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Abstract— The paper analyses the maximum Controlled
Invariant Sets of vehicle actuators. In the calculation of the
shape of the sets a nonlinear polynomial Sum-of-Squares (SOS)
programming method is applied. The aim of the analysis is to
identify the similarities and differences between the different
actuator interventions and provide a theoretical basis for their
coordination. The maximum Controlled Invariant Sets of the
steering and the brake control systems are analyzed at various
velocities and road conditions. In the analysis the nonlinear
characteristics of the lateral tire force are considered with
a polynomial approximation. The results of the analysis are
illustrated through a simulation example.

I. INTRODUCTION AND MOTIVATION

Several active components are applied simultaneously
in road vehicles to handle the specified performance re-
quirements. In their simultaneous operation the integration
of components must be guaranteed. The purpose of the
integrated control is to take into consideration the effects
of the control system on other vehicle functions, create
coordination between controllers and provide priorities for
actuators. In the integrated control there is a possibility
to improve safety by modifying the operation of a local
controller. If performance degradation or a fault has occurred
in the operation of an actuator and it has been detected
the degraded actuator is substituted for by another fault-
free actuator which provides the same or similar control
signal. Moreover, the agility and efficiency of actuators differ
and the analysis provides information about the functional
reconfiguration possibilities of the actuators.

The analysis and design of integrated vehicle control were
in the focus of research and development, see, e.g., [1]. A
vehicle control with four-wheel-distributed steering and four-
wheel-distributed traction/braking systems was proposed by
[2]. A yaw stability control system in which an active torque
distribution and differential braking systems are used was
proposed by [3]. The integration of differential braking with
the front steering was proposed by [4]. An integrated control
that involves both four-wheel steering and yaw moment
control was proposed by [5]. Active steering and suspension
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controllers were also integrated to improve yaw and roll sta-
bility [6]. A global chassis control involving an active/semi-
active suspension and brake was proposed by [7].

The actuator selection is usually performed by using
practical considerations, see e.g. [8]. The design of lateral
stability control based on set-theoretical methods was pro-
posed by [9]. In another method the uncertain effects of the
driver were also considered, see [10]. A control method in
which there was a large operating region accessible by the
driver and smooth interventions at the stability boundaries
was proposed by [11], [12]. A reachability set-based-analysis
was applied to the integration of steering and suspension
controllers in [13].

In the paper a theoretical basis for the coordination of the
actuators is proposed. The stability regions of the maximum
control inputs are also calculated. The aim of the analysis
is to identify the similarities and differences between the
different actuator interventions. Although the reachability
set analysis of a linear vehicle model can be a relatively
fast and easily applicable technique for actuator intervention
limit determination, it has some drawbacks. In the paper a
nonlinear polynomial Sum-of-Squares (SOS) programming
method is applied to calculate the shape of the maximum
Controlled Invariant Sets of actuators.

The paper is organized as follows. In Section II the
nonlinear modeling of lateral vehicle dynamics is formulated.
The basics of the SOS programming method are detailed
in III. The computation method of maximum Controlled
Invariant Sets of lateral vehicle model is presented in Section
IV. The computation results of the invariant sets at different
velocities and adhesion coefficients are presented in Section
V. Finally, some concluding remarks are in Section VI.

II. NONLINEAR MODELING OF LATERAL VEHICLE

DYNAMICS

In the paper actuator efficiency is analysed based on a
lateral vehicle model. The nonlinear model of lateral vehicle
dynamics is formulated in the following form:

Jψ̈ = F1(α1)l1 −F2(α2)l2 + Mbr (1a)

mv
(
ψ̇ + β̇

)
= F1(α1) + F2(α2) (1b)

where F1(α1) and F2(α2) represent lateral tire forces, which
depend on tire side-slip angles α1 and α2, moreover, m is the
mass of the vehicle, J is yaw-inertia, l1 and l2 are geometric
parameters. β is side-slip angle of the chassis, ψ̇ is yaw-rate.
Two controlled systems are compared. In the first system the
actuator is the differential braking moment Mbr, while in the
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second systems the actuator is the front wheel steering angle
δ. In the equations the tire side-slip angles are approximated
in the following way:

α1 = δ − β −
ψ̇l1
v

(2a)

α2 = −β +
ψ̇l2
v

(2b)

Since the lateral tire force is a crucial point of the lateral
vehicle dynamics, the nonlinearities of the tire characteristics
are considered. Several tire models have been published, see
e.g., [14], [15], [16]. These models formulate the nonlinearity
of longitudinal and lateral tire forces accurately.

In the paper a polynomial tire modeling approach is pre-
sented, by which the nonlinearities of the tire characteristics
are considered in a given operation range. The nonlinear
characteristics of the lateral tire force in the function of
tire side-slip α are illustrated in Figure 1. The polynomial
approximation is formulated as:

F(α) =
n∑

k=1

ckαk = c1α + c2α
2 + . . . + cnαn (3)

In the proposed method exponent n is chosen 10. Using
this approximation the tire model is valid between α =
−12◦ . . . + 12◦.
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Fig. 1. Modeling of lateral tire force

Note that in several control applications the lateral forces
are approximated with linear functions, such as Fi(αi) =
ciαi, i = [1, 2], where ci is cornering stiffness. The advan-
tage of this formulation is the simple description, although
the linear tire model can be used only in a narrow tire side-
slip range.

In the following (2) is used to transform (1) into a
polynomial state-space representation

ẋ = f(x) + gu,

where x is the state vector, u is the control input signal, f
and g are vectors.

The yaw-rate and side-slip of the vehicle can be expressed
from (2) in the following forms:

ψ̇ = v
α2 − α1 + δ

l1 + l2
(4a)

β = −
α1l2 + α2l1 − l2δ

l1 + l2
(4b)

(1) contains the time-derivatives of ψ̇ and β and they must
be differentiated to obtain β̇ and ψ̈. Then the vehicle model
(1) is reformulated:

α̇2 − α̇1 =

[
l1 + l2

Jv
(F1(α1)l1 −F2(α2)l2)

]

−

− δ̇ +
l1 + l2

Jv
Mbr (5a)

α̇1l2 + α̇2l1 =v(α2 − α1) −
l1 + l2
mv

[F1(α1) + F2(α2)]+

+ vδ + l2δ̇ (5b)

The states of the model are tire slip angles α1 and α2,
i.e., ẋ =

[
α1 α2

]T
. Thus, the nonlinearity of the lateral

tire forces F1, F2 can be considered in the state equation.
However, (5) includes the time-derivative of the front-wheel
steering angle. Since δ is a control input, δ̇ is modeled as
below:

δ̇ ∼= max

(
|δ̇|
|δ|

)

∙ δ = ν ∙ δ (6)

where parameter ν represents the relationship between the
maximum steering value and the variation speed of δ. Since
max δ is a given fixed limit at the actuator analysis, high ν
value represents a fast changing steering signal, while a slow
changing steering signal is modeled with low ν.

The polynomial state-space representation of the system is
formulated using (5) and the substitution of (6) is as below:

ẋ =

[
α̇1

α̇2

]

=

[
f1(α1, α2)
f2(α1, α2)

]

+

[
g1

g2

]

Mbr +

[
h1

h2

]

δ (7)

where

f1 =
l1
Jv

[F2(α2)l2 −F1(α1)l1] +

+
v

l1 + l2
(α2 − α1) −

1
mv

[F1(α1) + F2(α2)] ,

f2 =
l2
Jv

[F1(α1)l1 −F2(α2)l2] +

+
v

l1 + l2
(α2 − α1) −

1
mv

[F1(α1) + F2(α2)] ,

and

h1 =
v

l1 + l2
+ ν,

h2 =
v

l1 + l2
,

g1 = −
l1
Jv

,

g2 =
l2
Jv

.

In the proposed vehicle model (7) either differential braking
Mbr is applied, when δ = 0, or steering angle δ is applied,
when Mbr = 0.



III. FUNDAMENTALS OF SOS PROGRAMMING

TECHNIQUE

In this section the concepts concerning the SOS program-
ming method are summarized. The method is suitable to
analyze and control nonlinear polynomial systems. In the
following a brief survey is given before the method used for
vehicle model is proposed.

Important theorems in SOS programming, such as the
application of Positivstellensatz, were proposed in [17]. In
this way the convex optimization methods can be used to find
appropriate polynomials of the SOS problem. The approx-
imation of nonnegative polynomial by a sequence of SOS
was presented in [18]. The SOS polynomials incorporate the
original nonnegative polynomials in an explicit form.

In terms of state dependent Linear Matrix Inequalities
(LMIs) sufficient conditions for the solutions to nonlinear
control problems were shown by [19]. In the paper the
semidefinite programming relaxations based on the SOS
decomposition were then used to efficiently solve such
inequalities. The application of the SOS decomposition tech-
nique to non-polynomial system analysis was summarized
in [20]. The application of SOS programming to several
control problems was presented by [21], e.g. reachability set
computation and control design algorithm. A local stability
analysis of polynomial systems and an iterative computation
method for their region of attraction were presented in [22].
The SOS method was applied to two non-convex problems,
for example polynomial semi-definite programming and the
fixed-order H2 synthesis problem, see [23].

The performance analysis of polynomial systems is pub-
lished in [24], by which sufficient conditions were pro-
vided for bounds on the reachability set and L2 gain of
the nonlinear system subject to norm-bounded disturbance
inputs. Robust performance in polynomial control systems
was analyzed in [25] and [26]. This paper considered the
effects of neglected dynamics and parametric uncertainties.
Numerical computation problems of convex programming
based SOS method in practical applications were analyzed
in [27]. As a new result the maximum controlled invariant
sets of polynomial control systems were calculated in [28].

The following definitions and theorems are essential to
understand SOS programming [21]. The basic elements of
the method are polynomials and SOS as defined below:

Definition 1: A Polynomial f in n variables is a fi-
nite linear combination of the functions mα(x) := xα =
xα1

1 xα2
2 ∙ ∙ ∙ xαn

n for α ∈ Zn
+, deg mα =

∑n
i=1 αi:

f :=
∑

α

cαmα =
∑

α

cαxα (8)

with cα ∈ R. Define R to be the set of all polynomials in n
variables. The degree of f is defined as f := maxα deg mα.

Definition 2: The set of SOS polynomials in n variables
is defined as:

Σn :=

{

p ∈ Rn p =
t∑

i=1

f2
i , fi ∈ Rn, i = 1, . . . , t

}

(9)

where Rn is the ring of polynomials in n variables and of
unspecified degree.

A central theorem of SOS programming is Positivstellen-
satz. By the application of this theorem the set emptiness
constraints of an optimization task can be transformed to
SOS feasibility problems.

Theorem 1: Positivstellensatz: Given polynomials
{f1, . . . , fr}, {g1, . . . , gt} and {h1, . . . , hu} in Rn, the
following are equivalent:

1) The set




x ∈ Rn

f1(x) ≥ 0, . . . , fr(x) ≥ 0
g1(x) 6= 0, . . . , gt(x) 6= 0
h1(x) = 0, . . . , hu(x) = 0





(10)

is empty.
2) There exists polynomials f ∈ P(f1, . . . , fr) (P is

a cone), g ∈ M(g1, . . . , gt) (M is a multiplicative
monoid), h ∈ I(h1, . . . , hu) (I is an ideal) such that

f + g2 + h = 0 (11)
There is an important connection between SOS programming
and LMI problems, which was proved by [17]:

Theorem 2: Given a finite set {pi}
m
i=0 ∈ Rn, the exis-

tence of {ai}
m
i=0 ∈ Rn such that

p0 +
m∑

i=1

aipi ∈ Σn (12)

is an LMI feasibility problem.
The previous two theorems can be used to prove the gener-
alization of the S-Procedure, which is highly significant in
the forthcoming computations.

Theorem 3: Generalized S-Procedure: Given symmetric
matrices {pi}

m
i=0 ∈ Rn. If there exist nonnegative scalars

{si}
m
i=1 ∈ Σn such that

p0 −
m∑

i=1

sipi � q (13)

with q ∈ Σn, then

m⋂

i=1

{x ∈ Rn pi(x) ≥ 0} ⊆ {x ∈ Rn p0(x) ≥ 0} (14)

The related set emptiness question asks if

W := {x ∈ Rn p1(x) ≥ 0, . . . , pm(x) ≥ 0,

− p0(x) ≥ 0, p0(x) 6= 0} (15)

is empty.

IV. COMPUTATION METHOD OF CONTROLLED

INVARIANT SETS

In this section the Controlled Invariant Sets of the system
[28] are computed based on the theoretical preliminaries. In
the following the computation of Controlled Invariant Sets
is proposed.



A. Theoretical background

The state-space representation of the system is given in
the following form (see (7)):

ẋ = f(x) + gu (16)

where f(x) is a vector, which incorporates smooth poly-
nomial functions and f(0) = 0. In the next analysis one
control input is considered, thus either u = Mbr or u = δ.
The global asymptotical stability of the system at the origin
is guaranteed by the existence of the Control Lyapunov
Function of the system defined as follows [29]:

Definition 3: A smooth, proper and positive-definite func-
tion V : Rn → R is a Control Lyapunov Function for system
(16) if

inf
u∈R

{
∂V

∂x
f(x) +

∂V

∂x
g ∙ u

}

< 0 (17)

for each x 6= 0.

According to Definition 3 two main cases are distinguished:
1) If ∂V

∂x f(x) < 0 then the system is stable and u ≡ 0.
This stability scenario is contained by the next two
stability criteria.

2) If ∂V
∂x f(x) > 0 then the system is unstable. However,

the system can be stabilized
a) If

∂V

∂x
g < 0

and
∂V

∂x
f(x) +

∂V

∂x
g ∙ umax < 0,

the upper peak-bound of control input u stabilizes
the system.

b) If
∂V

∂x
g > 0

and
∂V

∂x
f(x) −

∂V

∂x
g ∙ umax < 0,

the lower peak-bound of control input u stabilizes
the system. Note that umin = −umax.

The Controlled Invariant Set of the system (16) is defined
as the level-set of the Control Lyapunov Function at V (x) =
1. Thus, the fulfilment of the previous stability criterion must
be guaranteed at V (x) ≤ 1.

Above the stability criterion of the polynomial system
has been formed. Based on these constraints it is necessary
to find a Control Lyapunov Function V , which meets the
following set emptiness conditions:

{
∂V

∂x
g < 0,

∂V

∂x
f(x) +

∂V

∂x
g ∙ umax > 0, V (x) ≤ 1

}

= ∅

(18a)
{

∂V

∂x
g > 0,

∂V

∂x
f(x) −

∂V

∂x
g ∙ umax > 0, V (x) ≤ 1

}

= ∅

(18b)

Note that the relations in the second inequalities are inverted
to guarantee the emptiness of the sets. Since it is necessary
to find the maximum Controlled Invariant Set, another set
emptiness condition is also defined to improve the efficiency
of the method [21]:

{p(x) ≤ β, V (x) ≥ 1, V (x) 6= 1} = ∅ (19)

where p ∈ Σn is a fixed and positive definite function.
β defines a Pβ := {x ∈ Rn p(x) ≤ β} level set, which is
incorporated in the actual Controlled Invariant Set. Thus, the
maximization of β enlarges Pβ together with the Controlled
Invariant Set.

The set emptiness conditions are reformulated to SOS
conditions based on the S-procedure (see Section III). Thus,
the next optimization problem is formed to find the maximum
Controlled Invariant Set:

max β (20)

over s1, s2, s3, s4, s5 ∈ Σn; V ∈ Rn; V(0)=0
such that

−

(
∂V

∂x
f(x) +

∂V

∂x
g ∙ umax

)

− s1

(

−
∂V

∂x
g

)

−

− s2 (1 − V ) ∈ Σn (21a)

−

(
∂V

∂x
f(x) −

∂V

∂x
g ∙ umax

)

− s3

(
∂V

∂x
g

)

−

− s4 (1 − V ) ∈ Σn (21b)

− (s5(β − p) + (V − 1)) ∈ Σn (21c)

B. Practical computation of Controlled Invariant Sets

The optimization method of the maximum Controlled
Invariant Set has been proposed in the previous parts of the
section. Although (21) provides an appropriate solution to
the optimization problem, it results in numerical difficulties.
Note that the degree of f(x) is determined by the degree of
the lateral tire model, see (3).

Simultaneously deg V = n, which resulted in
deg ∂V

∂x f(x) = 2n − 1. [17] proposes that a polynomial
in n variables of degree 2d can be transformed into an
LMI with

(
n+d

d

)
dimensions. In the presented example the

degree of tire model is n = 10, therefore the maximum
number of degrees in (21) is 2n − 1 = 19. The system
has two variables: α1 and α2, which leads to

(
12
2

)
= 66

dimensions LMI. Because of the huge size of the LMI
feasibility task, numerical problems may occur. Therefore
the resulting Control Lyapunov Function V of optimization
(21) must be checked.

In the following an alternative computation method is
proposed to find the maximum Controlled Invariant Set,
which, in our experience, can lead to an easier calculation
according. A three-step iterative method is proposed in the
paper.



Step 1: The region of attraction of the uncontrolled system
ẋ = f(x) is determined as an initial set. In this step the
maximum level set of V0 = 1 is found, which is incorporated
in the stable region. The SOS based computation of the
region of attraction is presented in [30].

Step 2: An η parameter is chosen and

Vη = V0 ∙ η

is checked as a Local Control Lyapunov Function. The level-
set Vη = 1 represents a Controlled Invariant Set Sη , in which
the system can be stabilized using a finite control input u.
Depending on parameter η the size of the level-set can be
enlarged or reduced. The SOS based computation of Local
Control Lyapunov Function is proposed in [22].

Step 3: In the final step the acceptability and the enlarging
possibility of Sη Controlled Invariant Set must be checked.
The peak-bounds of the actuation are umin = −umax and
umax. Sinst = ∂V

∂x f(x) > 0 is the unstable region of the
system.

• Smin = ∂V
∂x f(x)− ∂V

∂x g ∙umax > 0 is the region, which
can not be stabilized by umin.

• Similarly, Smax = ∂V
∂x f(x) + ∂V

∂x g ∙ umax > 0 is the
region, which can not be stabilized by umax.

If Sη is an appropriate Controlled Invariant Set and Vη is an
appropriate Control Lyapunov Function, then

Sη

⋂
Sinst

⋂
Smin

⋂
Smax = ∅ (22)

The emptiness of the intersection condition defined below
can be checked manually by the plot of Sη , Sinst, Smin and
Smax. Additionally, if Sη is appropriate then η value can
be reduced in the previous step to maximize the Controlled
Invariant Set.

V. CONTROLLED INVARIANT SETS OF VEHICLE

DYNAMIC ACTUATORS

In the following the results of the maximum Controlled
Invariant Set analysis are illustrated. The actuators of the
system are differential braking and front wheel steering. Two
steering scenarios, such as fast intervention ν = 30 and slow
actuation ν = 1, are also compared.

The vehicle in the analysis is a medium-size passenger car
and the vehicle data and tire characteristics are derived from
the CarSim vehicle dynamic software (E-Class vehicle). The
lateral tire force characteristics are approximated with tenth-
order polynomials using a least-squares algorithm. Since the
road conditions determine vehicle dynamics, two tire-road
adhesion coefficients are investigated during the analysis.
μ = 0.8 represents a dry, while μ = 0.6 is related to a wet
concrete road. The maximum actuation capabilities of each
system are |δmax| = 12◦ at steering, and |Mbr,max| = μ ∙
15000Nm at differential braking. Note that the consideration
of μ in the braking limit is necessary, because the tire-road
adhesion also determines the longitudinal dynamics.

Figure 2 presents the results of the analysis μ = 0.8. At
the computation of the maximum Controlled Invariant Set the

following velocities are considered: v = 36 km/h, v = 72
km/h, v = 108 km/h and v = 144 km/h. The results show
that the regions are very different where the vehicle can be
stabilized by the limited control inputs of the systems. The
sizes of the regions depend significantly on the velocity and
the steering dynamics ν. The sets δ, ν = 1 are larger at
high velocities, than the sets of δ, ν = 30. It means that the
dynamics of steering actuation determines the regions where
the vehicle can be stabilized. At fast steering intervention the
sets decrease, thus fast transitions must be avoided during the
actuation.

Comparing the maximum Controlled Invariant Sets of
braking and steering it can be shown that Mbr actuation
is especially beneficial instead of fast steering. Since there
are vehicle dynamic situations where the fast intervention is
unavoidable, the sudden steering maneuver can be substituted
for by braking. In this case vehicle dynamics can be im-
proved in an enlarged region. Note that the differences have
significance mainly at high velocities, e.g. at v = 36 km/h
the maximum Controlled Invariant Sets of the actuators are
the same.
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Fig. 2. Actuation limits μ = 0.8

The results of the set-based analysis at μ = 0.6 are
illustrated in Figure 3. Comparing the sets with the previous
scenario, the reduction of the sets can be observed. Since the
decreased adhesion coefficient induces smaller peak values of
the lateral forces, the the instable regions Sinst are enlarged,
while the maximum Controlled Invariant Sets are reduced.
Moreover, at braking the actuation limit is also lower than
at μ = 0.8. However, the tendency in v and ν dependence is
the same: high velocity and fast steering intervention result
in smaller regions.

The proposed analysis shows the importance of the system
reconfiguration during an appropriate actuator selection. The
results meet the preliminary expectations and give a theoret-
ical basis for the control design and the actuator selection
procedure.
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VI. CONCLUSION

In the paper the maximum Controlled Invariant Sets of
steering and braking systems have been examined in order
to analyse their abilities for the entire vehicle system. A
nonlinear polynomial SOS programming method has been
applied to calculate the shape of the maximum Controlled
Invariant Sets of actuators. The aim of the analysis is to pro-
vide a theoretical basis for the coordination of the actuators.
The method has been illustrated through the influence of the
steering and the brake control systems at various velocities
and road conditions.

The analysis has shown that different vehicle dynamic
regions can be reached and stabilized by differential braking
and steering. The results of the presented computation can
be used as a part of an actuator selection strategy.
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