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Abstract

Based on the structure of process models a hierarchically structured state-
space model has been proposed for process networks with controlled mass
convection and constant physico-chemical properties. Using the theory of
cascade-connected nonlinear systems and the properties of Metzler and Hur-
witz matrices it is shown that process systems with controlled mass convec-
tion and without sources or with stabilizing linear source terms are globally
asymptotically stable. The hierarchically structured model gives rise to a
distributed controller structure that is in agreement with the traditional hi-
erarchical process control system structure where local controllers are used
for mass inventory control and coordinating controllers are used for optimiz-
ing the system dynamics. The proposed distributed controller is illustrated
on a simple non-isotherm jacketed chemical reactor.

Keywords: process control, process modeling, stability, plant wide control

1. Introduction

It is widely known that process systems are highly nonlinear and form
complex networks. The complex dynamics of a process network is caused par-
tially by the complex dynamic behavior of the component subsystems, but
also by the effect of complex interactions. In order to cope with this complex
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nonlinear dynamics two principally different controller design approaches ex-
ist: the centralized and decentralized ones. The latter is most widely used in
complex process plants because it offers the possibility to handle nonlineari-
ties locally, i.e. controlling the operating units, for example, and then handle
the interactions plant-wide. One of the key critical steps in this approach is
to decompose the process plant and/or its control system into hierarchical
and decentralized structures.

The plantwide control problem that deals with designing a complex dis-
tributed controller for a given complex process plant is widely investigated in
process control and forms a traditional area of it. The first approaches were
based on linear or linearized dynamic models and their properties (such as
steady-state gains), see e.g. [1] or [2], where graph-theoretic approaches could
be applied for efficient solution [3]. Applying the theory of linear systems,
systematic approaches have been developed for complex large scale systems
in general (see e.g. [4]), and for process plants in particular [5], [6]. The
performance limitations in decentralized control were also investigated in the
linear(ized) model case [7].

The above mentioned systematic methods include heuristic elements in
determining the controller structure, i.e. the matching of controlled and ma-
nipulated variables in the plant ([5], [6]), and they have identified controller
layers that should form a hierarchy. One of such heuristics is to regulate the
inventories, most notably the masses in each operating unit using the lowest
controller layer of the hierarchy [8].

Although the general modern theory of possibly nonlinear, hierarchical,
multilevel and distributed systems and control is well developed (see e.g. [9]
for an early, and [10] for a recent reference), there are powerful and specially
developed techniques for nonlinear process systems [11], too.

More recently, modern robust control techniques have been proposed for
distributed control of plantwide chemical processes [12], with an attempt to
extend it to the nonlinear case [13] using the notion of dissipativity [14]. This
approach was further extended to the decentralized case using a Hamilton-
Jacobi equation approach [15]. Powerful distributed and hierarchical variants
of the popular model predictive control (MPC) have also been developed and
applied to complex process plants, see [10] for a recent review.

Utilizing the engineering insight into the physics and chemistry of the sys-
tem, the thermodynamic passivity approach [16] as a special control approach
has been proposed for nonlinear process systems that is based on controlling
its inventories [17]. The controller design method has been combined with
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passivity [18], too. In addition to the material and energy connections in
the process network, information and communication interconnections of the
system and its control system are also considered in a framework integrating
physics communication and computation in [19]. Furthermore, the inventory
control scheme was also extended with local nonlinear controllers (see [20]
and [21]) to construct stabilizing controllers to arbitrary steady-state points.
Further improvements of the physically motivated nonlinear controller de-
sign have been achieved by using passivity [22], control Lyapunov [23] and
Hamiltonian approaches [24, 25, 26] to nonlinear process systems.

Although the above physically motivated nonlinear control approaches
exploit successfully the properties of nonlinear process systems, but the hi-
erarchical structure of process models has not been fully utilized in process
control structure design. This inherent hierarchy of dynamic process models
seems useful to apply, because powerful approaches in systems and control
theory (for example the contraction theory approach [27] or the theory of in-
terconnected nonlinear systems [28]) have been proposed for stability analysis
for hierarchically decomposed systems.

A critical and still generally open problem in applying the powerful hi-
erarchical decentralized control techniques is how to decompose a complex
nonlinear plant into subsystems [10]. This is traditionally performed using
the process layout, where the operating units form the subsystems, but then
the complex interactions, the material and energy recycles, for example, are
difficult to handle.

Aim and problem statement. The main aim of this paper is to propose a
decomposition that is based on the hierarchical structure of dynamic pro-
cess models based on first engineering principles and use this for designing
decentralized control systems to stabilize the subsystems and maintain sta-
ble performance as these subsystems are integrated into the complex process
system.

The first paper in this direction [29] investigated the simplest case of pro-
cess systems with constant holdup in each balance volume to show that such
systems with constant pressure and no source are structurally asymptoti-
cally stable. The restriction of constant mass holdup, however, is a severe
limitation which does not hold in almost any practical situation.

The above results are extended in this paper for the case of process sys-
tems with time-varying regulated mass holdup and stabilizing sources. For
analyzing the stability of process systems in this extended case, the dynamic
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model of the system based on first engineering principles will be brought to
a nonlinear cascade-connected state-space model form [28].

The usual hierarchical structure of process models and that of process
control systems is considered in this paper, where low level controllers provide
regulated mass holdup in each balance volume and the high level controller(s)
are used for controlling the other process variables, such as temperatures and
concentrations. This structure enables to partition the system model into a
controlled mass subsystem that acts as a "driving subsystem" to the other
part that is the "driven subsystem" [28].

With the above model structure, the stabilizing controller design will be
performed by using local distributed controllers acting on the driven subsys-
tem.

Basic assumptions. The starting point of the analysis is the general form of
the state equation of a lumped process system originated from the differential
conservation balances of the conserved extensive quantities over perfectly
stirred regions or balance volumes. A perfectly stirred region is the smallest
elementary part of the process system over which conservation balances are
constructed. The following assumptions are made about the regions:

A1 Physico-chemical properties, like heat capacity, density, and heat trans-
fer coefficients are constant.

A2 The pressure is assumed to be constant.

The above two assumptions imply that only incompressible liquid phases can
be present in the regions.

The paper is organized as follows. We start with the lumped dynamic
model of the mass subsystem of a process system in the next section. There-
after we develop the model of the energy and component mass subsystems in
section 3. The stability analysis of the hierarchically decomposed state-space
model is given in section 4. The distributed controller structure driven by
the hierachically decomposed model structure is described in section 5 illus-
trated by a simple case study of a jacketed CSTR. Finally conclusions are
drawn.

2. The mass subsystem

Following the philosophy and the incremental approach of building a pro-
cess model [31], we distinguish two subsystems in a process system. The

4



basic subsystem is the mass subsystem upon which the energy and compo-
nent mass subsystem is built.

2.1. The mass conservation balance equations

The overall mass balance of the perfectly stirred region j is given by the
equation

dm(j)

dt
= v

(j)
in − v

(j)
out , j = 1, . . . , C (1)

where v
(j)
in and v

(j)
out are the mass in- and outflow rates respectively and C is

the number of the regions.
Note that a definite flow direction (i.e. in- or out to/from a balance vol-

ume) is associated to any mass flow, i.e. v
(j)
in ≥ 0 and v

(j)
out ≥ 0. This implies,

that two separate flows are defined to pipes where flow in either direction is
allowed.

As the overall mass is conserved, the balance (1) has no source term.
As we only consider process systems with incompressible fluid phases under
assumptions A1-A2, only the convection of the overall mass is present in the
conservation balance equations.

Convective flows. Like in any process network, the regions are connected by
flows, that can be convective flows or transfer flows. In order to describe
the general case let us assume that the outlet flow of region j is divided into
parts described by ratios α

(j)
ℓ satisfying the equation

C
∑

ℓ=0

α
(j)
ℓ = 1 , j = 0, . . . , C (2)

where α
(ℓ)
j is the ratio of the outlet flow v(ℓ) of region ℓ flowing into region j.

Fig. 1 illustrates the notation. By using flows to and from the environment
which is described by defining a pseudo-region with index 0 we obtain

v
(j)
in =

C
∑

ℓ=0

α
(ℓ)
j v

(ℓ)
out , j = 0, . . . , C (3)

The ratios described above are now used to define a convection ratio
matrix

Cconv =





−(1− α
(1)
1 ) α

(2)
1 ... α

(C)
1

... ... ... ...

α
(1)
C

α
(2)
C

... −(1 − α
(C)
C

)



 (4)
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Figure 1: The convection network

Only the ratios belonging to the internal flows (that is not from the environ-
ment) are included.

Well-connected convection networks. In order to be able to ensure that one
can regulate the overall mass m(j) of every region at a given strictly positive
value by manipulating the flow rates, we assume that

A3 every region has at least one physical inflow and one outflow either
from/to another region or the environment.

Such a convection network will be called well-connected. This implies that
there is no individual sink or source balance volume in the network.

It is important to note that Eq. (2) guarantees that Cconv is a so-called
compartmental matrix (see the exact definition below). This fact allows
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us to establish simple conditions for the asymptotic stability of the mass
subsystem.

Definition 1. A real square matrix F = {fij}ni,j=1 ∈ R
n×n is said to be a

compartmental matrix if all of its off-diagonal elements are non-negative and
all of its column-sums are non-positive, i.e.

fij ≥ 0 i, j = 1, . . . , n, i 6= j (5)
n

∑

i=1

fij ≤ 0, j = 1, . . . , n (6)

We remark that a compartmental matrix is a special case of a Metzler-matrix
having the property that its off-diagonal elements are non-negative. It is
known that a linear autonomous system of the form ẋ = Ax is positive (i.e.
the non-negative orthant is invariant for the dynamics) if and only if A is a
Metzler-matrix [32]. It is also clear that compartmental matrices belong to
the set of column diagonally dominant matrices characterized by the property
that the absolute value of the diagonal element in any column is larger than
or equal to the sum of the absolute values of the off-diagonal elements in that
column [33].

It is straightforward to associate a directed graph to the mass-convection
subsystem in the following way: let the nodes (vertices) of the graph be the
perfectly stirred regions (not including the environment). There is a directed
edge from node i to node j if and only if there is a mass flow from region i to
region j. A strongly connected component of a directed graph is a maximal
set of vertices in which there is a directed path from any one vertex to any
other vertex in the set [34]. (We remark that a strongly connected component
may consist of only one vertex, since any vertex is trivially connected to
itself.) A trap is a node or set of nodes in the directed graph from which
there are no directed edges towards the environment nor to other nodes not
in the set. A trap is called simple if it does not strictly contain a trap [35].
In other words, a simple trap is a strongly connected component from which
there is no outgoing directed edge, i.e. no outflow. Physically, a trap means
a sink subnetwork in the convection network from where there is no outflow.
Under assumption A3, only such convection networks are considered here
that cannot contain any simple trap consisting of a single balance volume.

The eigenvalues and thus the (asymptotic) stability of the mass-convection
system is strongly related to the directed graph structure of the convection
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network. The following important properties of compartmental matrices are
taken and adapted from [35, 36, 37], where more details can be found.

(C1) The eigenvalues of compartmental matrices are either zero or they have
negative real parts. This trivially implies that compartmental matrices
cannot have purely imaginary eigenvalues or eigenvalues with positive
real parts.

(C2) Let us suppose that the mass-convection network is such that in its asso-
ciated directed graph, there exists a directed path between any distinct
pair of nodes (i.e. the directed graph of the network is strongly con-
nected). Then 0 is an eigenvalue of Cconv if and only if

∑n

i=1[Cconv]ij = 0
for j = 1, . . . , n.

(C3) Zero is an eigenvalue of Cconv of multiplicity m if and only if the as-
sociated directed graph contains m simple traps. In such a case, the
eigenvectors corresponding to the zero eigenvalues are linearly indepen-
dent.

2.2. Controlled mass convection network

In order to make the overall mass subsystem asymptotically stable, we
firstly eliminate any traps in the mass convection subsystem as a part of the
control structure. This is done by adding an outflow to the environment from
at least one balance volume of each simple trap of the original convection
network. (In practice a suitable outflow can be realized by allowing flows
in either directions in the same pipe.) By doing this, from now on we can
assume the following based on (C3):

A4 Each eigenvalue of Cconv has strictly negative real part (i.e. Cconv is a
Hurwitz matrix ).

Moreover, let us apply a full state feedback controller in the form of

v
(j)
out = κ(j)m(j) + v

(j)
ref , κ(j) > 0 (7)

that is a set of local controllers that stabilize the mass inventory of each region
using the manipulated variables v

(j)
out. This way of controlling the masses in

each region can be regarded as a special version of mass inventory control
(see e.g. [20]).
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With these outlet mass flows the inlet flow to region j can be written as
follows:

v
(j)
in =

C
∑

ℓ=1

α
(ℓ)
j

(

κ(ℓ)m(ℓ) + v
(ℓ)
ref

)

+ α
(0)
j v

(0)
out , j = 1, . . . , C (8)

where
α
(0)
j v

(0)
out = v

(j)
IN

is the flow from the environment.
Considering Eq. (8) with Eq. (1) gives

dm(j)

dt
=

C
∑

ℓ=1

α
(ℓ)
j

(

κ(ℓ)m(ℓ) + v
(ℓ)
ref

)

−κ(j)m(j)−v
(j)
ref+v

(j)
IN , j = 1, . . . , C (9)

that is the mass balance of the controlled mass subsystem.
We now define the mass, and the mass in- and out-flow vectors

M = [ m(1) . . . m(C)]T , VIN = [ v
(1)
IN . . . v

(C)
IN ]

T (10)

VOUT = [ v
(1)
out . . . v

(C)
out ]

T

with K = diag{κ(j) | j = 1, . . . , C} and with a reference signal vector for the

overall masses Vref = [v
(j)
ref . . . v

(C)
ref ]

T .
With the above vectors and matrices Eq. (7) can be written as

VOUT = KM + Vref (11)

Using matrix-vector formulation we can transform the mass conservation
equation (9) into a linear time-invariant state equation as follows:

dM

dt
= CconvKM + CconvVref + VIN (12)

The usual way of controlling the mass holdups in every balance volume
of a process system is to set suitable reference values for the system mass
inlet flowrates V ∗

IN and suitable setpoints Vref for the controllers such that a
positive steady-state reference value M∗ is obtained. The reference values for
the masses in each balance volume can be obtained by solving the steady-
state version of Eq. (12) for M∗ > 0:

0 = CconvKM∗ + CconvVref + V ∗

IN (13)

This way one ensures m(j) > 0, i.e. there is no empty holdup in the system.
This implies that v

(j)
out is positive, as well.
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Definition 2. A mass convection network with the linear time-invariant
state equation (12) and with a positive definite, diagonal, state feedback ma-
trix K is called a controlled mass convection network.

As the coefficient matrices Cconv and K are constant matrices in the state
equations (12), the overall mass subsystem of a process systems is a linear
time-invariant (LTI) system.

Possible input variables. Eq. (12) has only one set of possible input variables
VIN , because Vref is used to set a positive reference value for each mass
holdup. These variables, however, act usually as disturbances, but they can
also be manipulated as, for example, external cooling mass flow rates (see
later in subsection 5.2).

2.3. Stability of the controlled mass convection network

Using the above dynamic model and algebraic results, the following state-
ment about the stability of controlled mass convection network can be stated.

Lemma 1. The unique positive steady-state point M∗ of a well-connected
controlled mass convection network described by the dynamic model (12) is
asymptotically stable. Moreover, the solutions of the state equation (12) re-
main positive and bounded for any positive initial condition.

Proof. It is easy to see that the state matrix CconvK in Eq. (12) is also a
compartmental matrix, since the columns of Cconv are scaled by positive con-
stants. Moreover, the unweighted directed graph structures corresponding
to Cconv and CconvK are identical. Thus, it follows from property (C3) and
A4 that the controlled mass convection network is asymptotically stable.

Finally, using known results from the theory of positive systems [32, 38],
the positivity of the solutions of (12) can be guaranteed if the elements of
CconvVref + VIN are nonnegative. �

3. The energy and component mass subsystems

Under the assumptions stated in the Introduction, the differential balance
equation of a conserved, extensive quantity φ for a perfectly stirred region j
takes the form [31]:

dφ(j)

dt
= φ

(j)
in − φ

(j)
out + q

(j)
φ,transfer + q

(j)
φ,source (14)
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The first two terms account for the in- and outflow respectively, q
(j)
φ,transfer

is the transfer and q
(j)
φ,source is the source term. The transfer term is used

to describe heat transfer or a lumped version of diffusion [31], for example,
while the source term can refer to e.g. the chemical reactions.

3.1. Process variables

The conserved extensive quantities φ(j) of region j are given by the vector

φ(j) = [ E(j), (m
(j)
k , k = 1, . . . , K − 1) ]T (15)

where E(j) is the internal energy and m
(j)
k is the component mass of the

kth component with K being the number of components in the region. The
related engineering driving force variables or potentials are

P (j) = [ T (j), (c
(j)
k , k = 1, . . . , K − 1) ]T (16)

where T (j) is the temperature and c
(j)
k is the concentration of the kth com-

ponent.
Now we combine the vectors of the conserved extensive quantities (15)

and the corresponding potentials (16) so that

φ = [(φ(1))T . . . (φ(C))T ]T , P = [(P (1))T . . . (P (C))T ]T

With these definitions and Assumption A1. we find that the relationship
between conserved extensive quantities and the potentials is linear [29], so
that

φ(j) = Q(j)P (j) (17)

where Q(j) is a positive definite diagonal matrix, i.e. Q(j) > 0 in the form

Q(j) =









c
(j)
P m(j) 0 . . . 0
0 m(j) 0 . . . 0
. . . . . . . . . . . .
0 0 . . . m(j)









= m(j)θ(j) (18)

θ(j) =









c
(j)
P 0 . . . 0
0 1 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 1









(19)
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where c
(j)
P is the specific heat of the material in region j and θ(j) is a constant

coefficient matrix.
Let us define a positive definite diagonal matrix Q block-diagonally from

the individual matrices Q(j) and similarly a positive definite constant matrix
θ from the θ(j)-s so that

Q =









Q(1) 0 . . . 0
0 Q(2) 0 . . . 0
. . . . . . . . . . . .
0 0 . . . Q(C)









, θ =









θ(1) 0 . . . 0
0 θ(2) 0 . . . 0
. . . . . . . . . . . .
0 0 . . . θ(C)









(20)

The positive definiteness of Q(M) holds under the condition, that M > 0 is
assumed (element-wise), as it is seen from the definition of the mass vector
M in (10) and that of the matrix Q in (20) and (18). This follows since we
assume positive mass holdup in each balance volume.

Using the above matrices we can write Eq. (17) in vector form:

φ = Q(M) · P =
(

diag{E(K) ⊗M}
)

θ · P (21)

where ⊗ represents the Kronecker product and E(K) is a K-dimensional
vector with all of its entries being 1. We recall that the Kronecker product
of two matrices A and B is given by

A⊗ B =









a11B a12B ... a1nB
a21B a22B ... a2nB
... ... ... ...

am1B am2B ... amnB









3.2. The intensive variable form of the balance equations

The transfer and the source terms in the conservation balance equations
depend on the driving force variables. Therefore the intensive variable form of
the conservation balance equations will be used for the analysis and controller
design. This form is obtained by using Eqs. (17) and (18) in Eq. (14) and

substituting the right-hand side of Eq. (9) for the term dm(j)

dt
. Thus the

following intensive variable form is obtained:

m(j)θ(j)
dP (j)

dt
= q(j)conv + q

(j)
transfer + q(j)source , j = 1, . . . , C (22)
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The transfer term. The transfer term q
(j)
φ,transfer in the balance equations (14)

has the following general linear form:

q
(j)
transfer =

C
∑

ℓ=1

q
(j,ℓ)
transfer =

C
∑

ℓ=1

L(j,ℓ)
(

P (ℓ) − P (j)
)

(23)

The transfer coefficient matrices L(j,ℓ) ∈ R
K×K are constant under Assump-

tion 1. The driving force is given by the difference between P (j) and P (ℓ)

[31]. Examples include the Fourier and Fick laws for heat conduction and
diffusion.

The transfer term (23) is a special case of the Onsager relationship in irre-
versible thermodynamics when one neglects the cross-effects, and assumes an
ideal, monotonous dependence of the thermodynamic driving force variables
on the potentials [29]. This theory shows that the matrices L(j,ℓ) are positive
definite and symmetric.

Collecting all the transfer terms in the conservation balances into a single
vector

qtransfer = [ (q
(1)
transfer)

T . . . (q
(C)
transfer)

T ]T

we can write the overall transfer rate relation

qtransfer = L P , L < 0 , LT = L (24)

where the transfer matrix L is negative definite and symmetric in the follow-
ing form:

L =
1

2

C
∑

j=1

C
∑

ℓ=1

(

I(j,ℓ) ⊗ L(j,ℓ)
)

, j 6= ℓ (25)

In the above equation I(j,ℓ) is a negative semi-definite C × C dimensional
matrix where

I
(j,ℓ)
jj = I

(j,ℓ)
ℓℓ = −1 ,

(

I
(j,ℓ)
jℓ = I

(j,ℓ)
ℓj = +1, ℓ 6= j

)

(26)

and zero otherwise. Here we used the property that each matrix
(

I(j,ℓ) ⊗ L(j,ℓ)
)

in the sum (25) is negative semi-definite and symmetric therefore their sum
L is also negative semi-definite and symmetric. Moreover, it is easy to see
that L is such a compartmental matrix where both the column-sums and
row-sums are zero.
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The convective term. The intensive form of the convective term q
(j,ℓ)
k,conv for

component k entering region j from region ℓ is

α
(ℓ)
j v

(ℓ)
out

(

θ
(ℓ)
kkP

(ℓ)
k − θ

(j)
kkP

(j)
k

)

where this form is a consequence of substituting the right-hand side of Eq.
(9) for the term dm(j)

dt
into the conservation balance equations when forming

their intensive variable form (see [31] Chapter 5. for details).
As we have seen in section 2.1 before, the inlet of any of the regions

is composed of the outlet of all the other regions as described in Eq. (3).
Therefore, the inlet mass flow of region j can be computed by Eq. (8) in
case of a controlled mass convection network. Similarly, the convective term
q
(j)
k,conv of a conserved extensive quantity φ

(j)
k in region j can also be written

as a sum using the intensive form of the partial inlet convective flows q
(j,ℓ)
k,conv

above so that

q
(j)
k,conv =

C
∑

ℓ=1

α
(ℓ)
j v

(ℓ)
out

(

θ
(ℓ)
kkP

(ℓ)
k − θ

(j)
kk P

(j)
k

)

+ v
(j)
IN

(

θ
(j)
IN,kkP

(j)
IN,k − θ

(j)
kkP

(j)
k

)

=

=

C
∑

ℓ=1

α
(ℓ)
j

(

κ(ℓ)m(ℓ) + v
(ℓ)
ref

)(

θ
(ℓ)
kkP

(ℓ)
k − θ

(j)
kkP

(j)
k

)

+ v
(j)
IN

(

θ
(j)
IN,kkP

(j)
IN,k − θ

(j)
kk P

(j)
k

)

where θ
(j)
IN,kk is the coefficient for the driving force variable P

(j)
IN,k at the inlet

from the environment to region j.
In order to develop a compact matrix-vector form of the convective term

suitable for stability analysis, we introduce the vector variables describing
the conditions at the inlet of each of the regions

PIN = [ P
(1)
IN,1 . . . P

(1)
IN,K; . . . ;P

(C)
IN,1 . . . P

(C)
IN,K ]T

and
θIN = diag{ θ

(1)
IN,11 . . . θ

(1)
IN,KK ; . . . ; θ

(C)
IN,11 . . . θ

(C)
IN,KK }

With these vectors and matrices we arrive at the following form of the con-
vective term:

qconv = qconvt + VIN · (θINPIN − θP )

where
VIN = diag{E(K) ⊗ VIN}
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is a diagonal matrix with positive elements, and

q(j)conv = [ q
(j)
1,conv . . . q

(j)
K,conv ]T , qconv = [ (q(1)conv)

T . . . (q(C)conv)
T ]T

q
(j)
convt = [ q

(j)
convt,1 . . . q

(j)
convt,K ]T , qconvt = [ (q

(1)
convt)

T . . . (q
(C)
convt)

T ]T

with

q
(j)
convt,k =

C
∑

ℓ=1

α
(ℓ)
j v

(ℓ)
out

(

θ
(ℓ)
kkP

(ℓ)
k − θ

(j)
kk P

(j)
k

)

(27)

being the convective term that is in a similar form to the transfer terms.
The next step is to observe the similarity of Eq. (27) above with the

transfer rate equation (23). In the case of q
(j)
convt the driving force becomes

(

θ(ℓ)P (ℓ) − θ(j)P (j)
)

and the coefficient values are now dependent on the

masses m(ℓ) in the regions through v
(ℓ)
out. These coefficients can be arranged

to a diagonal positive semi-definite matrix:

N (ℓ,j)(M) = α
(ℓ)
j v

(ℓ)
out · I

(K)

where I(K) is a unit matrix of dimension K ×K.
The overall transfer-analog convective term for the whole system is now

in the form:
qconvt = N (M) θP , N ≤ 0 (28)

where the convection matrix N (M) is negative semi-definite:

N (M) =
C

∑

j=1

C
∑

ℓ=1

(

U (ℓ,j) ⊗N (ℓ,j)
)

, j 6= ℓ (29)

with U (ℓ,j) being a negative semi-definite C × C dimensional matrix where

U
(ℓ,j)
jj = −1 ,

(

U
(ℓ,j)
jℓ = +1, j 6= ℓ

)

(30)

and zero otherwise. For j 6= ℓ, each Kronecker product in the sum (29), is a
Metzler matrix with zero row sums. Therefore, N T (M) is a compartmental
matrix for any elementwise positive M .

With the above notations the convection term takes the following compact
matrix-vector form:

qconv = N (M) · θP + VIN · (θINPIN − θP ) (31)
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Now we can put together the compact matrix-vector form of the conser-
vation balances for energy and component masses in intensive form, where
all the terms depend explicitly on the driving force variables P :

Q(M)
dP

dt
= N (M) · θP + VIN · (θINPIN − θP ) + L · P + qsource(P ) (32)

4. Stability of the hierarchically decomposed state-space model

In this section we show that the centered conservation balances together
with the centered mass balance equations form a hierarchical combination of
a linear time-invariant and a nonlinear set of state equations. The asymp-
totic stability analysis uses this hierarchy to demonstrate the stability of the
system with controlled mass convection network.

For this purpose we unite all the conservation balance equations for overall
masses and the other conserved quantities and form a hierarchically arranged
cascade-connected set of nonlinear state equations [28].

4.1. The compact centered conservation balance equations

A deviation variable Y with its steady-state (constant) reference value
Y ∗ is defined as follows:

Y = Y − Y ∗

Centered mass conservation balances. The centered version of the mass bal-
ance equation (12) is obtained by substituting the deviation system variables,
i.e. the deviation masses and mass flow rates into the balance to obtain:

dM

dt
= CconvKM + V IN (33)

where the steady-state reference values are obtained by solving Eq. (13).

Centered energy and component mass conservation balances. The steady-
state reference value P ∗ of the driving force variables is determined by choos-
ing a reference value P ∗

IN for them at the inlet, and the reference value of the
inlet mass flowrates V∗

IN used for the centered version of the mass balances
by solving

0 = N (M) · θP ∗ + V∗

IN · (θINP
∗

IN − θP ∗) + L · P ∗ + qsource(P
∗)

for P ∗.
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It is important to note that the solution of the above equation may not
be unique caused by the nonlinearity in the source term qsource(P

∗), so more
than one steady-state reference value P ∗ can be obtained.

Then the centered compact intensive form of the conservation balance
equations is as follows:

Q(M)
dP

dt
= N (M) · θP + VIN · θINP IN − VIN · θINP

∗

IN − VIN · θP + VIN · θP ∗

+L · P + qsource(P ) (34)

4.2. The hierarchically decomposed state-space equations

Here we explore the special structure of the compact centered conser-
vation balance equations (33) and (34) and show that they form a special
hierarchy.

Lemma 2. Assume zero deviation inputs

VIN = 0 , P IN = 0 (35)

for the centered conservation balance equations (33) and (34). Then these
equations form a cascade-connected nonlinear system [28] with the equilib-
rium point (0, 0), i.e. with M = M∗ and P = P ∗.

Proof. By assuming zero deviation inputs in (35), we set the variables VIN

and PIN to their reference values, i.e. VIN = V∗

IN and P ∗

IN .
Joining the centered overall mass balance equations (33) and that of the

conservation balances (34) with assuming zero deviation input results in the
coupled dynamical system

Ṁ = CconvKM (36)

Ṗ = Q−1(M)
(

N (M) · θP − V∗

IN · θP + LP + qsource(P )
)

(37)

The overall mass balance equations do not depend on the other conservation
balance equations so the equation above clearly forms a cascade-connected
hierarchy

dz
dt

= g(z)
dx
dt

= f(x, z)
(38)

with z = M and x = P . �
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4.3. Stability analysis of the hierarchical system equations

In this sub-section, the stability of the cascade system (36)-(37) will be
studied using the properties of stable Metzler matrices and the theory of
linear time-varying systems.

4.3.1. The source-free case

Let us first consider the case when no source term is present, i.e. qsource(P ) =
0 in (37). This corresponds to the case where there are no chemical reactions
in the system. It is clear from (36)-(37) and (38) that (x, z) = (0, 0) is an
equilibrium point of the source-free system. For examining the stability of
this equilibrium point, we will use the following relevant results from [28].

Theorem 1 (Corollary 10.3.2 in [28]). Consider the system (38). Sup-
pose the equilibrium x = 0 of ẋ = f(x, 0) is locally asymptotically stable and
the equilibrium z = 0 of ż = g(z) is locally asymptotically stable. Then, the
equilibrium (x, z) = (0, 0) of (38) is locally asymptotically stable.

Theorem 2 (Corollary 10.3.3 in [28]). Consider the system (38). Sup-
pose the equilibrium x = 0 of ẋ = f(x, 0) is globally asymptotically stable
and the equilibrium z = 0 of ż = g(z) is globally asymptotically stable. Sup-
pose the integral curves of the composite system are defined for all t ≥ 0 and
bounded. Then, the equilibrium (x, z) = (0, 0) of (38) is globally asymptoti-
cally stable.

It was shown previously that CconvK is a Hurwitz matrix, therefore (36) is
a globally asymptotically stable linear time-invariant system. For M = M∗

and zero source term, (37) can be written as

Ṗ =Q−1(M∗) (A1 + A2)P (39)

where

A1 = N (M∗) · θ − γV∗

IN · θ (40)

A2 = L − (1− γ)V∗

IN · θ (41)

with 0 < γ < 1.
We will use the following additional notions. A quadratic matrix A ∈

R
n×n is called diagonally stable if there exists a positive definite diagonal

solution R for the corresponding Lyapunov equation, i.e. ATR + RA is
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negative definite for a positive definite diagonal R matrix. A matrix A ∈
R

n×n is called D-stable if the product DA is Hurwitz stable for any n × n
positive definite diagonal matrix D. The following properties of the above
mentioned matrices will be used.

(P1) Hurwitz stable Metzler matrices are diagonally stable [39].

(P2) Diagonally stable matrices are D-stable [40].

(P3) Let H1, H2 ∈ R
n×n be Metzler and Hurwitz. Then H1+δH2 is Hurwitz

for all δ > 0 if and only if H1 + δH2 is non-singular for all δ > 0 [41].

Now we are ready to state the results on the local asymptotic stability of the
source-free case.

Theorem 3. Consider a hierarchically decomposed state-space model of a
process system with no source term that obeys assumptions A1-A4. Further
assume that there exists 0 < γ < 1 such that A1 and A2 in (40)-(41) are of
full rank, and A1+A2 is of full rank, too. Then, the equilibrium point M = 0,
P = 0 of the system (37)-(36) with qsource(P ) = 0 is locally asymptotically
stable.

Proof. N T (M∗) is compartmental matrix with zero column sums, therefore,
(N (M∗)− γV∗

IN )
T is a compartmental matrix, too, that is of full rank. Con-

sequently, N (M∗) − γV∗

IN is a Hurwitz Metzler matrix (see property (C1)
in sub-section 2.1) that is D-stable by (P1) and (P2) (and it’s transpose is
D-stable, too). Therefore, A1 is also a Hurwitz Metzler matrix. A similar
argument applies to A2: L is both row and column conservation compart-
mental matrix and therefore A2 is a Hurwitz-stable Metzler matrix, since it
is of full rank. Using (P3), we can conclude that A1+A2 is a Hurwitz Metzler
matrix if A1 + A2 is of full rank. In this case, A1 + A2 is D-stable by (P2)
and thus Q−1(M∗) (A1 + A2) in (39) is Hurwitz for any elementwise positive
M∗.

Remark 1. It is important to note that the structure of the input convec-
tion matrix V∗

IN plays a crucial role in showing the asymptotic stability of a
hierachically decomposed process system. Earlier in proving the asymptotic
stability of the mass convection subsystem we saw, that the output convective
flows to the environment had to be chosen appropriately (see subsection 2.2),
while the placing of the inlet mass flows to the system affect the asymptotic
stability of the driving force variable subsystem.
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For examining global asymptotic stability of (39) with (40)-(41) in the
source-free case, we will treat (41) as a linear time-varying system, where the
time-dependence is present through the change of M . Let us define

A′

1(M(t)) = N (M(t)) · θ − γV∗

IN · θ (42)

Then,

Ṗ = A(t)P (43)

where

A(t) = Q−1(M(t)) (A′

1(M(t)) + A2) . (44)

Repeating the reasoning for Theorem 3, it is easy to see that A(t) is a Hurwitz
matrix for all t ≥ 0 if A′

1(M(t)), A2 and (A′
1(M(t)) + A2) are of full rank

for t ≥ 0. However, it is known that the Hurwitz property of A(t) for any
t ≥ 0 does not generally guarantee the exponential stability of the dynamics
(39). But if the change of M is ‘sufficiently slow’, then stability follows as
the following theorem says.

Theorem 4 (Theorem 8.7 in [42]). Suppose for the linear state equation
(43) with A(t) continuously differentiable there exist finite positive constants
α, µ such that, for all t, ‖A(t)‖ ≤ α and every pointwise eigenvalue of A(t)
satisfies Re[λ(t)] ≤ −µ. Then there exists a positive constant β such that if
the time-derivative of A(t) satisfies ‖Ȧ(t)‖ ≤ β for all t, the state equation
(39) is uniformly exponentially stable.

We remark that the proof of Theorem 4 shows how to compute an appropriate
β from the system model.

Corollary 1. Consider a hierarchically decomposed state-space model (36)-
(37) of a process system with no source term that obeys assumptions A1-
A4. Assume that there exists 0 < γ < 1 such that A′

1(M(t)), A2 and
(A′

1(M(t)) + A2) are of full rank for t ≥ 0. Then, the controller gain K
in (11) can always be chosen such that the zero equilibrium of (36)-(37) is
globally asymptotically stable.
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Proof. Clearly, by the global asymptotic stability of the mass subsystem
(40), ‖A(t)‖ will be bounded for all t. Moreover, ‖Ȧ(t)‖ can be set arbitrarily
small using the control gain K in (11), since it is known that
‖CconvK‖ ≤ ‖Cconv‖ · ‖K‖, and for any eigenvalue λ of CconvK it is true that
|λ| ≤ ‖CconvK‖. Therefore, the boundedness of the integral curves of (39) can
be assured by proper mass control applying Theorem 4, and finally, global
asymptotic stability of the source-free dynamics can be assured by Theorem
2.

4.3.2. Stabilizing linear sources

Now we consider a special class of source terms that do not destabilize
the network when they are present. In process systems, chemical reactions
are the most characteristic and common source terms, therefore these will
be considered here. The analysis of the general case of nonlinear chemical
reactions as sources, however, is a challenging task that requires individual
analysis. This is seen in [30] where a feedforward output-feedback controller
is designed for a simple CSTR with exothermic isotonic kinetics. Therefore,
we restrict our study to a simple case here.

In order to find the simplest case when the sources do not destabilize the
system, we consider isotherm linear chemical reactions with mass action law
as sources that have a positive equilibrium point. When only such reactions
are present, then the vector of driving force variables consists of only the
component concentrations, and the source vector q

(j)
source in region j depends

only on the driving force variables P (j) of the same region in a linear way

q(j)source = AkP
(j) (45)

where Ak is obtained from the Kirchhoff (or Laplace) matrix of the reaction
graph (usually denoted by Ak) by removing its k-th row and column where
k is the number of an arbitrary reference chemical complex (see [43]). If all
graph components of the reaction system are strong components (in other
words, the reaction network is weakly reversible), then it is easy to prove that
Ak is a Hurwitz compartmental matrix.

Definition 3. A source term qsource is called stabilizing linear, if

(i) it has a block structure, i.e. q(j)source(P
(j)),

(ii) q
(j)
source,k depends linearly on P

(j)
k ,
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(iii) the coefficient matrix Ak is a Hurwitz-stable Metzler matrix.

Corollary 2. Assume that a process system obeys the conditions in Corol-
lary 1 with a stabilizing linear source Ak such that A′

1(M(t)) + A2 + Ak is
of full rank. Then, the controller gain K in (11) can always be selected such
that the zero equilibrium of (36)-(37) is globally asymptotically stable.

Proof. The result directly follows from the proof of Theorem 3 if one aug-
ments the matrices A1 and A2 with the third term Ak such that the coefficient
matrix of Eq. (39) becomes A1 + A2 +Ak. �

Note that a similar result has recently been published for lumped pro-
cess systems composed of incompressible fluid phases [44] and having an
equilibrium point using dissipativity analysis. Under these conditions - that
form a special case of our analysis - it has been shown that the system is
asymptotically stable if it has only dissipative production (source) terms.

4.4. A simple example without source term

Consider a simple process system consisting of two regions identified by
the upper indexes (h) and (c) as it is depicted in Fig. 2. The system can be
regarded as a simple perfectly stirred but unusual heat exchanger where we
feed back the hot side at the inlet of the cold side and consider controlled
mass holdups. The figure shows that we have both convection and transfer
joining the two regions but there is no source term.

The centered mass balances for the system are in the form:

dm(h)

dt
= v(h,in) − κ(h)m(h) (46)

dm(c)

dt
= κ(h)m(h) − κ(c)m(c) (47)

The above equations give rise to Eq. (33) with

M =

[

m(h)

m(c)

]

, VIN =

[

v(h,in)

0

]

Cconv =

[

−1 0
1 −1

]

, K =

[

−κ(h) 0
0 −κ(c)

]
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qtransfer

v(h,in)

v(c,in)=k(h)m(h)+vR
(h)

v(c)=k(c)m(c)+vR
(c)

m(h)

m(c)

Figure 2: A simple process system

The conservation balances for energy are considered in their intensive
variable form as

c
(h)
P m(h)dT

(h)

dt
= v(h,in)

(

c
(h,in)
P T (h,in) − c

(h)
P T (h)

)

+KT

(

T (c) − T (h)
)

(48)

c
(c)
P m(c)dT

(c)

dt
=

(

κ(h)m(h) + v
(h)
ref

)(

c
(h)
P T (h) − c

(c)
P T (c)

)

+KT

(

T (h) − T (c)
)

(49)

This implies the following particular form of the additional matrices in the
model:

Q =

[

c
(h)
P m(h) 0

0 c
(c)
P m(c)

]

, θ =

[

c
(h)
P 0

0 c
(c)
P

]

, L =

[

−KT KT

KT −KT

]

Moreover, we now have only two energy balances and K = 1. Thus the
transfer term in the model is indeed

qtransfer = LP =

[

−KTT
(h) +KTT

(c)

KTT
(h) −KTT

(c)

]

The overall convection matrix N is simple in this case, because

N (h,c) = v
(h)
out = κ(h)m(h) , N (c,h) = 0 , U (h,c) =

[

0 0
1 −1

]
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and then

N =

[

0 0

v
(h)
out −v

(h)
out

]

=

[

0 0
κ(h)m(h) −κ(h)m(h)

]

Furthermore, we can easily construct the variables characterizing the inlet of
the system:

θIN =

[

c
(h,in)
P 0
0 0

]

, PIN =

[

T (h,in)

0

]

, VIN =

[

v(h,in) 0
0 0

]

If we finally take into account that we do not have any source term, i.e.
qsource(P ) = 0, then our energy balance equations (46) and (47) can be written
exactly in the form of Eq. (34).

It is easy to see that the matrix (N (M)− V∗

IN)θ + L is generally of full
rank here. Corollary 1 then implies that this simple process system is
globally uniformly exponentially stable provided that the derivative of M is
appropriately bounded at any time instant.

It should be emphasized that only the mass is controlled in the system
that implies the stability of both the mass and the energy subsystem in this
case. Therefore, we could achieve total inventory control by controlling only
the mass inventories, i.e. by less control loops than the usual inventory control
[17].

5. Distributed controller structure driven by the model hierarchy

In this section we show that the hierarchically decomposed state-space
model enables us to design a simple yet powerful distributed controller struc-
ture, with two layers.

A simple case study is used to illustrate how one can design a hierarchi-
cally decomposed distributed controller using the above principles.

5.1. The two control layers
Overall mass control layer. Driven by the hierarchical structure of dynamic
process model, the local controllers that keep constant mass holdup in each
of the balance volumes form the lower, mass control layer. These local con-
trollers operate independently of each other and ensure the stability of the
energy and component mass subsystems in their intensive variable form as
long as their source terms fulfill the condition of Corollaries 1 or 2.

Note that the simplest proportional controller manipulating the outlet
mass flow rate was assumed in this paper to regulate the mass in a balance
volume, but more sophisticated controller types can also be used.
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Selective stabilizing and coordinating layer. These local controllers are dedi-
cated to stabilize or regulate intensive variables, such as temperature or con-
centrations in a balance volume if the corresponding conservation balance
equation has a non-stabilizing source term. The manipulable input variables
that are most suitable for this purpose are the corresponding intensive vari-
ables at the inlet of the balance volume, such as the inlet temperature(s) for
the temperature as intensive variable, and the inlet concentrations for the
corresponding concentration variables, respectively.

If the conservation balance equations in a balance volume have a well-
identifiable non-stabilizing part (i.e. the source term of a region that does
not fulfill the properties of a stabilizing source in Definition 3), such as an
exothermic chemical reaction, then it is enough to control only the affected
intensive variable. In this case an input-output linearization-based nonlinear
controller [45] can be a reasonable option (provided that the nonlinear model
is accurate enough), because - assuming the corresponding inlet intensive
variable as the input - the relative degree of this input-output pair is one.
An example of such a controller choice is given in the following section.

5.2. A simple chemical reactor example

The chemical reactor example in [20] has been chosen here that allows us
to compare our approach to the one based on inventory control and thermo-
dynamics. A simple process system of a jacketed chemical reactor is consid-
ered that consists of two regions identified by the upper indexes (r) and (j).
An exothermic irreversible first order A → B exothermic chemical reaction
is taking place in the reactor with the reaction rate ρ = kRexp(

E

RT (r) )c
(r)
A

and reaction enthalpy H . The flowsheet of the system and the connections
between the two regions are shown in Fig. 3.

Model equations. The centered mass balances for the system are in the form:

dm(r)

dt
= v(r,in) − k(r)m(r) (50)

dm(j)

dt
= v(j,in) − k(j)m(j) (51)

The above equations correspond to Eq. (33) with

M =

[

m(r)

m(j)

]

, VIN =

[

v(r,in)

v(j,in)

]
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v(r,in), cA
(r,in), T(r,in)

v(j,in), T(r,in)

m(r), cA
(r), T(r)

m(j), T(j)

Figure 3: A simple process system

Cconv =

[

−1 0
0 −1

]

, K =

[

−k(r) 0
0 −k(j)

]

The intensive form of the component mass balance for component A and for
the two energy balances are

m(r)dc
(r)
A

dt
= v(r,in)

(

c
(r,in)
A − c

(r)
A

)

− kR exp(
E

RT (r)
)c

(r)
A m(r) (52)

c
(r)
P m(r) dT

(r)

dt
= v(r,in)

(

c
(r,in)
P T (r,in) − c

(r)
P T (r)

)

+KT

(

T (j) − T (r)
)

+

+HkR exp(
E

RT (r)
)c

(r)
A m(r) (53)

c
(j)
P m(j)dT

(j)

dt
= v(j,in)

(

c
(j,in)
P T (j,in) − c

(j)
P T (j)

)

+KT

(

T (r) − T (j)
)

(54)

The vector of intensive variables in the regions and in the inlet are

P = [ c
(r)
A , T (r) , T (j)]T , PIN = [ c

(r,in)
A , T (r,in) , T (j,in)]T (55)

Assuming the same coefficient matrix for the inlet and the regions, i.e. θIN =
θ, the following matrices and vectors in the compact model equation (32) are
obtained

Q =





m(r) 0 0

0 c
(r)
P m(r) 0

0 0 c
(j)
P m(j)



 , θ =





1 0 0

0 c
(r)
P 0

0 0 c
(j)
P
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L =





0 0 0
0 −KT KT

0 KT −KT



 , N = 0 , VIN =





v(r,in) 0 0
0 v(r,in) 0
0 0 v(j,in)





Note that the overall convection matrix is a zero matrix, because the two
regions are not connected by convection, but only by energy transfer.

In this case we have a non-zero source term

qsource(P ) = [ − kR exp(
E

RT (r)
)c

(r)
A m(r) , HkR exp(

E

RT (r)
)c

(r)
A m(r) , 0 ]T (56)

with

sign(
∂qsource(P )

∂P
) =





− − 0
+ + 0
0 0 0





Model parameters. Based on the model parameters in ([20]), the model pa-
rameters and reference values collected in Table 1 were used for the controller
design.

Steady states. The steady states under controlled mass holdups can be cal-
culated by solving the nonlinear equations that is obtained from Eqs. (52-
54) by setting their left hand sides equal to zero. Fig. 4 shows the phase

plane c
(r)
A – T (r) where the red curve with star markers corresponds to the

stationary balance for c
(r)
A , and the black one composed of ‘+’ signs to

T (r). The intersections of these curves are the steady states of the reac-
tor model. Three steady states are present under the parameter set in
Table 1 (two of them are visible in Fig. 4.), the middle unstable one at

c
(r∗)
A = 0.7768 mol/kg , T (r∗) = 380.9906 K and T (j∗) = 372.71876 K is

chosen as the set-point for the stabilizing controller design.
Note that with the same parameters but the inventory controllers as the

lower controller layer, three different set-points have been found in [20], where

the middle unstable one at c
(r∗)
A = 0.5 mol/kg , T (r∗) = 400 K was used there

as the set-point.

Potential input variables. The variables at the inlet of the reactor (v(r,in),

c
(r,in)
A and T (r,in)) and that of the jacket (v(j,in) and T (j,in)) are the potential

input variables for the selective stabilizing controller layer.
Note that the stabilizing controller in [20] that is used to keep the unstable

steady state of the reactor, used the jacket temperature T (j) as a manipulable
variable, that can only be manipulated indirectly through either the jacket
inlet flow rate v(j,in) or inlet temperature T (j,in).
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Ident. unit Definition value

k(r) [s−1] reactor controller gain 100
k(r) [s−1] jacket controller gain 100
klin [s−1] linearizing controller gain 0.4

c
(∗)
P [ J

kg·K
] water specific heat (∗ ∈ {r, j}) 4.187 · 103

c
(∗,in)
P [ J

kg·K
] inlet water specific heat (∗ ∈ {r, j}) 4.187 · 103

kR [s−1] pre-exponential factor e25
E
R

[s−1] activation energy (normalized) −104
H

c
(r)
P

[−] reaction enthalpy (normalized) 400

v(r,in)

m(r)
[s−1] residence time in reactor 1

v(j,in)

m(j)
[s−1] residence time in jacket 0.1

KT

c
(r)
P

m(j)
[s−1] heat transfer coefficient (normalized) 1

m(r) [kg] reactor overall mass (reference) 100

m(j) [kg] jacket overall mass (reference) 100

v
(r,in)
ref [kg

s
] reactor inlet mass flow rate (reference) 100

v
(j,in)
ref [kg

s
] jacket inlet mass flow rate (reference) 10

c
(r,in)
A [mol/kg] inlet component concentration (reactor) 1
T (r,in) [K] inlet temperature (reactor) 300
T (j,in) [K] inlet temperature (jacket) 290

Table 1: Model parameters

The mass control layer. Here we use two independent P-controllers that ma-
nipulate the outlet mass flow rates v

(r)
out and v

(j)
out to keep the masses m(r) and

m(j), respectively, at their reference values. Their operation is already taken
into account in the model equations (50) and (51).

The selective stabilizing controller. As the non-stabilizing terms in the con-
servation balances in intensive form (52)-(53) are related (while Eq. (54)
is stable), an input-output nonlinear linearizing controller (see in [45]) was
designed using T (r,in) as manipulable input variable, and T (r) as the output
variable. The feedback law is given by

T (r,in) =
1

blin

(

−klin(T
(r) − T (r∗))− f2,lin

)

, (57)
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Figure 4: The phase plot of the reactor model with two of the the possible steady states

where

blin =
v
(r,in)
ref c

(r,in)
P

c
(r)
P m(r)

(58)

f2,lin = −
v
(r,in)
ref T (r)

m(r)
+

KT (T
(j) − T (r))

c
(r)
P m(r)

+
HkRc

(r)
A exp

(

E

RT (r)

)

c
(r)
P

, (59)

and the controller gain value klin = 0.4 was chosen. Note that any positive
klin stabilizes the system, but its actual value determines the time-domain
behavior of the controlled system.

The phase plane c
(r)
A – T (r) of the closed loop system depicted in Fig. 5

shows that the desired setpoint (marked with a red circle) is now a stable
steady state point of the system. The time-domain operation of the con-
trolled system can be seen in Fig. 6. The initial conditions used for the
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Figure 5: The phase plot of the controlled reactor model

simulation were the following:

m(r)(0) = 105 kg, m(r)(0) = 95 kg, c
(r)
A (0) = 0.8

mol

kg
(60)

T (r)(0) = 300 K, T (j)(0) = 290 K (61)

It is visible from the figure that T (r) indeed gives the desired linear response
where the time constant is determined by the controller parameter klin. More-
over, the input temperature T (r,in) is within acceptable limits during the
operation.

5.3. Discussion

It should be emphasized that the proposed model structure-driven hi-
erarchical decentralized stabilizing controller structure is determined based
on the model structure of process networks derived from first engineering
principles. Therefore, this approach is highly similar to the one used for de-
signing inventory control [17], as both approaches build on the principles of
thermodynamics.
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Figure 6: Time-domain behavior of the controlled reactor model

However, only the overall mass as inventory is controlled in each balance
volume according to our approach, that implies the stability of all the mass,
component masses and the energy subsystem in the stabilizig source term
case. The selective stabilizing controllers acting on the other conservation
balances (i.e. inventories) are needed only for some of the balances in their
intensive form, that have non-stabilizing source terms. Therefore, we could
achieve stabilizing control by less control loops and with generally less in-
teractions among them, than the design that is based on inventory control
[20].

Both the simple source-free example in subsection 4.4 and the simple jack-
eted chemical reactor example in subsection 5.2 illustrate the simplicity and
the power of the proposed model structure-driven hierarchical decentralized
stabilizing controller.

6. Conclusions

The asymptotic stability of process models consisting of lumped intercon-
nected balance volumes and controlled mass holdups in each balance volumes
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is investigated in this paper. The basic assumptions used on the constant
physico-chemical properties and constant pressure ensure that the algebraic
constitutive equations can all be substituted into the dynamic balance equa-
tions, that is, a purely ordinary differential equation model is resulted.

The dynamic behavior of the process model is investigated by using the
results available for cascade-connected nonlinear systems and the properties
of Metzler and Hurwitz matrices. It was shown that the system is globally
asymptotically stable with no source term, and also with stabilizing linear
source terms.

Based on the structure of the dynamic model, a hierarchically decom-
posed distributed controller structure is proposed, that consists of an overall
mass control layer regulating the mass holdups at local set-points, and a
selective stabilizing and coordinating layer for conservation balances with
non-stabilizing source terms. This structure coincides well with the usual
hierarchical process control system structure where local, distributed con-
trollers take care of the level control and the coordinating controllers are
used for optimizing the dynamics of the system.

The concepts and tools are illustrated on the example of a jacketed con-
tinuous stirred tank reactor, and compared to the physically-motivated in-
ventory control scheme [20] developed for the same example.
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