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Abstract. In the past two decades, several results appeared on feature
reduction applying rough set theory. However, most of these methods are
implemented on static decision tables. Using a distance measure, in this
paper we propose algorithms to find the reducts of decision tables when
adding or deleting objects. Since we can avoid re-running the original
algorithms over the entire set of objects, our methods significantly reduce
the running time for attribute reduction in dynamic data.

1. Introduction

Attribute or feature selection is one of the crucial problems of data mining
and machine learning. Feature selection methods that apply rough set theory
are also called attribute reduction. Attribute reduction in decision tables aims
to find the minimal subset of conditional features that preserves the decision
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power of the original table. The feature subset is called a reduct. In the past
two decades, feature reduction has attracted much attention from researchers
of rough sets. However, most of the proposed algorithms can only be applied
to static data sets. In the real world, decision tables are usually updated and
changed with time. Modifications can vary from adding or deleting objects or
features to updating existing objects. As a suboptimal solution for a changing
table, we have to repeatedly run the existing algorithms to find reducts. In
this case, the time spent for recomputation is quite large.

In the last few years, some researchers have developed incremental methods
to find reducts on dynamic decision tables based on different measures. In
[2, 3, 13], authors used positive region and discernibility matrix when adding
new objects. In [7, 10, 11], authors constructed formulas for three entropies
(Shannons entropy, Liang entropy and combination entropy) when adding or
deleting objects. However, these formulas are quite complex. Moreover, the
methods mentioned above have not completely dealt with dynamic decision
tables.

In this paper we propose a distance measure between two attribute sets
of a decision table. Using the measure, we give two algorithms for finding
the reduct of a decision table after adding or deleting objects. Similar to
other incremental algorithms, our ones save running time after addition or
deletion by not recomputing the reducts on the entire object set but only
update them. Even better, since our distance formula is less complicated than
those of Shannons entropy, our algorithms run faster than those of [7, 10, 11].

This paper is organized as follows. In Section 2, we summarize some prelim-
inary knowledge on rough set theory and related work on feature reduction in
decision tables. Section 3 briefly presents the attribute reduction method based
on distance measures. In Section 4, we construct two algorithms for finding
reducts when one object is added or deleted. The conclusion of the paper and
further research are presented in Section 5.

2. Basic concepts

In this section we summarize some basic concepts in rough set theory [9]
and an overview of rough set based methods for attribute reduction in decision
tables.

An information system is a couple IS = (U,A) where U is a finite nonempty
set of objects and A is a finite nonempty set of features. Each a ∈ A determines
a map a : U → Va where Va is the value set of a.
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Given an information system IS = (U,A), each P ⊆ A determines an
equivalence relation

IND (P ) = {(u, v) ∈ U × U |∀a ∈ P, a (u) = a (v)} .

Let the partition of U by IND(P) be denoted by U/P, and the equivalence
class containing u by [u]P . Then let [u]P = {v ∈ U |(u, v) ∈ IND (P )}.

Given an information system IS = (U,A), B ⊆ A and X ⊆ U , let BX =
{u ∈ U |[u]B ⊆ X } and BX = {u ∈ U |[u]B ∩X 6= ∅}, respectively, denote the
lower and upper approximation of X with respect to B.

A decision table is a special form of an information system, where A in-
cludes two separate subsets, the condition attribute subset C and the decision
attribute subset D. In other words, a decision table is DS = (U,C ∪D) where
C ∩D = ∅.

Let DS = (U,C ∪D) be a decision table. Then POSC(D) =
⋃

Di∈U/D

(CDi)

is called the C -Positive region of D. One can easily obtain that POSC(D) is a
set of objects belonging to U that can be partitioned by C into decision classes
of D. A decision table DS is consistent if and only if POSC(D) = U ; otherwise,
it is inconsistent.

Attribute reduction is the task to select the minimal subset of the condition
attribute set that preserves the ability of the original decision table to parti-
tion the objects. In the past two decades, heuristic attribute reduction meth-
ods based on rough set theory have attracted attention of many researchers.
These heuristic methods find the best reduct with respect to the classification
quality of the features, also referred to as feature significance. In [5, 12], the
authors summarize and categorize feature reduction methods in decision tables
into three groups: (1) Positive region methods, including attribute reduction
methods based on positive region; (2) Shannons entropy methods, including
the method using Shannons entropy and method using relational algebra; (3)
Liang entropy methods, including the method using Liang entropy, methods
using information entropy and methods using discernibility matrix.

Using distance measures, the authors of [8] proposed a method for attribute
reduction based on the Jaccard distance between two infinite sets and proved
this method belongs to the group Shannons entropy methods. In the next sec-
tion, we construct a new metric between two infinite sets with a corresponding
method for attribute reduction.
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3. Metric based attribute reduction

3.1. Metric between two knowledges and properties

A metric on the set U is a map d : U × U → [0,∞) that satisfies the
following conditions for any x, y, z ∈ U [1]

P(1) d(x,y) ≥ 0, d(x,y) = 0 if and only if x = y,

P(2) d(x,y) = d(y,x),

P(3) d(x,y) + d(y,z) ≥ d(x,z).

Theorem 3.1. [4] Given an infinite set of objects U and the family subsets
P (U) of U, for any X,Y ∈ P (U), d (X,Y ) = |X ∪ Y | − |X ∩ Y | is a metric
between X and Y.

From the metric between two infinite sets as Theorem 3.1, we construct the
metric between two knowledges as defined next, generated by two attribute
sets on a decision table.

Given a decision table DS = (U,C ∪D), for each P ⊆ C, K (P ) =
{[ui]P |ui ∈ U } is called a knowledge of P on U [9]. K(P) includes |U | el-
ements where each one is a partition in U/P , also referred as a knowledge
granule. Let the family of all knowledges on U be denoted by K (U).

Theorem 3.2. The map d : K (U)×K (U)→ [0,∞) defined by

d (K (P ) ,K (Q)) =
1

|U |2
|U |∑
i=1

(∣∣∣[ui]P ∪ [ui]Q

∣∣∣− ∣∣∣[ui]P ∩ [ui]Q

∣∣∣)
is a metric between K(P) and K(Q).

Proof. P(1) Applying Theorem 3.1 for two sets [ui]P and [ui]Q with ui ∈ U ,

one can obtain
∣∣∣[ui]P ∪ [ui]Q

∣∣∣−∣∣∣[ui]P ∩ [ui]Q

∣∣∣ ≥ 0, as a result d (K (P ) ,K (Q)) ≥

0; d (K (P ) ,K (Q)) = 0 if and only if
∣∣∣[ui]P ∩ [ui]Q

∣∣∣ =
∣∣∣[ui]P ∪ [ui]Q

∣∣∣ ⇔
[ui]P ∩ [ui]Q = [ui]P ∪ [ui]Q ⇔ [ui]P = [ui]Q for any ui ∈ U , i.e. K(P)=K(Q).

P(2) According to the definition, d (K (P ) ,K (Q)) = d (K (Q) ,K (P )) for
any K(P ),K(Q) ∈ K (U).

P(3) According to the definition, one can obtain

d (K (P ) ,K (Q)) + d (K (Q) ,K (R)) =

= 1
|U |2

|U |∑
i=1

(∣∣∣[ui]P ∪ [ui]Q

∣∣∣− ∣∣∣[ui]P ∩ [ui]Q

∣∣∣)+
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+ 1
|U |2

|U |∑
i=1

(∣∣∣[ui]Q ∪ [ui]R

∣∣∣− ∣∣∣[ui]Q ∩ [ui]R

∣∣∣)
= 1
|U |2

|U |∑
i=1

d
(

[ui]P , [ui]Q

)
+ 1
|U |2

|U |∑
i=1

d
(

[ui]Q, [ui]R

)
= 1
|U |2

|U |∑
i=1

d
(

[ui]P , [ui]Q

)
+ d

(
[ui]Q, [ui]R

)
≥ 1
|U |2

|U |∑
i=1

d ([ui]P , [ui]R) = d (K (P ) ,K (R)) .

From (P1), (P2), (P3) we get that d (K (P ) ,K (Q)) is a metric on K (U).

�

Proposition 3.1. Given a decision table DS = (U,C ∪D) and P,Q ⊆ C,
we have

(i) d (K (P ) ,K (Q)) reaches the minimum value 0 if and only if K (P ) =
K (Q),

(ii) d (K (P ) ,K (Q)) reaches the maximum value 1 − 1
|U | if and only if

K (P ) = {[ui]P = U |ui ∈ U }, K (Q) =
{

[ui]Q = {ui} |ui ∈ U
}

or

K (P ) = {[ui]P = {ui} |ui ∈ U }, K (Q) =
{

[ui]Q = U |ui ∈ U
}

.

Proof. From Theorem 3.2 we have d (K (P ) ,K (Q)) reaches the minimum
value 0 if and only if K (P ) = K (Q). d (K (P ) ,K (Q)) reaches the maximum

value when
∣∣∣[ui]P ∪ [ui]Q

∣∣∣ reaches the maximum value |U | and
∣∣∣[ui]P ∩ [ui]Q

∣∣∣
reaches the minimum value 1, i.e. [ui]P = U , [ui]Q = {ui} or [ui]P = {ui},

[ui]Q = U . The maximum value is 1
|U |2

|U |∑
i=1

(|U | − 1) = 1− 1
|U | . �

Proposition 3.2. Given a decision table DS = (U,C ∪D) and two parti-
tions U/C = {C1, C2, ..., Cm}, U/D = {D1, D2, ..., Dn}, we have

d (K (C) ,K (C ∪D)) =
1

|U |2
n∑

i=1

m∑
j=1

|Di ∩ Cj | |Cj −Di| .

Proof. Let Di∩Cj =
{
ui1, ui2, ..., uisj

}
for |Di ∩ Cj | = sj and |Di| = ti. Then

m∑
j=1

sj = ti and
n∑

i=1

ti = |U | . We have

Di ∩ Cj = [ui1]D ∩ [ui1]C = [ui2]D ∩ [ui2]C = ... =
[
uisj

]
D
∩
[
uisj

]
C
,

|Di ∩ Cj | = |[ui1]D ∩ [ui1]C | = |[ui2]D ∩ [ui2]C | = ... =
∣∣[uisj

]
D
∩
[
uisj

]
C

∣∣ =
sj ,
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|Di ∩ Cj | |Cj −Di| = |Di ∩ Cj | |Cj − (Di ∩ Cj)| =
= |[ui1]C − ([ui1]D ∩ [ui1]C)|+ ... +

∣∣[uisj

]
C
−
([
uisj

]
D
∩
[
uisj

]
C

)∣∣
=

si∑
k=1

|[uik]C − ([uik]D ∩ [uik]C)|,

m∑
j=1

|Di ∩ Cj | |Cj −Di| =
m∑
j=1

sj∑
k=1

|[uik]C − ([uik]D ∩ [uik]C)|

=
ti∑

k=1

|[uik]C − ([uik]D ∩ [uik]C)|.

So that,
n∑

i=1

m∑
j=1

|Di ∩ Cj | |Cj −Di| =
n∑

i=1

ti∑
k=1

|[uik]C − ([uik]D ∩ [uik]C)|

=
|U |∑
i=1

|[ui]C − ([ui]D ∩ [ui]C)|,

n∑
i=1

m∑
j=1

|Di ∩ Cj | |Cj −Di| =
|U |∑
i=1

|[ui]C − [ui]C∪D| =
|U |∑
i=1

(|[ui]C | − |[ui]C∪D|)

=
|U |∑
i=1

(|[ui]C ∪ [ui]C∪D| − |[ui]C ∩ [ui]C∪D|).

Consequently, d (K (C) ,K (C ∪D)) = 1
|U |2

n∑
i=1

m∑
j=1

|Di ∩ Cj | |Cj −Di| . �

Proposition 3.3. Given a decision table DS = (U,C ∪D), one can obtain
d (K (C) ,K (C ∪D)) = E (D |C ), where E (D |C ) is the Liang conditional
entropy defined in [6].

Proof. Let U/C = {C1, C2, ..., Cm} and U/D = {D1, D2, ..., Dn}. According
to the definition of the Liang entropy in [5], we have

E (D |C ) = 1
|U |2

n∑
i=1

m∑
j=1

|Di ∩ Cj |
∣∣Dc

i − Cc
j

∣∣ = 1
|U |2

n∑
i=1

m∑
j=1

|Di ∩ Cj | |Dc
i − Cj |

= 1
|U |2

n∑
i=1

m∑
j=1

|Di ∩ Cj | |Cj − (Di ∩ Cj)| = 1
|U |2

n∑
i=1

m∑
j=1

|Di ∩ Cj | |Cj −Di|

= d (K (C) ,K (C ∪D)) . �

Definition 3.1. Given a decision table DS = (U,C ∪D), c ∈ C is dis-
pensable in DS if d(K (C − {c}) ,K (C − {c} ∪D)) = d(K (C) ,K (C ∪D));
otherwise, c is indispensable. The set of all indispensable attributes in DS is
called the core and denoted by CORE(C).

Definition 3.2. Given a decision table DS = (U,C ∪D), R ⊆ C. If

(i) d (K (R) ,K (R ∪D)) = d (K (C) ,K (C ∪D)) and,
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(ii) ∀r ∈ R, d(K (R− {r}) ,K (R− {r} ∪D)) 6= d(K (C) ,K (C ∪D))

then R is a reduct of C based on metric.

From Proposition 3.3, one can see that the reduct based on the metric is
equivalent to the reduct based on the Liang entropy. So, metric based attribute
reduction belongs to the group of Liang entropy based methods.

Definition 3.3. Given a decision table DS = (U,C ∪D), B ⊂ C and
b ∈ C −B, the significance of is defined by

SIGB (b) = d (K (B) ,K (B ∪D))− d (K (B ∪ {b}) ,K (B ∪ {b} ∪D))

where U/ {∅} = U .

According to [6], E (D |B ∪ {b} ) ≤ E (D |B ). So

d (K (B ∪ {b}) , K (B ∪ {b} ∪D)) ≤ d (K (B) , K (B ∪D))

and SIGB (b) ≥ 0. Hence, SIGB (b) is caculated by the amount of change in
the distance between B and B∪D when adding b to B. The greater is SIGB (b),
the greater is the amount of change, or the more significant b is and vice versa.
This significance is the attribute selection criteria of the heuristic algorithm for
finding reducts of decision tables.

Algorithm 3.1. Heuristic algorithm for finding the best reduct based on
the metric.

Input: Decision table DS = (U,C ∪D).

Output: The best reduct R.

//Finding the core set CORE(C);

1. CORE (C) = ∅;

2. For c ∈ C

3. If d(K (C − {c}) ,K (C − {c} ∪D)) 6= d(K (C) ,K (C ∪D)) then

CORE (C) := CORE (C) ∪ {c} ;

//Finding the reduct based on metric

4. R = CORE (C)

5. While d (K (R) ,K (R ∪D)) 6= d (K (C) ,K (C ∪D)) do

6. Begin

7. For a ∈ C −R calculate SIGR (a);

8. Select am ∈ C −R such that SIGR (am) = Max
a∈C−R

{SIGR (a)};

9. R = R ∪ {am} ;
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10. End;

11. Return R;

Given a decision table DS = (U,C ∪ {d}) by supposing that decision set
D includes only one element D = {d}, according to [14], the time complexity
(hereinafter referred to as complexity) for getting the conditional partition U/C
is O (|U | |C|), hence the complexity for computing the metric

d (K (C) , K (C ∪ {d}))

is

O

|U | |C|+ |U |+ n∑
i=1

Di

m∑
j=1

Cj

 = O
(
|U | |C|+ |U |2

)
,

the complexity for computing the core set CORE(C) from steps 1 to 3 is

O
(
|C|
(
|U | |C|+ |U |2

))
= O

(
|C|2 |U |+ |C| |U |2

)
, and the complexity for

computing the reduct from steps 4 to 9 is O
(
|C|2 |U |+ |C| |U |2

)
. Hence, the

complexity of algorithm 3.1 is O
(
|C|2 |U |+ |C| |U |2

)
.

4. Algorithms for finding the reduct based on metric when adding
or deleting one object

4.1. Formula for calculating the metric when adding one object

Given a decision table DS = (U,C ∪D) and B ⊆ C, let

U/B = {X1, X2, ...Xm} and U/D = {Y1, Y2, ..., Yn}.

The metric between two knowledges K (B) and K (B ∪D) on U is

dU (K (B) ,K (B ∪D)) .

Proposition 4.1. Suppose that object x is added to U, then one can obtain:

1) If x /∈ Xj for any j = 1..m and x /∈ Yi for any i = 1..n , then

dU∪{x} (K (B) ,K (B ∪D)) = |U |2

|U+1|2 dU (K (B) ,K (B ∪D)).

2) If x /∈ Xj for any j = 1..m and x ∈ Yq for q ≤ n, then

dU∪{x} (K (B) ,K (B ∪D)) = |U |2

|U+1|2 dU (K (B) ,K (B ∪D)).
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3) If x ∈ Xp for p ≤ m and x /∈ Yi for any i = 1..n, then

dU∪{x} (K (B) ,K (B ∪D)) = 1
|U+1|2

(
|U |2dU (K (B) ,K (B ∪D)) + 2 |Xp|

)
.

4) If x ∈ Xp for p ≤ m and x ∈ Yq for q ≤ n, then

dU∪{x} (K (B) ,K (B ∪D)) =

= 1
|U+1|2

(
|U |2dU (K (B) ,K (B ∪D)) + 2 |Xp − Yq|

)
.

Proof. 1) Suppose that Xm+1 = {x} and Yn+1 = {x}. We have

dU∪{x} (K (B) ,K (B ∪D)) = 1
|U+1|2

n+1∑
i=1

m+1∑
j=1

|Yi ∩Xj | |Xj − Yi|

= 1
|U+1|2

(
n∑

i=1

m∑
j=1

|Yi ∩Xj | |Xj − Yi|+
m+1∑
j=1

|Yn+1 ∩Xj | |Xj − Yn+1|

+
n∑

i=1

|Yi ∩Xm+1| |Xm+1 − Yi|
)

= |U |2

|U+1|2 dU (K (B) ,K (B ∪D)).

2) Suppose that Xm+1 = {x} and x ∈ Yq for q ≤ n. We have:

dU∪{x} (K (B) ,K (B ∪D)) = 1
|U+1|2

(
n∑

i=1,i6=q

m+1∑
j=1

|Yi ∩Xj | |Xj − Yi| +

+
m+1∑
j=1

|(Yq ∪ {x}) ∩Xj | |Xj − (Yq ∪ {x})|

)

= 1
|U+1|2

(
n∑

i=1,i6=q

m∑
j=1

|Yi ∩Xj | |Xj − Yi|+
m∑
j=1

|Yq ∩Xj | |Xj − Yq|

)

= 1
|U+1|2

(
n∑

i=1

m∑
j=1

|Yi ∩Xj | |Xj − Yi|

)
= |U |2

|U+1|2 dU (K (B) ,K (B ∪D)).

3) Suppose that x ∈ Xp for p ≤ m and Yn+1 = {x}. We have:

dU∪{x} (K (B) ,K (B ∪D)) = 1
|U+1|2

(
n+1∑
i=1

m∑
j=1,j 6=p

|Yi ∩Xj | |Xj − Yi|+

n+1∑
i=1

|Yi ∩ (Xp ∪ {x})| |(Xp ∪ {x})− Yi|
)

= 1
|U+1|2

(
n∑

i=1

m∑
j=1

|Yi ∩Xj | |Xj − Yi|+
n∑

i=1

|Yi ∩Xp| |{x}|+ |Xp| |{x}|

)
= 1
|U+1|2

(
|U |2dU (K (B) ,K (B ∪D)) + 2 |Xp|

)
.

4) Suppose that x ∈ Xp for p ≤ m and x ∈ Yq for q ≤ n. We have:

dU∪{x} (K (B) ,K (B ∪D)) = 1
|U+1|2

n∑
i=1,i6=q

m∑
j=1,j 6=p

|Yi ∩Xj | |Xj − Yi|+
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+ 1
|U+1|2

m∑
j=1,j 6=p

|(Yq ∪ {x}) ∩Xj | |Xj − (Yq ∪ {x})|+

+ 1
|U+1|2 |(Yq ∪ {x}) ∩ (Xp ∪ {x})| |(Xp ∪ {x})− (Yq ∪ {x})|+

+ 1
|U+1|2

n∑
i=1,i6=q

|Yi ∩ (Xp ∪ {x})| |(Xp ∪ {x})− Yi|

= 1
|U+1|2

(
|U |2deU (K (B) ,K (B ∪D)) + |Xp − Yq|+ |(U − Yq) ∩Xp|

)
= 1
|U+1|2

(
|U |2dU (K (B) ,K (B ∪D)) + 2 |Xp − Yq|

)
. �

4.2. Formula for calculating the metric when deleting one object

Proposition 4.2. Let x ∈ U be the element to be deleted from U. Then

1) If {x} = Xp for p ≤ m and {x} = Yq for q ≤ n, then

dU−{x} (K (B) ,K (B ∪D)) = |U |2

|U−1|2 dU (K (B) ,K (B ∪D)).

2) If {x} = Xp for p ≤ m and x ∈ Yq for q ≤ n, then

dU−{x} (K (B) ,K (B ∪D)) = |U |2

|U−1|2 dU (K (B) ,K (B ∪D)).

3) If x ∈ Xp for p ≤ m and {x} = Yq for q ≤ n, then

dU−{x} (K (B) ,K (B ∪D)) =

= 1
|U−1|2

(
|U |2dU (K (B) ,K (B ∪D))− 2 |Xp|+ 2

)
.

4) If x ∈ Xp for p ≤ m and x ∈ Yq for q ≤ n, then

dU−{x} (K (B) ,K (B ∪D)) =

= 1
|U−1|2

(
|U |2dU (K (B) ,K (B ∪D)) + |Xp ∩ Yq| − |Xp − Yq| − |Xp|

)
.

Proof. 1) Suppose that Xm = {x} and Yn = {x}. We have:

dU−{x} (K (B) ,K (B ∪D)) = 1
|U−1|2

n−1∑
i=1

m−1∑
j=1

|Yi ∩Xj | |Xj − Yi|

= 1
|U−1|2

(
n∑

i=1

m∑
j=1

|Yi ∩Xj | |Xj − Yi| −
m−1∑
j=1

|Yn ∩Xj | |Xj − Yn|−

−
n∑

i=1

|Yi ∩Xm| |Xm − Yi|
)

= |U |2

|U−1|2 dU (K (B) ,K (B ∪D)).

2) Suppose that Xm = {x} and x ∈ Yq for q ≤ n. We have:

dU−{x} (K (B) ,K (B ∪D)) = 1
|U−1|2

(
n∑

i=1,i6=q

m−1∑
j=1

|Yi ∩Xj | |Xj − Yi|+
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+
m−1∑
j=1

|(Yq − {x}) ∩Xj | |Xj − (Yq − {x})|

)

= 1
|U−1|2

(
n∑

i=1,i6=q

m∑
j=1

|Yi ∩Xj | |Xj − Yi|+
m∑
j=1

|Yq ∩Xj | |Xj − Yq|

)

= 1
|U−1|2

(
n∑

i=1

m∑
j=1

|Yi ∩Xj | |Xj − Yi|

)
= |U |2

|U−1|2 dU (K (B) ,K (B ∪D)).

3) Suppose that x ∈ Xp for p ≤ m and Yn = {x}. We have:

dU−{x} (K (B) ,K (B ∪D)) = 1
|U−1|2

(
n−1∑
i=1

m∑
j=1,j 6=p

|Yi ∩Xj | |Xj − Yi|+

+
n−1∑
i=1

|Yi ∩ (Xp − {x})| |(Xp − {x})− Yi|
)

= 1
|U−1|2

(
n∑

i=1

m∑
j=1

|Yi ∩Xj | |Xj − Yi| −
n−1∑
i=1

|Yi ∩Xp| |Xp − Yi|−

− |Yn ∩Xp| |Xp − Yn|+
n−1∑
i=1

|Yi ∩Xp| (|Xp − Yi| − 1)

)

= 1
|U−1|2

(
n∑

i=1

m∑
j=1

|Yi ∩Xj | |Xj − Yi| − 2 |Xp|+ 2

)
= 1
|U−1|2

(
|U |2dU (K (B) ,K (B ∪D))− 2 |Xp|+ 2

)
.

4) Suppose that x ∈ Xp for p ≤ m and x ∈ Yq for q ≤ n. We have:

dU−{x} (K (B) ,K (B ∪D)) = 1
|U−1|2

n∑
i=1,i6=q

m∑
j=1,j 6=p

|Yi ∩Xj | |Xj − Yi|+

+ 1
|U−1|2

m∑
j=1,j 6=p

|(Yq − {x}) ∩Xj | |Xj − (Yq − {x})|+

+ 1
|U−1|2 |(Yq − {x}) ∩ (Xp − {x})| |(Xp − {x})− (Yq − {x})|+

+ 1
|U−1|2

n∑
i=1,i6=q

|Yi ∩ (Xp − {x})| |(Xp − {x})− Yi|

= 1
|U+1|2

n∑
i=1,i6=q

m∑
j=1,j 6=p

|Yi ∩Xj | |Xj − Yi|+ 1
|U+1|2

m∑
j=1,j 6=p

|Yq ∩Xj | |Xj − Yq|+

+ 1
|U+1|2 (|Yq ∩Xp| − 1) |Xp − Yq|+ 1

|U+1|2
n∑

i=1,i6=q

|Yi ∩Xp| (|Xp − Yi| − 1)

= 1
|U−1|2

(
|U |2dU (K (B) ,K (B ∪D)) + |Xp ∩ Yq| − |Xp − Yq| − |Xp|

)
. �
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4.3. Algorithms for finding the reduct when adding or deleting one
object

At first, we construct an incremental algorithm for finding the reduct af-
ter adding a new object. Here Proposition 4.3 is used for constructing the
algorithm.

Proposition 4.3. Given a decision table DS = (U,C ∪D), B ⊆ C is a
reduct of DS based on the metric and x is the new element added to U. Let
U/B = {X1, X2, ...Xm}, U/C = {Y1, Y2, ..., Yn}. Then one can obtain:

1) If x /∈ Xj for any j = 1..m, then

dU∪{x} (K (B) ,K (B ∪D)) = dU∪{x} (K (C) ,K (C ∪D)).

2) If x ∈ Xp for p ≤ m and x /∈ Yi for any i = 1..n, then

dU∪{x} (K (B) ,K (B ∪D)) 6= dU∪{x} (K (C) ,K (C ∪D)).

3) If x ∈ Xp for p ≤ m and x ∈ Yq for q ≤ n, then

dU∪{x} (K (B) ,K (B ∪D)) = dU∪{x} (K (C) ,K (C ∪D)).

Proof. 1) and 2) can be directly drawn from Proposition 4.1 and Definition
3.2 of a reduct based on the metric. We will prove 3). According to Proposition
4.1, one can obtain

dU∪{x} (K (B) ,K (B ∪D)) =

=
1

|U + 1|2
(
|U |2dU (K (B) ,K (B ∪D)) + 2 |Xp −Dr|

)
for Dr ∈ U/D and x ∈ Xp, x ∈ Dr.

dU∪{x} (K (C) ,K (C ∪D)) =

=
1

|U + 1|2
(
|U |2dU (K (C) ,K (C ∪D)) + 2 |Yq −Dr|

)
for x ∈ Yq, x ∈ Dr.

Since B is the reduct of the DS, then

dU (K (B) ,K (B ∪D)) = dU (K (C) ,K (C ∪D)).

According to Proposition 3.3 we have E (D |B ) = E (D |C ). Since B ⊆ C,
then Yq ⊆ Xp. If Yq = Xp, obviously we gain the proof. If Yq ⊂ Xp, we
may assume that Yq = Xp ∪Xk. From E (D |B ) = E (D |C ) and [6] we have
Xp ⊆ Dr, Xk ⊆ Dr or Xp ⊆ Dr, Yq ⊆ Dr, so Xp −Dr = ∅ and Yq −Dr = ∅.
As a result, dU∪{x} (K (B) ,K (B ∪D)) = dU∪{x} (K (C) ,K (C ∪D)). �

Proposition 4.3 shows that if x does not belong to any equivalence class in
U/B and U/C, or x simultaneously belongs to one equivalence class in U/B
and U/C, then the metric dU (K (B) ,K (B ∪D)), dU (K (C) ,K (C ∪D)) is
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preserved, i.e the reduct is unchanged. From that, we construct the incremental
algorithm for finding reducts as follow:

Algorithm 4.1. The incremental algorithm for finding reducts based on
metric when adding a new object.

Input: Decision table DS = (U,C ∪D), reduct RU on U and new object
x.

Output: Reduct RU∪{x} on U ∪ {x}.
1. Assign R = RU , calculate U/R = {X1, X2, ...Xm};
2. If x ∈ Xp, Xp ∈ U/R then

3. Begin

4. Calculate U/C = {Y1, Y2, ..., Yn};
5. If x /∈ Yq, ∀q = 1..n then

6. Begin

7. While dU∪{x} (K (R) ,K (R ∪D)) 6= dU∪{x} (K (C) ,K (C ∪D)) do

8. Begin

9. For a ∈ C −R calculate SIGR (a);

10. Select am ∈ C −R such that SIGR (am) = Max
a∈C−R

{SIGR (a)}

11. R = R ∪ {am};
12. End;

13. End;

14. End;

15. For a ∈ R do

16. Begin

17. Calculate dU∪{x} (K (R− {a}) ,K ((R− {a}) ∪D));

18. If dU∪{x} (K (R− {a}) ,K ((R− {a}) ∪D)) =

= dU∪{x} (K (R) , K (R ∪D)) then R = R− {a};
19. End;

20. Return R.

According to [14], the complexity for calculating partition U/C is O (|C| |U |),
hence the complexity of the incremental formula for calculating metric in
Proposition 4.1 is O (|C| |U |+ m |C|+ |U |+ |Xp| |Yq|) = O (|C| |U |+ |Xp| |Yq|).
The complexity of the while loop between lines 7 to 12 is O (|C| (|C| |U |+ |Xp| |Yq|)).
The complexity of the for loop between lines 15 to 19 is O (|C| (|C| |U |+ |Xp| |Yq|)).
Hence the complexity of Algorithm 4.1 is O

(
|C|2 |U |+ |C| |Xp| |Yq|

)
. Obvi-

ously, |Xp| |Yq| is much less than |U |2, so we can say the complexity of Algo-
rithm 4.1 is much less than that of the original Algorithm 3.1.
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Similar to the case of adding one new object, the algorithm for finding
reducts when deleting one object is based on Proposition 4.4.

Proposition 4.4. Given a decision table DS = (U,C ∪D), a reduct B ⊆ C
of DS based on the metric and x ∈ U . Let U/B = {X1, X2, ...Xm}, U/C =
{Y1, Y2, ..., Yn}. Then one can obtain:

1) If x /∈ Xj for any j = 1..m, then

dU−{x} (K (B) ,K (B ∪D)) = dU−{x} (K (C) ,K (C ∪D)).

2) If x ∈ Xp for p ≤ m and x /∈ Yi for any i = 1..n, then

dU−{x} (K (B) ,K (B ∪D)) 6= dU−{x} (K (C) ,K (C ∪D)).

3) If x ∈ Xp for p ≤ m and x ∈ Yq for q ≤ n, then

dU−{x} (K (B) ,K (B ∪D)) = dU−{x} (K (C) ,K (C ∪D)).

Applying the formula for calculating the metric when deleting one object in
Proposition 4.2, Proposition 4.4 is similarly proved as the proof of Proposition
4.3. The algorithm for finding reducts in this case is worked out in the same
way as in Algorithm 4.1.

5. Conclusions

We proposed effective methods to optimize the running time for finding
reducts in databases that gradually get increased, changed and updated. Based
on an incremetal calculation, in this paper we use a distance measure to con-
struct two algorithms for finding reducts in the cases of adding or deleting one
object. Our algorithms for finding reducts can easily be extended to the case
when adding or deleting more than one objects. Also in this paper, we prove
that the time complexity of our algorithms is less than that one of original algo-
rithms. As further research, we could use the metric to constructing algorithms
for finding reducts in case of updating objects.

References

[1] Deza, M.M. and E. Deza, Encyclopedia of Distances, Springer, 2009.

[2] Demetrovics, J., V.D. Thi and N.L. Giang, An effective algorithm
for determining the set of all reductive attributes in incomplete decision



Metric based attribute reduction in dynamic decision tables 171

tables, Cybernetics and Information Technologies CIT, Sofia, Bulgarian
Academy of Sciences, 13 (4) (2013), 118–126.

[3] Guan, L. H., An incremental updating algorithm of attribute reduction
set in decision tables, FSKD’09 Proc. 6th Int. Conf. on Fuzzy Systems and
Knowledge Discovery, 2 (2009), 421–425.

[4] Halmos, P.R., Naive set theory, The University Series in Undergraduate
Mathematics, van Nostrand Company, 1960.

[5] Hu, F., G.Y. Wang, H. Huang H. and Y. Wu, Incremental attribute
reduction based on elementary sets, Proc. 10th Int. Conf. on Rough Sets,
Fuzzy Sets, Data Mining and Granular Computing, Regina, Canada, 2005,
185–193.

[6] Liang, J.Y, K.S. Chin, C.Y. Dang and C.M. R.C.M. Yam, New
method for measuring uncertainty and fuzziness in rough set theory, In-
ternational Journal of General Systems, 31 (4) (2002), 331–342.

[7] Liang, J.Y, F. Wang, C.Y. Dang and Y.H. Qian, A group incre-
mental approach to feature selection applying rough set technique, IEEE
Transactions on Knowledge and Data Engineering, 26 (2) (2014), 294–308.

[8] Long Giang Nguyen, Metric based attribute reduction in decision ta-
bles, The 2012 Int. Workshop on Rough Sets Applications (RSA2012),
FedCSIS Proceedings, IEEE, 2012, 333–338.

[9] Pawlak, Z., Rough Sets: Theoretical Aspects of Reasoning About Data,
Kluwer Academic Publishers, 1991.

[10] Wang, F., J.Y. Liang and Y.H. Qian, Attribute reduction: A dimen-
sion incremental strategy, Knowledge-Based Systems, 39 (2013), 95–108.

[11] Feng Wang, Jiye Liang and Chuangyin Dang, Attribute reduction
for dynamic data sets, Applied Soft Computing, 13 (1) (2013), 676–689.

[12] Wei, W., J.Y. Liang, Y.H. Qian, F. Wang and C.Y. Dang, Com-
parative study of decision performance of decision tables induced by at-
tribute reductions, International Journal of General Systems, Vol. 39 (8)
(2010), 813–838.

[13] Zhang, C.S, J. Jing Ruan and Y.H. Tan, An improved incremental
updating algorithm for core based on positive region, Journal of Compu-
tational Information Systems, 7 (9) (2011), 3127–3133.

[14] Xu, Z.Y., Z.P. Liu, B.R. Yang and W. Song, A quick attribute reduc-

tion algorithm with complexity of max
{
O (|C| ∗ |U |) , O

(
|C|2 ∗ |U/C|

)}
,

Journal of Computer, 29 (3) (2006), 391–398.



172 J. Demetrovics, Vu Duc Thi and Nguyen Long Giang

János Demetrovics
Institute for Computer Science and Control (MTA SZTAKI)
Hungarian Academy of Sciences
Budapest, Hungary
demetrovics@sztaki.mta.hu

Vu Duc Thi
Information Technology Institute
Vietnam National University (VNU)
Ha Noi, Viet Nam
vdthi@vnu.edu.vn

Nguyen Long Giang
Institute of Information Technology
Vietnam Academy of Science and Technology (VAST)
Ha Noi, Viet Nam
nlgiang@ioit.ac.vn


