is a set of nodes which are accessible via the matching connections. The rele-

vant incoming connections, just like in the case of the content search algorithm, might

not be discovered, as these can only be retrieved using SPARQL endpoints, and even

so, we cannot ask each SPARQL endpoint in the world for the existence of such con-

nections.

Fig. 4. Finding a path between two resources

For path finding the question is if a path exists between two RDF resources (Fig.

4). Our implementation is similar to Dijkstra’s algorithm where all edges have the

same weight and where the graph is produced on the fly. The starting parameters of

our implementation are the two starting nodes, the maximum depth of the search, and

the maximum number of nodes we can handle as a response. In the first iteration a

breadth-first traversing starts from both endpoints. Their connections are checked and

if common nodes can be found, they will be accepted as results and the algorithm

finishes. In each further iteration the nodes accessible from the already found nodes

are checked. One such iteration means two steps in depth increment since we are

growing our graph from both ends. The local target is to find nodes which have par-

ents to both of the source nodes. When such node has been found, the resulting graph

must be simplified. All nodes not on the common path are eliminated. In this case it

still might happen that we have more nodes in the path than the number we can com-

fortably handle on the user interface.

Our department operates a LOD server (lod.sztaki.hu) with the contents of Hungar-

ian archives based on the National Digital Data Archive of Hungary. The dataset (11

million triples) contains information about books, movies, articles published in Hun-

gary with links to other datasets such as DBpedia or VIAF. Furthermore, publication

data of SZTAKI are also converted to triples. These two datasets serve as the initial

testbed for LODmilla, but it was also tested with DBpedia, DBLP and other servers.

Currently LODmilla is available internally in our institute to browse the lodified

publication data of colleagues.

3.3 Example use case

Fig. 5. A sample session of LODmilla demonstrating a use case

In the following we briefly illustrate a use-case for the exploration of LOD space

using LODmilla. The numbers in boxes represent the order of appearance for the

nodes in Fig. 5. Let’s assume that we found an interesting paper, so we enter its key-

words into the “Add new node” box, and open the listed semantic description for the

paper (1). We can now expand all the Creator type links of this node to see all authors

(2). Next, we may check if the authors have created more papers together, and we find

two more papers (3). Then we display all authors for the 3 papers, and we get 3 other

authors (4). We see that Grid is a common topic in the papers found so far, so we

issue a content search on connected nodes for the new authors containing the word

Grid, and 2 more papers are shown (5). One of the papers is not linked to anybody

from SZTAKI, so we instruct to display all co-authors (6), and get 3 colleagues from

a different department (7). As a result, we explored the neighborhood of a selected

paper discovering 3 authors groups (one from Spain and two departments from

SZTAKI), and found some more papers related to the topic of Grids and the Semantic

Web. The graph can now be saved and shared with other colleagues.

4 Conclusion

In this paper we argue that generic tools for exploring and navigating the LOD cloud

are necessary not only for computers but for humans as well. The example of Web

browsers show that functionality for using a similar technology converges to a com-

mon visualization and a common set of functions. With the LODmilla browser we

experiment and test these common functions for generic LOD browsing, based on

some key features:

• The link structure of LOD is visualized as a graph,

• Browsing works on several datasets in the same time, connections are also shown

between separate datasets,

• Either dereferenceable URIs or a SPARQL endpoint is required,

• Zooming and panning in the graph are supported,

• It is possible to save and share graph views among users.

Additionally, new ways of searching and exploring the LOD graph are needed.

LODmilla supports several candidates for these: content search starting from a re-

source, finding paths between resources, expanding the graph via given connection

types, etc.

With this approach LODmilla is capable to handle, and more importantly connect

most LOD knowledge bases easily and transparently, and provide a shared knowledge

exploration and visualization experience for its users. The features of the browser

enable the users to access, visualize and explore all contextual and relational informa-

tion of LOD resources including research datasets or publications as a particular ap-

plication area.

Our future plans include creating a plug-in mechanism for advanced operations

like searching or automatic organization of nodes on the canvas. We also plan to open

up the browser for public use and community-based development.

References

1. T. Berners-Lee: Linked Data - Design Issues. 2006,

http://www.w3.org/DesignIssues/LinkedData.html

2. Bizer, C.: The Emerging Web of Linked Data. IEEE Intelligent Systems, Vol.24, no.5,

pp.87-92, Sept.-Oct. 2009, doi: 10.1109/MIS.2009.102

3. R. Cyganiak, A. Jentzsch: The Linking Open Data cloud diagram. http://lod-cloud.net/

4. The Best Open Data Releases of 2012,

http://www.theatlanticcities.com/technology/2012/12/best-open-data-releases-2012/4200/

5. Graphity, http://graphity.org

6. D. Herrmannova and Petr Knoth. Visual Search for Supporting Content Exploration in

Large Document Collections. D-Lib Magazine Volume 18, Number 7/8, July/August

2012, doi:10.1045/july2012-herrmannova

7. LodLive, http://en.lodlive.it/

8. ::oobian::, http://oobian.com/

9. VisualExplorer, http://academic.research.microsoft.com/VisualExplorer

10. VisualDataWeb tools. http://www.visualdataweb.org/tools.php

11. jsPlumb, http://jsplumbtoolkit.com/

12. jQuery, http://jquery.com/

13. De Vocht L, Coppens S, Verborgh R, Vander Sande M, Mannens E, Van de Walle R: Dis-

covering meaningful connections between resources in the web of data. 6th Workshop on

Linked Data on the Web, Proceedings. 2013.

