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Abstract

Robustness in scheduling addresses the capability of devising schedules which are not sensitive – to a certain extent – to the disruptive effects

of unexpected events. The paper presents a novel approach for protecting the quality of a schedule by taking into account the rare occurrence

of very unfavourable events causing heavy losses. This calls for assessing the risk associated to the different scheduling decisions. In this paper

we consider a stochastic scheduling problem with a set of jobs to be sequenced on a single machine. The release dates and processing times of

the jobs are generally distributed independent random variables, while the due dates are deterministic. We present a branch-and-bound approach

to minimize the Value-at-Risk of the distribution of the maximum lateness and demonstrate the viability of the approach through a series of

computational experiments.
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1. Introduction and Problem Statement

In real production environments, scheduling approaches

have to deal with the occurrence of unexpected events that may

stem from a wide range of sources, both internal and external.

Production activities may require more time or resources than

originally estimated, resources may undergo failures, materials

may be unavailable at the scheduled time, release and due dates

may change and new activities like rush orders or reworks could

be inserted in the schedule. Robust scheduling approaches aim

at protecting the performance of the schedule by anticipating to

a certain degree the occurrence of uncertain events and, thus,

avoiding or mitigating the costs due to missed due dates and

deadlines, resource idleness, higher work-in-process inventory.

The vast majority of the stochastic scheduling literature con-

siders the stochastic aspect of a problem in terms of a scalar per-

formance indicator, e.g., the expected value. When addressing a

scheduling problem, the capability of minimizing the expected

value of an objective function provides a significant improve-

ment respect to pure deterministic approaches. However, the

expected value is not suitable to exhaustively model the quality

of the schedule from the stochastic point of view [1,2].

As an example, minimizing the expected value of the maxi-

mum lateness aims at assuring an average good performance in

terms of due date meeting but does not protect against the worst

cases if their probability is low. Protection against worst cases

is a natural tendency in management decisions. Plant managers

who face uncertainty try to maximize the mean profit but also

try to avoid the rare occurrence of very unfavourable situations

causing heavy losses. To cope with this problem, the financial

literature has proposed risk measures able to consider the im-

pact of uncertain events both in terms of their effect and of their

occurrence probability [3,4]. In the scheduling area, on the con-

trary, risk analysis and assessment are not so popular even if the

concept of risk is often perfectly suitable to support scheduling

decisions under uncertainty. Against its potential utility, the ap-

plication of risk measures to scheduling problems has not be

extensively addressed due to the difficulty in considering the

objective function in terms of its stochastic distribution instead

of a scalar performance indicator (i.e. expected value, variance)

[5].

In this paper we consider a stochastic scheduling problem

with a set of n jobs that must be sequenced on a single

machine. This can model a single machine as well as a group
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of resources, or a whole department. Although it could seem

a restrictive hypothesis, a single resource model is applicable

to several cases where a group of resources can only work on

a single product or a single product type at a time (e.g., multi-

model transfer lines, make-to-order shops working on a single

job or batch at a time). The aim is at optimizing a risk measure

of the maximum lateness using a branch-and-bound algorithm.

The processing times p j of the jobs are generally distributed

independent random variables. The jobs are available after a

release date r j and have a due date d j. The release dates r j

are also generally distributed independent stochastic variables

while the due dates d j are deterministic. The objective of

the scheduling problem is to optimize a stochastic function

of a given performance measure. In particular we focus on

the maximum lateness Lmax = max{Lj, j = 1, · · · , n}, with

Lj = C j − d j, j = 1, · · · , n where C j is the completion time of

job j under the given schedule. This objective function is likely

to minimize a stochastic function of the maximum magnitude

of the deviations with respect to the due dates, thus protecting

the schedule from the impact of the worst cases.

In Section 2 the present advances for the existing stochas-

tic scheduling approach are summarized. Section 3 reports an

outline of the risk measure used, the Value-at-Risk (VaR). Sec-

tion 4 describes the principles and operation of the proposed

branch-and-bound solution method.. Section 5 reports on the

computational test result, while Section 6 concludes the paper.

2. State of the Art

The deterministic version of the considered stochastic prob-

lem is known as 1|ri|Lmax and has been recognized to be

strongly NP-hard [6]. A review of the existing solution ap-

proach for this scheduling problem can be found in [7] and [8,

chap.9]. If we do not consider the release times, the resulting

scheduling problem (1|Lmax) is rather simple and can be solved

to optimality using the earliest due date (EDD) rule.

Referring to the stochastic counterpart, when considering a

single machine scheduling problem with arbitrarily distributed

processing times and deterministic due dates, the EDD rule still

minimizes the expected maximum lateness [8]. This applies

to non-preemptive static list and dynamic policies, as well as

to preemptive dynamic policies. These results ground on the

fact that the EDD rule minimizes the maximum lateness of the

deterministic version of the problem. Hence, given any realiza-

tion of the processing times, the EDD rule provides the optimal

schedule and, since this happens for all the realizations, then the

EDD rule minimizes the maximum lateness also in expectation

[8].

This result has further implications on the maximum late-

ness distribution. Since the EDD schedule provides the optimal

maximum lateness for any realization of the processing times,

given a maximum lateness L∗ and a schedule S ∗, the probability

of having Lmax ≤ L∗ must be less or equal to the value obtained

with the EDD schedule. Due to this, the cumulative distribution

of the maximum lateness for the EDD schedule bounds from

above all the cumulative distributions of the maximum lateness

for any possible schedule. This behavior can be formalized in

terms of stochastic order relations [9,10, chap.9].

The relationships between rearrangement inequalities and

scheduling problems have been addressed in [11]. Using

stochastic rearrangement inequalities, the author obtains a solu-

tion for the stochastic counterpart of many classical determinis-

tic scheduling problems. These results have been rephrased and

further exploited in [12–15].

It must be noticed that part of the stochastic scheduling lit-

erature addresses the problem of minimizing the maximum ex-

pected lateness max(E[L]). In this problem, using a stochas-

tic function E[L], the stochastic problem is reduced to a deter-

ministic minimization [12]. On the contrary, considering the

minimization of the expected value of the maximum lateness

E[Lmax] retains the stochastic characteristics of the scheduling

problem by regarding the whole distribution of the objective

function.

A stochastic problem belonging to this class is analyzed in

[15] where a set of jobs with deterministic process times and

stochastic due dates are scheduled on a single machine to min-

imize the expected value of the maximum lateness (E[Lmax]).

The authors propose a dynamic programming algorithm and

compare its performance to three different heuristic rules. The

dynamic programming algorithm is also extended to cope with

stochastic processing times and due dates. However, the pro-

vided results ground on the assumption that both the processing

times and due dates are exponentially distributed.

Analogously to the deterministic case, when the release

times are considered (either deterministic or stochastic), the

problem becomes more difficult to solve. However, consider-

ing independent generally distributed release times and inde-

pendent generally distributed processing times, if the due dates

are deterministic, the EDD rule still minimizes Lmax but only in

the preemptive case [8]. Some further extensions are available

but only assuming that the due dates are deterministic but both

the release and processing times are exponentially distributed

with the same mean [8].

Referring to the use of stochastic objective function other

than the expected value, the most common is the variance. In

fact, a trade-off between mean and variance is one of the most

simple and common risk measure. A joint optimization of ex-

pectation and variance in a single machine scheduling problem

has been proposed in [16]. Other common objective functions

in the stochastic scheduling are the flow time and the comple-

tion time. Moreover, in a recent paper [17] provides closed form

equations of mean and variance for a large set of scheduling

problems. However, no algorithm, neither exact, nor heuristic,

has been proposed for the maximum lateness single machine

scheduling problem to optimize a stochastic objective function

different from the expected value.

3. Risk Measures

Financial research has paid particular attention to the defi-

nition of risk measures to cope with uncertainty. In particular

the study of extreme events, i.e., the tails of the distribution has

received due attention. Risk measures as the Value-at-Risk are

extensively used in portfolio management and a large amount

of literature have been written on their mathematical properties

and effectiveness in protecting assets investments.

According to the notation used in [18], we consider a vec-

tor of decision variables x and a random vector y governed

by a probability measure P on Y that is independent on x.

The decision variables and random vectors x and y univocally
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determine the value of a performance indicator z = f (x, y)

with f (x, y) continuous in x and measurable in y and such as

E
[| f (x, y)|] ≤ ∞. Given x and the performance indicator z, we

define the associated distribution function ψ(x, ·) on R as:

Ψ (x, ζ) = P(y| f (x, y) ≤ ζ) (1)

Given the left limit of ψ(x, ·) at ζ

Ψ (x, ζ−) = P(y| f (x, y) < ζ) (2)

if the difference Ψ (x, ζ) − Ψ (x, ζ−) is positive, then Ψ (x, ·)
has a probability ’atom’ in ζ equal to P{ f (x, y) = ζ}.

As defined in [19] and using the notation in [18], given a risk

level α, the Value-at-Risk (α-VaR) of a performance indicator z
associated with the decision x is:

ζα(x) = min{ζ |Ψ (x, ζ) ≥ α} (3)

A different case refers to discrete distributions as in

scenario-based uncertainty models. In these cases the uncer-

tainty is modeled through finitely many points yk ∈ Y and, con-

sequently, z = f (x, y) is concentrated in finitely many points

and ψ(x, ·) is a step function. Under these hypotheses, the defi-

nition of the Value-at-Risk in (3) must be rephrased [18]. Given

x, if we assume that the different possible values of zk = f (x, yk)

with P(z = zk) = pk can be ordered as zi < z2 < · · · < zN and

given kα such that

kα∑
k=1

pk ≥ α ≥
kα−1∑
k=1

pk (4)

then the α-VaR is given by

ζα(x) = zkα (5)

The relationship between risk measures and stochastic order-

ing plays an important role in defining dominance rules. Refer-

ring to the Value-at-Risk, since it simply is a quantile of the ob-

jective function distribution, the stochastic dominance between

two cumulative distribution functions (cdf) also implies a dom-

inance between the respective Value-at-Risk, for any given α.

4. Solution Approach

We consider a single machine scheduling problem where a

set of n jobs A, must be processed on a single machine. Let

pj denote the processing time of job j ∈ A and s j its starting

time. Job preemption is not allowed, i.e., the processing of a

job cannot be interrupted until its completion at time c j = s j +

p j. Each job is subject to a release date r j and a due date d j.

We propose a branch-and-bound approach aiming at finding an

optimal schedule minimizing the VaR of the maximum lateness

Lmax. We restrict the problem to static scheduling policies, i.e.,

when the optimal schedule is calculated, the information for all

the jobs to be scheduled are available. In addition, unforced

idleness is allowed, i.e., the machine is allowed to remain idle

to wait for the release time of a specific job even if there are

other jobs waiting for processing.

Referring to the stochastic characteristics of the scheduling

problem, both the release times r j and the processing times p j

of the jobs are independent stochastic variables with general

discrete distributions. As a function of stochastic variables, the

objective function is a stochastic variables itself whose distri-

bution depends on the values of the stochastic variables p j and

r j and on a set of decisions to be taken defining how the jobs

are scheduled.

4.1. Branching scheme

The branching scheme is rooted at node (level 0) where no

job has been scheduled. Starting from this node, the first job to

schedule is selected, hence, there are n branches departing from

this node going down to n new nodes (level 1). In general, at

each node at level k− 1 in the branching tree, the first k− 1 jobs

in the schedule are already sequenced and n − k + 1 branches

lead to a new node at level k with a different jobs scheduled

next. Hence, at level k there are n!/(n − k)! nodes [8].

4.2. Nodes evaluation

Let us consider two jobs i, j ∈ A, where the two jobs have

stochastic processing times pi and p j described by their cu-

mulative distribution functions Fi(t) = P(pi ≤ t) and F j(t) =
P(p j ≤ t) and the associated probability density functions

fi(t) = P(pi = t) and f j(t) = P(p j = t).
The time needed to process the two jobs in a serie (first i

and then j) is a stochastic variable and its cumulative distribu-

tion function Fi+ j(t) is the convolution of Fi(t) and F j(t) with ∗
being the convolution operator [20]:

Fi+ j(t) = Fi(t) ∗ F j(t) (6)

=

∫ t

0

Fi(t − s)dF j(s)

=

∫ t

0

Fi(t − s) f j(s)ds

Provided that the schedule starts at time 0, the cumulative dis-

tribution functions of the completion times of jobs i and j (Fci

and Fc j ) can be defined as:

Fci (t) = Fi(t)

Fc j = Fci (t) ∗ F j(t) = Fi+ j(t) = Fi(t) ∗ F j(t)

If we consider a stochastic release time for job j, it can be mod-

eled as an additional job k with processing time r j to be exe-

cuted before j. Hence, job j can be executed only after both job

k and i have been completed. Provided that job j starts as soon

as possible, the cdf for its start time (s j) and completion time

(c j) of can be calculated as:

Fsj (t) = Fci (t) · Frj (t) (7)

Fc j (t) = Fsj (t) ∗ F j(t) (8)

Hence, the cdf of the completion time of j and its due date

d j, the cdf of the lateness Lj can be calculated as:

FLj (t) = Fcj (t − d j) (9)

Given the cdfs of the lateness for all the considered jobs, the

cdf of the maximum lateness is:

FLmax (t) =
∏
j∈A

FT j (t) (10)
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and all the previous described risk measures can be calculated.

This provides a way to calculate the cumulative distribution

function of the maximum lateness in the leaves of the branch-

ing tree where the schedule is completely defined. In the nodes

of the branching tree, on the contrary, only a subset of the jobs

(AS ∈ A) has been scheduled. For these activities the maximum

lateness cdf can be calculated using the steps above. The execu-

tion of the remaining jobs (A\AS ∈ A) has not been sequenced

yet and, hence, the cdf of the maximum lateness of the com-

plete schedule cannot be univocally calculated. However, an

upper and lower bound of the cdf can be provided. Given a not

yet scheduled jobs in j ∈ A\AS , a lower bound for its lateness

can be obtained assuming it starts immediately after the already

scheduled jobs (AS ) or, if more constraining, after its release

time r j. Given the cdf of the completion time of the already

scheduled jobs FcAS (t) and the cdf of the release time Frj (t), the

cdf of the earliest start time and completion time for j are:

FLB
s j

(t) = FcAS (t) · Frj (t) (11)

FLB
c j

(t) = Fsj (t) ∗ F j(t) (12)

A lower bound for the cdf of the lateness Lj can be calculate

accordingly:

FLB
Lj

(t) = FLB
c j

(t − d j) (13)

while the lower bound for the maximum lateness is:

FLB
Lmax

(t) =
∏
j∈AS

FL j (t)
∏

j∈A\AS

FLB
L j

(t) (14)

An upper bound for the lateness Lj of a not jet scheduled jobs

j ∈ A\AS can be obtained assuming that it will be sequenced as

the last job in the schedule according to the following scheme.

If we leave out the release times of the not yet scheduled jobs,

we can calculate the cdf of the sum of their processing times

FA\AS (t) as the convolution of all the cdfs F j(t) with j ∈ A\AS .

However, leaving out the contribution of the release times is

not reasonable but, when the sequence of the jobs in A\AS is

not given, their influence cannot be assessed. A worst case can

be defined considering the distribution of the maximum release

time among the jobs to schedule:

Frmax (t) =
∏

j∈A\AS

Frj (t) (15)

and then assuming that all the jobs to be scheduled are executed

after this release time.

FUB
sA\AS

(t) = FcAS (t) · Frmax (t) (16)

FUB
cA\AS

(t) = FUB
sA\AS

(t) ∗ FA\AS (t) (17)

An upper bound for the cdf of the lateness Lj can be calculated

as:

FUB
L j

(t) = FUB
cA\AS

(t − d j) (18)

while the upper bound for the maximum lateness is:

FUB
LMax

(t) =
∏
j∈AS

FT j (t)
∏

j∈A\AS

FUB
L j

(t) (19)

4.3. Dominance rules

In the considered scheduling problem, the aim is at mini-

mizing the maximum lateness. The maximum lateness is a

regular objective function, i.e., a function non-decreasing in

C1, . . . ,Cn -where Ci denotes the completion time of job i- and,

due to the absence of unforced idleness, also non-decreasing in

p1, . . . , pn,.

At each node in the branching tree, the lower bound cdf rep-

resents a schedule where the not yet sequenced jobs are ex-

ecuted immediately after the already scheduled ones. If we

schedule an additional job j, the not yet scheduled jobs must

be shifted to start at earliest after job j is processed. Due to

this, the completion time of the not scheduled jobs increases or,

at least, has the same value as in the ancestor node. Since the

objective function is regular, given a certain sample of the ac-

tivity durations and release times, the values of the cdf of the

ancestor must be greater or equal to the value of any of the suc-

cessor nodes.

Hence, at each node in the branching tree, the lower bound

cdf effectively provides a bound on the lower bound cdf of all

the successor nodes, even more, the lower bound cdf stochasti-

cally dominates the lower bound cdfs of all the successor nodes.

Moreover, since at the leaves of the tree the upper and lower

bound cdfs collapse in a single curve, then this curve is also

stochastically dominated by the lower bound cdfs of all its an-

cestor nodes.

A dual reasoning can be done considering the upper bound

cdfs, leading to the fact that the upper bound cdf in a node is

stochastically dominated by all the upper bound cdfs of its suc-

cessor nodes and the cdf in a leaf of the three stochastically

dominates all the upper bound cdfs of its ancestor nodes.

In the end, the cdf in a leaf of the tree always lies in the

region bounded by the lower bound and upper bound cdfs of any

of its ancestors. For these reasons the lower and upper bound

cdfs can be used to calculate bounds for the considered risk

measures providing a comparison criteria among the nodes of

the search tree.

5. Testing

To test the proposed algorithm, two aspects have been taken

into consideration. The first one concerns the performance of

the algorithm in terms of time needed to reach the optimal solu-

tion while the second addresses the comparison between the

performance of the algorithm and other simpler approaches.

Usually this comparison is done considering two algorithms

aiming at the same objective function, but we adopted a dif-

ferent approach. The underlying idea is the observation that

taking into consideration the distribution of the objective func-

tion introduces a significant complexity in the problem. Hence,

besides evaluating the time needed to find the optimal solution,

it is also interesting investigating the benefits coming from the

use of a more complex approach compared to a simpler one. In

this case we used as a comparison the solution provided by the

Earliest Due Date (EDD) rule, a really simple rule that is not

optimal but can be applied in a really fast way.
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5.1. Experimental setup

To test the proposed approach we generated a set of instances

consisting of 10 jobs with processing times distributed accord-

ing to a discrete triangular distribution, release dates modelled

through a discrete uniform distribution and deterministic due

dates. In total, 160 instances have been randomly generated and

solved considering the VaR and the different risk levels (5% and

25%), for a total of 320 experiments. The algorithm has been

coded in C++ using the BoB++ library [21,22] and executed

on 8 parallel threads on a workstation equipped with a double

Intel Quad-Core X5450 processor running at 3.00 GHz and 8

Gb of RAM.

5.2. Results

The results in Table 1 show the performance of the algorithm

in terms of the time (in seconds) needed to find the optimal so-

lution (Solution time). The table also reports the fraction of the

nodes of the complete branching tree visited during the search.

For each combination, the minimum, maximum, average values

and the standard deviation are reported.

Table 1. Solution time (in seconds).

Risk Variable Min. Max. Avg. StDev.

5% Solution time 0.810 114.780 7.350 14.030

% nodes 0.017 2.438 0.126 0.266

25% Solution time 0.547 97.625 6.042 9.156

% nodes 0.012 1.785 0.111 0.190

The results in Table 1 show that the algorithm was able to

find the optimal solution in an average time of about 6.7 sec-

onds, with a variability ranging from a minimum value of 0.547

seconds to a maximum value of 114.781 seconds. Moreover,

the average number of nodes visited during the search is about

0.12% of the total number of nodes in the branching tree (no-

tice that the total number of nodes is equal to
∑n

k=1
n!

(n−k)!
and

for k = 10 is equal to 6235300 nodes). In addition, the results

seem to show a slightly increase of the solution time when deal-

ing with a risk level of 5%. This behavior is reasonable since,

as the considered quantile resides in the tail of the distribution,

the value for different schedules are packed together in a strict

range and the effectiveness of the bounding and pruning rules

is decreased.

A second type of results aims at comparing the optimal so-

lution obtained with the branch-and-bound approach with the

solution obtained with a simple scheduling rule, i.e., the Earli-
est Due Date (EDD) rule. To compare the two solutions, first

the EDD rule is used to obtain a schedule. Hence, the schedule

is evaluated with the exact approach to calculate the real VaR
associated. This value is then compared with the VaR of the

optimal schedule provided by the branch-and-bound approach.

The results are summarized in Table 2.

The results show that the proposed approach perform on av-

erage between 5.09% and 6.43% better respect to a simple rule

as the EDD. Performing better means that the solution provided

by the EDD rule has a VaR different from that associated to the

considered risk level. To better explain, let us want to find a

schedule S opt minimizing the 5%-VaR of the maximum late-

Table 2. Comparison with the EDD rule.

Risk Variable Min. Max. Avg. St. dev.

5% % � EDD 0 228.570 6.43 24.37

25% % � EDD 0 98.50 5.09 15.52

ness and that 5%-VaRS opt = 30 days. This means that S opt as-

sures that the probability of having a maximum lateness grater

that 30 days is 5%, and this probability is greater for all the

other possible schedules. If the EDD rule provides us a differ-

ent optimal schedule S EDD we know that the associated 5%-

VaR will be greater. Hence, if we adopt the schedule S EDD,

given the risk of 5%, we are exposing ourselves to a maximum

lateness greater than that we would have adopting the optimal

schedule S opt. If the % difference vs EDD is equal to 10%, then

under the adoption of S EDD, the 5%-VaR is equal to 33 days,

that is greater than 30 days. Hence, the probability of having a

maximum lateness greater than 30 days is more than 5%.

It must be noticed that, for some instances, the branch-and-

bound approach and the EDD rule provide the same value of the

objective function (although not always the same schedule). For

some other instances, instead, the difference is greater, reach-

ing a maximum value of 228.57%, and exactly these extreme

cases are the main justification to the adoption of stochastic ap-

proaches in place of those based on expected values.

6. Discussion

In this paper we presented a branch-and-bound stochastic

scheduling approach to minimize a stochastic function of the

maximum lateness. The proposed approach deals with a sin-

gle machine stochastic scheduling problems with jobs charac-

terized by a stochastic generally distributed discrete processing

time, a stochastic generally distributed discrete release time and

a deterministic discrete due date.

Since the aim is at guaranteeing a robust schedule capable of

providing protection against the occurrence of low probability

extremely unfavorable events, a measure of risk is used in the

stochastic objective function, in particular, the Value-at-Risk.

The performance of the proposed branch-and-bound ap-

proach is reasonably fast in term of time to find the optimal so-

lution. Needles to say that the dimension of the solved instances

(10 jobs) is rather small and, as the number of jobs increases,

also the solution time will do, and certainly more than linearly.

However the parallel capabilities of the implementation easily

permit to exploit the benefits of new multi core architecture or

the execution on high performance calculation environments.

Clearly, the adoption of more powerful and complex com-

putation systems must found a justification in the potentially

achievable benefits. To this aim, an average benefit of about

7% respect to the adoption of a simple not optimal rule as the

EDD seems low. However, as always happens when assessing

the benefits of more complex stochastic approaches, the mea-

sure provided by the comparison of the average performance

must not be considered reliable.

The need of a stochastic approach arises when expected

value approaches are no more suitable. Two stochastic distribu-

tions with the same expected values could be significantly dif-

ferent, primarily in the shape and weight of the tails. Stochastic
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approaches aim at exploiting this difference and, hence, when

compared in terms of expected values cannot exhibit signifi-

cantly good performance. As stated before, the benefits of a

stochastic approach reside in the capability of distinguishing

the shape of different distributions, thus being able to assess

the effects of events unlikely to occur but having a high impact

on the targeted performance. From this perspective, an average

difference of 6.69% respect to the EDD rule is not so important

as a maximum difference of about 230% is.

Moreover, when dealing with lateness-related objective

functions, the impact of a variation in the value of the object

function is always related to the type of contract between the

customer and the supplier. Depending on the kind of penal-

ties agreed, even a small deviation from a negotiated maximum

lateness could have a high impact.

In conclusion, the benefits of the proposed approach can be

better exploited when dealing with scheduling problem with a

small number of jobs and where the impact of low probabil-

ity extreme unfavorable events is significant. Possible applica-

tion are the implementation of robust approaches within a more

complex production system or the negotiation of due dates.

Further research will target the extension of the approach to

different scheduling problems possibly through the introduction

of different calculation methods able to provide an estimation of

the objective stochastic distribution in return of a faster calcu-

lation.

Acknowledgements

This research has been partially funded by the EU FP7

projects VISIONAIR - Vision and Advanced Infrastructure for

Research, Grant no. 262044 and RobustPlaNet - Shock-robust

Design of Plants and their Supply Chain Networks, Grant no.

609087.

References

[1] Alfieri A, Tolio T, Urgo M A two-stage stochastic programming project

scheduling approach to production planning. International Journal of Ad-

vanced Manufacturing Technology, 62(1-4):279–290

[2] Tolio T, Urgo M. Design of flexible transfer lines: A case-based recon-

figuration cost assessment. Journal of Manufacturing Systems 2013; 32

(2):1–5.

[3] Tolio T, Urgo M. A Rolling Horizon Approach to Plan Outsourcing in

Manufacturing-to-Order Environments Affected by Uncertainty. CIRP An-

nals - Manufacturing Technology 2007; 56 (1):487–490.
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