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Abstract: The paper gives an analysis of a variable-geometry suspension system. Since
the system also affects both the wheel camber angle and the additional steering angle,
the coordination of steering and wheel tilting can be handled by this system. Since the
nonlinear effects of the system are significant, the paper gives a detailed set-based analysis for
the possibilities and constrains. A nonlinear polynomial SOS (Sum-of-Squares) programming
method is applied to present the advantages of the variable-geometry suspension system.
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1. INTRODUCTION AND MOTIVATION

The variable-geometry suspension system is a mechanism
with which road holding can be improved, see Evers
et al. [2008]. Several papers for various kinematic models
of suspension systems have been published. A nonlinear
model of the McPherson strut suspension system was
published by Fallah et al. [2009], Németh and Gáspár
[2012]. By using this model the kinematic parameters, such
as camber, caster and king-pin angles, were examined.
The kinematic design of a double-wishbone suspension
system was examined by Sancibrian et al. [2010]. The
vehicle-handling characteristics based on a variable roll
center suspension were proposed by Lee et al. [2008]. A
rear-suspension active toe control for the enhancement of
driving stability was proposed by Goodarzia et al. [2010].

Another field of variable-geometry suspension is the steer-
ing of narrow vehicles, see Piyabongkarn et al. [2004].
These vehicles require the design of an innovative active
wheel tilt and steer control strategies in order to perform
steering similarly to a car on straight roads but in bends
they tilt as motorcycles, see Suarez [2012]. The active tilt
control system, which assists the driver in balancing the
vehicle and performs tilting in the bend, is an essential
part of a narrow vehicle system, see Piyabongkarn et al.
[2004].

In the paper the coordination of steering and wheel tilting
is analyzed. The efficiency of variable-geometry suspen-
sion has been presented in preliminary works. Németh
and Gáspár [2013b] proposes the interaction between the
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steering and the camber angle, which is ensured by the
suspension construction. A control and construction design
method guarantees the optimal utilization of the maximum
control forces on the tires. Although the reachable set
analysis of a linear vehicle model can be a relatively fast
and easily applicable technique for actuator intervention
limit determination, it has some drawbacks as it is shown
in the following example.

Motivation example

In Figure 1 the reachable sets of a variable-geometry sus-
pension are illustrated using a linear method. Two scenar-
ios are compared in the analysis: the reachable front and
rear side-slips α1, α2 with limited steering and tilting ac-
tuation are computed at two vehicles. In first vehicle pure
steering actuation is considered, while in the second vehicle
steering and wheel tilting are simultaneously actuated by
variable-geometry suspension. The illustration shows that
the difference between the two scenarios is quite small.
Thus, the effect of wheel tilting can be neglected. In spite
of the reachable set analysis, Németh and Gáspár [2013a]
proposes that the modification of the wheel camber angle
has a significant advantage in vehicle control. Thus, in this
example the efficiency of the variable-geometry suspension
in vehicle dynamics is not handled adequately by the linear
analysis.

Another drawbacks of the linear analysis is that the non-
linear tire characteristics are ignored, which affects vehicle
stability. In a linear analysis the vehicle system is described
by the state-space representation ẋ = Ax + B1w + B2u,
where matrix A gives information about the stability of
the system. Although A depends on longitudinal velocity
v, the increase of v does not cause instability in the normal
operational range of the vehicle. The analysis presented
in Figure 1 shows that the reachable sets of the system
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Fig. 1. Reachable sets of the systems

increase at higher v. However, the stability margin of the
lateral vehicle model is reduced with increasing v, see
Pacejka [2004]. Consequently, the instability problems at
high velocity cannot be analyzed effectively using linear
reachable set computation.

In several automotive applications the linearized model of
lateral dynamics is sufficient to design controllers for driver
assistance systems. However, the comprehensive analysis
of vehicle actuator efficiency requires nonlinear techniques
to understand the intervention of the systems in detail. In
this paper the nonlinear polynomial Sum-of-Squares (SOS)
programming method is applied to propose the control-
oriented advantages of the variable-geometry suspension.

The paper is organized as follows. In Section 2 the nonlin-
ear polynomial vehicle model and the variable-geometry
suspension are formulated. The method of SOS-based
Maximal Controlled Invariant Set computation is proposed
in Section 3. The analysis of the invariant sets at different
velocities is a novel design criterion is found in Section 4.
Section 5 contains some concluding remarks.

2. MODELING OF LATERAL VEHICLE DYNAMICS

In the section the nonlinear lateral vehicle model is pre-
sented (see Figure 2), on which the analysis of the actuator
efficiency is based. The variable-geometry suspension has
different effects on the wheels: modification of steering
and camber angles. The relationship between the angles
is determined by the construction of the suspension. In
this section two system models are detailed. First, the for-
mulation of lateral vehicle dynamics is proposed based on
the polynomial approximation of tire model. Second, the
modeling and analysis of variable-geometry are presented.

2.1 Formulation of nonlinear vehicle model

Modeling tire forces is a crucial point of vehicle dynamics.
Several tire models have been published, see examples
Pacejka [2004], Kiencke and Nielsen [2000], de Wit et al.
[1995], Dugoff et al. [1969]. These models formulate the
nonlinearity of longitudinal and lateral tire forces accu-
rately. In the paper a polynomial tire modeling approach
is presented.

The lateral dynamics of the vehicle is formulated by the
following dynamic model:

α1 + δ

α2

β v

l1
l2

Xgl

Ygl
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ψ

yv
ygl

Mbr Fl

Fig. 2. Scheme of lateral vehicle model

Jψ̈ = Flat,1(α1)l1 − Flat,2(α2)l2 =
= F1(α1)l1 −F2(α2)l2 + G(α1)l1γ (1a)

mv
(
ψ̇ + β̇

)
= Flat,1(α1) + Flat,2(α2) =

= F1(α1) + F2(α2) + G(α1)γ (1b)

where m is the mass of the vehicle, J is yaw-inertia, l1 and
l2 are geometric parameters. β is the side-slip angle of the
chassis, ψ̇ is yaw-rate. Flat,1(α1) and Flat,2(α2) represent
lateral tire forces, which depend on tire side-slip angles α1
and α2.

In the case of the variable-geometry suspension system two
nonlinearities of the tire characteristics must be considered
in a given operation range.

• Lateral tire force F(α) depends on the lateral tire
slip α nonlinearly. Although in several control appli-
cations the lateral forces are approximated with linear
functions, which results a simple description, it can be
used in a narrow tire side-slip range. Vehicle motion
is significantly characterized by this nonlinearity.
• The generated lateral tire force from camber angle
G(α) depends on α nonlinearly. Thus, the efficiency
of actuator intervention is influenced by tire slip.

The nonlinear model of the tire is constructed from the
polynomial approximation of the previous two effects,
F(α) and G(α):

Flat(α) = F(α) + G(α)γ =
n∑

j=1

cjα
j +

m∑

k=0

gkα
kγ (2)

where γ is the camber angle of the wheel. An example of
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Fig. 3. Modeling of lateral tire force Flat

the nonlinear characteristics in the function of tire side-slip
α is illustrated in Figure 3.



The relationships between the tire side-slip angles for the
front and rear axles, the steering angle of the vehicle and
the side-slip angle of the chassis are tan(δ − α1) = (lf ψ̇ +
v sinβ)/(v cosβ) and tan(α2) = (lrψ̇ − v sinβ)/(v cosβ).
At stable driving conditions the tire side-slip angle αi
is normally not greater than 10◦ and the equations can
be simplified by substituting sin β ≈ β and cosβ ≈ 1.
Moreover, the relative error of these simplifications is less
than 1%. Thus, the following side-slip angles of the front
and rear axles can be approximated: α1 = δ − β − ψ̇l1/v
and α2 = −β + ψ̇l2/v. In the followings these expressions
are used to transform (1) into a polynomial state-space
representation ẋ = f(x) + gu, where x is the state vector,
u is the control input signal, f and g are matrices.

From the above equations the yaw-rate and side-slip of the
vehicle can be expressed in the following forms:

ψ̇ = v
α2 − α1 + δ
l1 + l2

, β = −
α1l2 + α2l1 − l2δ

l1 + l2
(3)

Since (1) contains the time-derivatives of ψ̇ and β, they
must be differentiated by using (3). At constant velocity v
their derivatives are:

ψ̈ = v
α̇2 − α̇1 + δ̇
l1 + l2

, β̇ = −
α̇1l2 + α̇2l1 − l2δ̇

l1 + l2
(4)

Now the vehicle model (1) is reformulated:

α̇2 − α̇1 =

[
l1 + l2
Jv

(F1(α1)l1 −F2(α2)l2)

]

−

− δ̇ +
l1(l1 + l2)

Jv
G(α1)γ (5a)

α̇1l2 + α̇2l1 =v(α2 − α1)−
l1 + l2
mv

[F1(α1) + F2(α2)]+

+ vδ + l2δ̇ −
l1 + l2
mv

G(α1)γ (5b)

The rearrangement of vehicle model shows, that the new
states of the model are tire slip angles α1 and α2. In this
way the nonlinearity of the lateral tire forces F1, F2 and
G can be considered. However, (5) incorporates the time-
derivative of the front-wheel steering angle. In the actuator
efficiency analysis the limit of intervention max(|δ|) has
relevance. The detailed vehicle model is used for actuation
range determination. For actuation limit purposes the
following approximations are applied:

max(|δ̇|) = max

(
|δ̇|
|δ|

)

∙max(|δ|) = ν ∙max(|δ|), (6)

δ̇ ≈ ν ∙ δ, (7)

where parameter ν represents the relationship between the
maximum steering value and the variation speed of δ. Since
max δ is a given fixed limit at the actuator analysis, high
ν value represents a fast changing steering signal, while
a slow changing steering signal is modeled with low ν.
Note that the proposed modeling formula is only valid for
actuation limit computation.

The polynomial state-space representation of the system
is formulated using (5) and the substitution of (6) is as
below:

ẋ =

[
α̇1
α̇2

]

=

[
f1(α1, α2)
f2(α1, α2)

]

+

[
h1
h2

]

δ +

[
g1
g2

]

γ (8)

where

f1 =
l1

Jv
[F2(α2)l2 −F1(α1)l1] +

+
v

l1 + l2
(α2 − α1)−

1

mv
[F1(α1) + F2(α2)]

f2 =
l2

Jv
[F1(α1)l1 −F2(α2)l2] +

+
v

l1 + l2
(α2 − α1)−

1

mv
[F1(α1) + F2(α2)]

h1 =
v

l1 + l2
+ ν, h2 =

v

l1 + l2

g1 =−

(
l21
Jv
+
1

mv

)
G(α1), g2 =

(
l1l2

Jv
−
1

mv

)
G(α1)

2.2 Modeling of variable-geometry suspension construction

In the following the relationship between δc and γ is
proposed. The scheme of the variable-geometry suspension
system is illustrated in Figure 4. The ay modification of the
lateral position of A affects the rotation of the front wheel
around axis BK. Thus, the camber angle γ and steering
angle δc are simultaneously changed. The position of the
steering track-rod connection point K has an important
role in the distribution of δc and γ. Thus, it is necessary
to choose a vertical position Kz, by which the lateral force
on the tire is improved the most effectively.

The deduction of the relationships δc = fδc(ay,Kz) and
γ = fγ(ay,Kz) is detailed in Németh and Gáspár [2013b].
In the following the applied relations are proposed, which
have been constructed using the SimMechanics toolbox of
Matlab. In the model the arms and bodies of the system
are elements which are connected to the vehicle chassis by
joints. Figures 5(a), 5(b) and 5(c) show angles δc, γ and
half-track change ΔB at different Kz heights. The aim
of the example is to illustrate the relationship between
signals. The variation of Kz has a great influence on angle
δc and it modifies γ slightly. KB is the axis of wheel
rotation during the actuation ay, therefore its orientation
influences the relationship between these angles. Since
generally δc and γ are in conflict, it is necessary to find
an appropriate solution to parameter Kz. In the analyzed
construction Kz has a significant influence on δc and with
an increased Kz it is possible to achieve high lateral tire
force. Moreover, Kz influences the lateral movement of
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Fig. 4. Wheel position related to the steering and the
camber angle



T , i.e., the half-track change which is denoted by ΔB.
It has an important role in tire wear. Consequently, the
steering angle, the camber angle and the half-track change
are functions of the actuation, i.e., δc = fδc(ay), γ = fγ(ay)
and ΔB = fΔB(ay). The presented example also shows the
conflict between the three parameters. A high Kz prefers
δc, while it is disadvantageous for γ.
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Fig. 5. Influence of Kz on the relationship between δc, γ
and ΔB

3. NONLINEAR APPROACH FOR ACTUATOR
EFFICIENCY ANALYSIS

In this section the fundamental concepts of the Sum-
of-Squares (SOS) programming are introduced, which is
a suitable method to analyze and control a nonlinear
polynomial systems. The method is applied to determine
actuator limit influences in vehicle dynamics.

3.1 Theoretical background

Several papers deal with SOS programming, which has
been elaborated in the past decade for control purposes.
Important theorems in SOS programming was proposed
in Parrilo [2003]. Prajna et al. [2004] showed sufficient
conditions for the solutions to nonlinear control problems,
which are formulated in terms of state dependent Linear
Matrix Inequalities (LMI). Jarvis-Wloszek et al. [2003]
introduced the application of SOS programming to sev-
eral control problems, e.g. reachable set computation and
control design algorithm. The local stability analysis of
polynomial systems and an iterative computation method
for their region of attraction were presented in Tan and
Packard [2008]. In Scherer and Hol [2006] the SOS method
was applied to non-convex problems. Robust performance
in polynomial control systems was analyzed in Topcu and
Packard [2009]. As a new result the maximum controlled
invariants sets of polynomial control systems were calcu-
lated in Korda et al. [2013].

The following definitions are essential to understand SOS
programming Jarvis-Wloszek et al. [2003]. The basic el-

ements of the method are polynomials and SOS as de-
fined below: A Polynomial f in n variables is a fi-
nite linear combination of the functions mα(x) := xα =
xα11 x

α2
2 ∙ ∙ ∙x

αn
n for α ∈ Z

n
+, degmα =

∑n
i=1 αi:

f :=
∑

α

cαmα =
∑

α

cαx
α (9)

with cα ∈ R. Define R to be the set of all polynomials in n
variables. The degree of f is defined as f := maxα degmα.
The set of Sum-of-Squares (SOS) polynomials in n
variables is defined as:

Σn :=

{

p ∈ Rn p =

t∑

i=1

f2i , fi ∈ Rn, i = 1, . . . , t

}

(10)

The goal of the nonlinear actuator analysis is the
determination of their intervention limits next to a peak-
bounded actuation. With an appropriate intervention of
the actuators some of the instable regions can be stabilized.
In the next section an answer to the following question is
sought: how much is the largest state-space region where
the stability of the system can be guaranteed by a given
peak-bounded control input? This question leads to the
computation of Controlled Invariant Sets.

3.2 Computation method of Controlled Invariant Sets

The state-space representation of the system is given in
the next form, see (8):

ẋ = f(x) + gu (11)

where f(x) is a matrix, which incorporates smooth poly-
nomial functions and f(0) = 0. In the next analysis one
control input is considered, thus u = Mbr or u = δ. The
global asymptotical stability of the system at the origin
is guaranteed by the existence of the Control Lyapunov
Function of the system defined as follows Sontag [1989]: A
smooth, proper and positive-definite function V : Rn → R
is a Control Lyapunov Function for system if

inf
u∈R

{
∂V

∂x
f(x) +

∂V

∂x
g ∙ u

}

< 0 (12)

for each x 6= 0. According to Definition 3.2 two cases are
differentiated:

• if ∂V
∂x
f(x) < 0 then the system is stable and u ≡ 0.

This stability scenario is contained by the next two
stability criteria.
• if ∂V

∂x
f(x) > 0 then the system is unstable. However,

the system can be stabilized
∙ if ∂V

∂x
g < 0 and ∂V

∂x
f(x) + ∂V

∂x
g ∙ umax < 0, the

upper peak-bound of control input u stabilizes
the system.
∙ if ∂V

∂x
g > 0 and ∂V

∂x
f(x) − ∂V

∂x
g ∙ umax < 0, the

lower peak-bound of control input u stabilizes the
system. Note that umin = −umax.

The Controlled Invariant Set of the system (11) is defined
as the level-set of the Control Lyapunov Function at
V (x) = 1. Thus, the fulfilment of the previous stability
criterion must be guaranteed at V (x) ≤ 1.

In the following an iterative computation method is pro-
posed to find the maximum Controlled Invariant Set,
which can lead to an easier calculation according to our
experience. The practical method contains three steps:



Step 1: The region of attraction of the uncontrolled
system ẋ = f(x) is determined as an initial set. In
this step the maximum level set of V0 = 1 is found,
which is incorporated in the stabile region. The SOS
based computation of region of attraction was presented
in Jarvis-Wloszek [2003].

Step 2: An η parameter is chosen and Vη = V0 ∙ η is
checked as a Local Control Lyapunov Function. The level-
set Vη = 1 represents a Controlled Invariant Set Sη, in
which the system can be stabilized using a finite control
input u. Depending on parameter η the size of the level-set
can be enlarged or reduced. The SOS based computation
of Local Control Lyapunov Function is proposed in Tan
and Packard [2008].

Step 3: In the final step the acceptability and the en-
larging possibility of Sη Controlled Invariant Set must be
checked. The peak-bounds of the actuation are umin =
−umax and umax. Sinst = ∂V

∂x
f(x) > 0 is the instable

region of the system. Smin =
∂V
∂x
f(x)− ∂V

∂x
g ∙ umax > 0 is

the region, which can not be stabilized by umin. Similarly,
Smax =

∂V
∂x
f(x) + ∂V

∂x
g ∙ umax > 0 is the region, which

can not be stabilized by umax. If Sη is an appropriate
Controlled Invariant Set and Vη is an appropriate Control
Lyapunov Function, then

Sη
⋂
Sinst

⋂
Smin

⋂
Smax = ∅ (13)

The emptiness of the intersection condition defined below
can be checked manually by the plot of Sη, Sinst, Smin and
Smax. Additionally, if Sη is appropriate then η value can be
reduced in the previous step to maximize the Controlled
Invariant Set.

4. DEMONSTRATION OF ACTUATOR EFFICIENCY

In the following an example of Maximum Controlled
Invariant Set S analysis is proposed. Since wheel tilting has
a great impact in the design of lightweight vehicles, in the
example a small vehicle with double-wishbone suspension
is considered, see Table 1.

Table 1. Data of vehicle model

m 800kg c1,1 827.6 c1,2 551.8

J 300kgm2 c2,1 −3.315 c2,2 −2.21
l2 1.1m c3,1 −8.211 c3,2 −5.474
l1 0.9m c4,1 0.133 c4,2 0.089

ν 20 c5,1 0.04 c5,2 0.027

g0 100 c6,1 −0.0012 c6,2 −8.2 ∙ 10−4

g4 −0.005

The form of the polynomial tire model is the following, see
(2):

F1(α1) =
6∑

j=1

cj,1α
j
1, F2(α2) =

6∑

j=1

cj,2α
j
2, (14a)

G(α1) = g0 + g4α
4
1. (14b)

In the analysis the influence of Kz on the Maximal Con-
trolled Invariant Sets is examined. The maximal con-
trol input of the variable-geometry suspension actuator
is |ay,max| = 150mm, see Figure 5. Two scenarios are
compared in the example: in the first case the variable-
geometry suspension with different Kz parameters is con-
sidered, the dynamics of the vehicle is influenced during

steering and tilting effects. In the second case the front
wheel steering system with steering angle limitation |δmax|
is supposed, where |δmax| is equal to the maximal steering
effect of the variable-geometry suspension, see Figure 5(a).

The Maximum Controlled Invariant Sets at different ve-
locities and Kz = 300mm, |δmax| = 18◦ are illustrated
in Figure 6. Since the instable regions of the lateral dy-
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namics increase at higher velocity, the controllable region
with limited control input is reduced. At v = 65km/h
the steering and the suspension sets reach the limit of
model validity, thus the wheel camber angle has relevance
at v > 65km/h. During the simultaneous actuation of
steering and tilting, S regions are enlarged compared to
the individual steering. In Figure 6 the distance of set
boundary from zero increases approximately 10%. When
the results are compared with Figure 1 (which is calculated
using the same parameters) the efficiency of the proposed
set computation method is conspicuous: the increase of
instable regions and the benefit of variable-geometry sus-
pension are demonstrated.

In Figure 7 the Maximal Controlled Invariant Sets of
each Kz value are compared at fixed velocities. When
Kz = 100mm the wheel tilting intervention is dominant,
while steering has a slight counter-influence. Thus, Kz =
100mm can be analyzed in variable-geometry suspension,
because pure steering is inefficient. Kz = 300mm leads
to a balance between the camber and the steering angle,
while at Kz = 500mm steering is preferred.

Figure 7 also shows that construction parameter Kz =
100mm results in a small S region at both velocities.
Thus, camber angle intervention is insufficient by itself,
so it is necessary to find a Kz, which causes γ and δc
angles simultaneously. It can be seen that the simultane-
ous actuation of steering and wheel tilting leads to the
enlargement of S, see Kz = 300mm and Kz = 500mm
scenarios. However, the enlargement is more significant at
Kz = 300mm. Moreover, S region of Kz = 300mm is
larger than the region of Kz = 500mm. The reason for
these phenomena is the reduction of the maximal γ at
high Kz values.

The results of the analysis show that Kz influences the
Maximum Controlled Invariant Sets significantly. The
minimization of γ or δc leads to small sets, thus it is
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Fig. 7. Maximal Controlled Invariant Sets

required to find a balance between the tilting and steering
effects of variable-geometry suspension. Another impor-
tant performance of the system is half-track change ΔB.
Thus, the following criterion results in an optimal Kz
height of suspension construction:

min
Kz∈Kz





vmax∑

i=vmin

1

Ar (Si(Kz))
+Q

ay,max∫

−ay,max

|ΔB(Kz, ay)|day






(15)
where Kz is the set of possible Kz values, vmax and
vmin are the minimal and maximal velocity values in the
region of investigation, ay,max is the intervention limit
of the variable-geometry suspension. Ar (Si(Kz)) is the
area of the ith Maximal Controlled Invariant Set. Q is a
design parameter, which guarantees a balance between the
maximization of Ar (Si(Kz)) and the minimization of ΔB.

5. CONCLUSION

In the paper the steering and wheel tilting abilities of
the variable-geometry suspension have been analyzed. The
effects of the camber angle γ and steering angle δc on the
operation regions have been analyzed based on the nonlin-
ear polynomial SOS programming method. The analysis
has provided important information for the controlled in-
variant sets and, thus the functional reconfiguration pos-
sibilities of the actuators.
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