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Abstract — In the paper design and analysis of an off-axis 
absolute rotary position sensor setup is described that is 
intended to use in realizing accurate and reliable absolute angle 
measurement to be applied in precise control of electric (e.g. 
vehicle) drives. A solution of using magnetic position sensing 
elements in combination with two differently magnetized 
ferromagnetic rings is presented. By assuming a specific setup 
the algorithm of determining absolute position is given, as well 
by analyzing the measurement errors, a compensation scheme 
is elaborated. By using this scheme the linearity error of the 
sensor setup can significantly be reduced without applying any 
expensive equipment. 

I. INTRODUCTION 

Measuring angle in rotating machines e.g. electric motors 
occurs frequently in the today practice. Incremental angle 
measurements can be considered to be part of the everyday 
practice, and a great variety of sensors – including 
mechanical, optical, and magnetic ones – are available from 
several vendors. By incremental sensors also absolute angle 
measurement can be realized, however it needs setting the 
initial position that in many cases is not convenient to be 
performed. The ideal solution is realizing direct absolute 
angle measurement, which as being a more delicate task 
requiring expensive sensing devices (e.g. multitrack absolute 
optical encoder discs), cannot be considered to be a 
commonly used option. [1] 

Magnetic rotary encoders – using the principles of Hall- 
or magnetoresistive effect, and being present in the product 
variety of several semiconductor companies – offer a low-
cost, effective solution of measuring absolute angle of 
rotating parts in the case if a free shaft end is available (i.e. 
they realize on-axis sensing devices) [2]. In the opposite case, 
only an off-axis absolute angle measurement method is 
applicable, but it cannot directly be realized by using these 
devices, bringing a new idea is necessary to accomplish this 
task. 

There are only a few solutions on the market which are 
suitable for off-axis rotary position sensing. The 
measurement principle of these includes the conventional 
optical and resolver type methods with all of these well-
known drawbacks, but also includes a magnetic type method, 
which is more beneficial for the task. A magnetic rotary 
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position sensor is e. g. less sensitive to environmental impacts 
or vibration, and it can be mounted on an easier way. Their 
high resolution and precision beside to their low cost is also 
not a negligible fact. 

In this paper a solution of using magnetic position sensing 
elements in combination with two differently magnetized 
ferromagnetic rings is presented with the purpose to produce 
accurate off-axis rotary position sensing. A potential 
application field of these sensors could be rotor position 
sensing in high precision electric motor drives, e.g. 
permanent magnet synchronous motor (PMSM) drives 
controlled by the principle of sine vector fields. 

After introducing the measurement principle (Sect. II), a 
measurement algorithm is proposed (Sect. III), furthermore 
an extended analysis of errors and the principles of 
compensating them is given (Sect. IV), finally a short 
presentation of experimental testing is described (Sect. V). 

II. MEASUREMENT PRINCIPLE 

High resolution off-axis magnetic position sensors 
commonly use a specially magnetized ring mounted on the 
rotating part of the construction, and Hall-elements as 
sensing devices inside an integrated circuit mounted in front 
of the ring [3].  The magnet has to be close enough to the 
chip, so that the Hall-elements can detect magnetic field 
variation as the magnet rotates. It is common, that the 
magnets are magnetized in such a way that the magnetic field 
distribution follows a sinusoidal shape along the curvature of 
the ring. Within one period of this sine wave there is a pole 
change from north to south, thus it defines a pole-pair. If the 
Hall-elements are placed in an appropriate way inside the 
chip, their outputs produce two sinusoidal waveforms as the 
magnet ring rotates which are 90° out of phase. By measuring 
and processing these signals, the absolute position of the 
magnet can be determined within the actual pole-pair. The 
absolute position of the concerned pole directly can be 
determined only in incremental manner. However, if two 
magnet rings and two sensors are used with some anisotropy 
in the magnetic poles, the true absolute rotary position can be 
determined, within the whole revolution of the magnet rings. 
This idea will be elaborated as follows. 

The measurement principle implies that the length of a 
pole-pair, hence the period of the sinusoidal magnetic field 
variation, has to be equal to a fixed value determined by the 
Hall-sensors’ arrangement. It is also true, that the output 
value of a sensor is, in fact, associated with the length of an 
arc starting from the center of the current pole-pair, and the 
current rotation angle value can be calculated knowing the 
radius of the ring. As the length of the pole-pair is fixed, only 
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the number of the pole-pairs can be chosen, the radius of the 
ring is determined. 

Let us consider a sensor corresponding to the properties 
above, which has digital output and has a fixed output code 
range, determined by its resolution. This range is linearly 
scaled to the length of the arc between the sensor center point 
and the center of the current pole-pair. On the magnet ring, 
the pole-pairs are continuously following each other, thus the 
sensor output readout is periodically goes from zero to its 
maximum value and then starts from zero again as the 
magnet rotates. 

If we are using two identical sensors and two magnet 
rings with different number of pole-pairs, the arc on the ring 
with the higher number of pole-pairs (that with the longer 
radius) is longer than on the other at a given absolute angle. 
Thus, the output of the two sensors is different. It can be 
shown, that if the pole-pair numbers on the two rings are 
relative prime, the same sensor output value-pair is never 
repeated within one revolution of the magnet rings. Thus, the 
current arc length measured from the absolute 0 position; 
hence the absolute angle can be determined unambiguously. 
As each of the sensors provides absolute position within one 
pole pair, the problem can be traced back to the 
determination of the ordinal number of the current pole-pair 
on one of the rings. 

III. MEASUREMENT ALGORITHM 

As the measurement method have to be used in a control 
system, an absolute position reconstruction algorithm should 
be constructed that satisfies some real-time implementation 
issues. Practically, the algorithm should be able to work on a 
low-cost and simple microcomputer, e.g. an 8-bit 
microcontroller. 

The explanation of the following symbols is depicted in 
Fig. 1. Denote the actual sensor readout by xi and xo, and the 
number of pole-pairs by ppi and ppo on the inner and outer 
ring, respectively. Let N=2b to be the sensor resolution, and L 
to be the length of the pole-pairs on each ring. Denote the 
angle from the center of the current pole-pair by i and o, 
and the arc length by li and lo on the inner and outer ring, 
respectively. Symbols with * superscript denotes absolute 
values, measured from the predefined absolute zero position. 
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Figure 1.  Definition of the used quantities 

As the (xi, xo) sensor output value-pairs are unique within 
the whole revolution of the rings, it could be an applicable 
solution to off-line calculate these pairs and store them in a 

lookup table. Then the on-line algorithm simply searches 
them form this table. It is obvious, that even if the number of 
pole-pairs is small, the required memory space and the 
running time of the searching would be very large, which is 
impractical. 

Another method could be to calculate all the possible 
absolute angles corresponding to one sensor output, e.g. αi 
according to the following expression: 

      1//1 rLNppkxk iii   Nk ,,2,1   

Then calculate all the possible readouts on the other ring 
corresponding to these absolute angles by the following 
expression: 

     NLkrkX io   /mod 2  Nk ,,2,1   

where mod() means modulo division by the N sensor 
resolution. Equation (2) can be simplified to 

      NkxrrkX io 1/mod 12   Nk ,,2,1   

The remaining task is to find the actual sensor readout on 
this ring (xo) among these Xo[k] values. The index k* 
corresponding to this value identifies the ordinal number of 
the actual pole-pair on the inner ring, thus the absolute 
angular position in radians is calculated by 

        2/1 1 NppNkxi  

This method does not require large memory space, but it 
is requires relatively high amount of calculation. 

For real-time applications, a combination of the above 
two methods is proposed. One sensor output value-pair (xi, 
xo) for each pole-pair on one ring, e.g. on the inner ring has to 
be calculated off-line and stored in a table. If one of the 
values in the pair, e.g. xi is the same for all the pairs, than 
only the xo values must be stored. In this case, the number of 
the stored values is only ppi. For simplicity, the xi values can 
be those belonging to sensor 0. The stored Xo[k] values are 
illustrated on Fig. 2. 
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Figure 2.  Stored values 

The following description is illustrated on Fig. 3. 
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Figure 3.  Expanation of the measurement algorithm 

Assume that the actual sensor readout is the pair (xi, xo). 
In this case xi corresponds to the li length of the arc measured 
from the center of the actual pole-pair (with ordinal number 
yet unknown) on the inner ring. Using the r1 radius of the 
inner ring, the corresponding angle can be calculated: 

 1// rLNxii   

Then, the arc length lo can be calculated on the outer ring, 
using the radius r2: 

 2rl io   

Subtracting (in terms of modulo) this value from the 
actual measured xo value gives: 

  NLlxz ooo  /mod  

The resulting value corresponds to the xo pair of the 
previous xi = 0 value on the inner ring, thus it is located in 
the stored lookup table. 

It is obvious, that the calculation of (7) can be simplified: 

  ioo xrrxz  12 /mod  

The remaining task is to find this value in the table. The 
table index k* of the found value gives the ordinal umber of 
the actual pole-pair on the inner ring. Then, the absolute 
angular position can be calculated by 

        2/1 1 NppNkxi  

which is the same as (4). 

It should be noted, since it will be important later, that the 
values in the stored table are all different, and has a minimal 
difference between each other, which is determined by the 
sensor resolution and the number of pole-pairs on the inner 
ring is d = N / ppi. 

The benefit of this method is that only one costly 
calculation, one small-size table and one search on this table 
is required. This makes it suitable for real-time 
implementation, even on a simple 8-bit microcontroller. 

IV. MEASUREMENT ERRORS 

The algorithm described above, assumes that the all the 
conditions are ideal. Sensor outputs are deterministic and 
exactly linearly scaled to the angles. Sensors are mounted 
perfectly and magnet rings are ideally magnetized. However, 
in practice neither of the above assumptions is true. This 

means, that the off-line calculated and stored values are not 
true for an actual construction and, in worst case, the 
algorithm can become unusable. According to this, 
measurement errors have to be analyzed and compensated. 

Measurement errors come from different sources. The 
magnetization of the rings is not perfect and the magnetic 
field distribution can be deviated from the sinusoidal. 
Mounting the sensor chip in front of the rings is not exactly 
precise, i.e. radial displacement of the chip above the magnet 
can occur. In this case, the length of the arc that is measured 
by the Hall-sensors is different, i.e. the length of the pole-
pairs is deviated. In practice, there is a requirement for the 
magnetic field strength too. Naturally, the Hall-elements, the 
integrated analog front-end and analog-to-digital conversion 
also suffers from errors. In a practical case, all the above 
errors are present and combined in a different way. 
Nevertheless, they can be taken into consideration as linearity 
error between the true and the indicated position within one 
pole-pair. The nature of this type of error is illustrated on Fig. 
4. 

Another type of error, which is related only to the 
mechanical construction of the measurements system, is the 
eccentricity. In a practical case, there is a prescribed 
minimum limit for the width of the magnet rings. If the 
difference between the radiuses of the two rings is small, e.g. 
there is only one ring, in fact, with two magnetic tracks, the 
sensors cannot be mounted in line (collinearly), but have to 
be shifted in angle. If the magnet rings are mounted 
eccentrically to the axis of the rotating and this angle shift 
between the sensors is present, it introduces a linearity error, 
within one revolution of the rings. 

To compensate these errors, further investigation has to 
be done. 

x real
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Figure 4.  Linearity error 

A. Analysis and compensation of eccentricity 

Eccentricity is the one of the main error sources. The 
reason of this is the angle drift between the sensors what is 
introduced by the eccentricity. Fig 5. shows the geometry of 
an eccentric setup. In the figure point “C“ is the center of the 
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Figure 5.  Geometrical setup of the eccentric magnetic ring 

real rotation, point “A” is the center of the magnet ring, so 
line segment “e” is the eccentricity. To make the discussion 
easier, the zero angle is assigned to point “O”, the reason is 
obvious because that point is collinear with point A and B, so 
the eccentricity does not generate error at that point. To 
evaluate the error introduced by the eccentricity, the 
difference between the measured and the true rotation angle 
has to be determined. When the shaft rotates α degree the 
Sensor 1 is at point B and measures β1 degree. It is obvious 
that: 
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Sensor 2 measures δ degree and it is also rotated by θ degree 
relative to Sensor 1, but each sensor should measure α, so the 
rotation angle is subtracted from the measurement of Sensor 
2. Since there is eccentricity, the Sensor 2 measurement is not 
exactly α even if the compensation with θ is done. So Sensor 
2 measures: 
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To determine the absolute position, the relative error between 
the sensors has to be less than the above discussed limit. The 
relative error introduced by the eccentricity is: 

 21 error  

Substituting (10) and (11) into (12) gives the formula for 
relative error and the maximum of the absolute value of this 
function can be used to evaluate whether the eccentricity is in 
conformity with the requirement. Although, this approach 
answers the question, it does not say too much about the 
underlying mechanism, so further analytical discussion could 
be helpful. 

It is easy to see, that 
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Furthermore, the same is true for Sensor 2 and β2.  

In (14), the argument of the arcsin function is is small 
because sin(β) is equal maximum to 1 and the typical value 
of e/r1 is less than one hundreds in practical cases, so: 

   11
1

sin 
r

e
 

Further simplification can be made if one considers that α 
and β1 is almost the same so sinus β1 can be substituted by 
sinus α. So β can be approximately expressed as: 

   sin
1

1 r

e
 

According to (16) the measured angle differs from the real 
angle with a sinusoid, if the e/r1 ratio is small. So the error is 

     sinsin
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Using this formula the maximum of the error can be 
determined with basic trigonometric identities: 
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Equation (18) can be reformulated: 
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This means, that the maximum of the error is linear function 
of the eccentricity and the sensitivity of the error can be 
easily calculated since: 
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Consider the following practical case: 

mmemmrmmr 05.0401214 21  . 

The sensitivity of this case is 8.3357 degree/mm, so the 
maximum relative error caused by eccentricity is 0.417 
degree that is reasonably high while the eccentricity is in the 
same order of the magnet ring manufacturing precision. So 
the sensing method could be extremely sensitive to the 
eccentricity. Easy to see that r1, r2 and θ do not play a 
significant role in practical cases compared to eccentricity e. 

To decrease the effect of the eccentricity, two additional 
sensors can be used arranged opposite to each other. The 
geometrical setup of one sensor pair is shown in Fig. 6. 

The opposite sensors are placed at point B and D. Since 
the two sensors can not be placed exactly, there is a 
placement error angle ε1. The placement error angle is 
originated from the soldering and mounting precision. The 
sensor at point B according to (16) approximately measures: 
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And sensor at point D measures: 
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In (22) the possible difference between the radiuses of the 
two sensors is neglected. 

It is easy to see that the average of the two measurements 
approximate α, if angle ε1 is small. If the value of ε1 in (23) is 
zero, then β1 become equal to α. Of course this holds if the 
e/r1 ratio is small: 
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Figure 6.  Eccentricity compensation with additional sensors 

The same equations can be derived for the other sensor 
pairs, the only difference is the θ angle between the sensors 
as presented above in Fig. 6., thus 
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The error and the sensitivity of the new arrangement can be 
derived in a similar way that was discussed, so: 
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Using the mentioned practical case and if the placement 
error of the sensor IC-s are about 0.2mm, then the ε1 and ε1 
are about: 

0,0167rad0,0143rad 21  . 

So the maximum error is 0.00325 degree and the 
sensitivity is 0.0649 degree/mm. The ratio between the two 
sensitivities is more than a hundred, which means that the 
additional sensors make the above mentioned setup feasible, 
because the IC-mounting precision is better than 0.2mm. In 
general case, one should examine the conditions before 
applying additional sensors. 

B. Analysis and compensation of linearity error within a 
pole-pair 

In ideal conditions the magnetic field of a pole-pair has 
sinusoid shape and the sensors are placed without error, so its 
output is proportional to the displacement.  There is no doubt 
that these conditions never occur, hence the function between 
the displacement and the sensor reading becomes nonlinear. 
This kind of nonlinearity can be considered to be static 
nonlinearity, since it depends on the actual absolute position. 
The aim of the sensor is to measure absolute position, so this 
kind of nonlinearity should be compensated before the 
absolute position is determined. This contradiction can be 
resolved by the assumption that each pole-pair has the same 
nonlinearity. This assumption can be considered true if the 
main source of nonlinearity is other than the defective 
magnetization of the magnet ring, because the other causes 
can be attributed to geometrical misalignments that are 
constant during a whole revolution except the eccentricity. 
To compensate the nonlinearity, one can simply subtract a 
compensation value from the actual measurement. However, 



  

determining the compensation values can be challenging, 
since the angular position should be measured more precisely 
than that of the actual sensor. The next section describes a 
method what estimates the nonlinearity without using a more 
precise angular sensor. 

One can assume that if the magnetic ring rotates with a 
constant angular speed, then the angle measurement is a 
straight line against time except its nonlinearity that is 
repeatedly occurs in every whole revolution. As a 
consequence of the assumption that each pole-pair indicates 
the same nonlinearity, the nonlinearity can be measured 
periodically in each pole-pair. The corresponding algorithm 
is the following. 

First step is data acquiring while the magnetic ring is 
rotating with constant angular speed. To get the nonlinearity, 
the linear part of the angle measurement should be 
eliminated; this means linear trend removal. The problem is 
that removing the linear trend is not ideal, since the angular 
speed is changing, hence a higher order polynomial trend 
should be subtracted from the angle measurement. 

After the trend is removed, the periodic occurrence of the 
nonlinearities can become visible. Since only one 
compensation function can be used, it is a good idea to apply 
the average of the periods. Since the angular speed is not 
exactly constant, the periods can have different length, hence 
they should be resampled using interpolation. Fig. 7. shows 
the periods that are plotted onto each other. 

It is clear that a simple average involves some outliers, 
which should be avoided. Practically, the main source of 
outliers is the relatively rapid change in the angular speed, so 
omitting these periods gives better result. To determine the 
average without the outliers the following algorithm is used: 

1. average every period 

2. compare each period with the average 

3. if the actual period is “less similar” to the 
average concerning certain threshold, omit it 

4. if there is no omitted period, then finish the 
algorithm, if there is, start from Step 1 but use 
only the remaining periods 
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Figure 7.  Series of pole-pair nonlinearities 

Similarity is determined by 


ff

ff
S

i

i






1
100  

where f  means the average of the periods, if  means the 

actual period and f  is the mean value of f . Fig. 8. shows 
the result of the averaging algorithm. 
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Figure 8.  Period selection for average nonlinearity determination 

The green periods remained at the end of the algorithm 
while the others are omitted. 

It is very important to validate the result because the 
algorithm can converge to a bad result.  

C. Modification of the absolute angle calculation 
algorithm 

To make the absolute angular position calculation 
algorithm usable in a practical case, some modifications have 
to be done. The proposed modified algorithm is given as 
follows. 

Three lookup tables must be calculated based upon prior 
measurements. The rings have to be rotated, sensor values 
have to be acquired and the following calculations have to be 
performed. 

For the compensation of the linearity error within one 
pole-pair, the compensation functions for each ring has to be 
calculated off-line, and stored in two lookup tables. Then, the 
on-line algorithm has to simply subtract the value addressed 
from the table by the actual measurement from the measured 
value. 

For the compensation of the linearity error caused by the 
eccentricity, the zo values have to be calculated based upon 
the acquired values. Due to the errors, these values will vary 
from position to position, but spread around an average for 
each pole-pair. These average values have to be calculated 
off-line and to be stored in a lookup table. The on-line 
algorithm has to search for the value in the table that is the 
nearest to the actual zo value. The k* index of this value is the 
ordinal number of the actual pole-pair. 

As it was mentioned above, the values stored in the 
lookup table has a minimal difference between each other. 
The algorithm can only be usable, if the measurement errors 



  

are less than the half of this difference. In this case, after the 
search in the table, the value found, nearest to the actual zo 
value is always correct. In the opposite case, the actual zo 
value can be close to an incorrect table value, hence the 
found k* index is erroneous, and the algorithm gives a false 
result. In Fig. 9.a., a part of the acquired zo values that are 
used in the off-line table calculation are depicted. In an ideal 
case, these curves would be straight lines, spaced in equal 
distances. As it can be seen on the figure, at some rotation 
angle the curves intersect each other, hence the closest table 
value could not be found unambiguously. The main source of 
the depicted effect is the linearity error caused by the 
eccentricity. 

Applying the method that uses two sensors on each ring 
compensates this error. Thus the algorithm requires further 
modifications. The two pair of sensors has to be read, and the 
pairs of values have to be averaged. Then, the off-line table 
calculation and the on-line reconstruction algorithm have to 
be evaluated on the basis of these averaged values. A part of 
the zo values based upon the averaged measurements is 
depicted on Fig. 9.b. As it can be seen, the curves do not 
intersect each other, hence the closest value can be found 
unambiguously, provided that the total measurement error is 
less than the half of the distance of the two curves. 
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Figure 9.  Values for table creation a) uncompensated b) compensated 

By using this solution, there are no further excessive and 
costly requirements for the mechanical construction. 

V. EXPERIMENTAL RESULTS 

The measurement method was developed and tested on a 
practical construction, which is intended to be used as an 
electric drive using an outer rotor type motor. The magnetic 
ring has been designed as a single ferrite ring, with two 
magnetic tracks. The number of the pole-pair is 37 and 45 on 
the inner and outer track, respectively. The pole-pair length is 
2mm on each track and the width of the tracks was selected 

to be nearly equal. The sensor ICs, which has a resolution of 
12-bit has been mounted on a printed circuit board together 
with an 8-bit microcontroller. There are some mechanical 
components designed to hold the board and the magnet ring 
concentrically. The holder of the ring is fixed to the base by 
bearings and the whole structure is mounted on the fixed 
shaft of the motor. The holder of the magnet and the rotor are 
attached by screws. Raw sensor readouts during rotation are 
depicted on the upper side of Fig. 10. On the middle of the 
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Figure 10.  Measurements and reconstructed pole-pair ordinal number 

figure and reconstructed pole-pair ordinal number are 
depicted without linearity and eccentricity compensation. As 
it can be seen, the results are erroneous. The lower side of 
Fig. 10. depicts the result using the compensation methods. 

VI. CONCLUSION 

Off-axis absolute rotary position sensors play significant 
role in application fields where accurate and reliable absolute 
angle measurement is required, e.g. in precisely controlling 
electric drives associated with electric vehicles. In this paper 
a solution of using magnetic position sensing elements in 
combination with two differently magnetized ferromagnetic 
rings has been presented. By assuming a specific setup the 
algorithm of determining absolute position has been given, as 
well by analyzing the measurement errors, a compensation 
scheme has been elaborated. By using this scheme the 
linearity error of the sensor setup can significantly be reduced 
without applying any expensive equipment. 
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