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Abstract

We describe an efficient quantum algorithm for computing discrete log-
arithms in semigroups using Shor’s algorithms for period finding and the
discrete logarithm problem as subroutines. Thus proposed cryptosystems
based on the presumed hardness of discrete logarithms in semigroups are
insecure against quantum attacks. In contrast, we show that some general-
izations of the discrete logarithm problem are hard in semigroups despite
being easy in groups. We relate a shifted version of the discrete loga-
rithm problem in semigroups to the dihedral hidden subgroup problem,
and we show that the constructive membership problem with respect to
k ≥ 2 generators in a black-box abelian semigroup of order N requires

Θ̃(N
1
2
− 1

2k ) quantum queries.

1 Introduction

The presumed difficulty of computing discrete logarithms in groups is a common
cryptographic assumption. For example, such an assumption underlies Diffie-
Hellman key exchange, ElGamal encryption, and most elliptic curve cryptogra-
phy. While such cryptosystems may be secure against classical computers, Shor
showed that quantum computers can efficiently compute discrete logarithms
[19]. Shor originally described an algorithm for computing discrete logarithms
in the multiplicative group of a prime field, but it is well known that his ap-
proach efficiently computes discrete logarithms in any finite group, provided
only that group elements have a unique encoding and that group operations
can be performed efficiently.
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Here we consider the closely-related problem of computing discrete loga-
rithms in finite semigroups. A semigroup is simply a set equipped with an
associative binary operation. In particular, a semigroup need not have inverses
(and also need not have an identity element).

We work in a model of black-box semigroups (analogous to the model of
black-box groups [2]). In this model, the elements of a semigroup S are uniquely
represented by bit strings and we are given a black box that performs multiplica-
tion using this representation. In the quantum setting, this black box performs
the multiplication reversibly (i.e., it performs the map |x, y, z〉 7→ |x, y, z ⊕ xy〉,
where x, y, z are encodings of semigroup elements, xy is the encoding of the
corresponding product, and ⊕ denotes bitwise addition modulo 2) and can be
queried in superposition. It is conventional to charge unit cost for each query
to the black box.

In the discrete logarithm problem for a semigroup S, we are given two ele-
ments x, g ∈ S and are asked to find the smallest a ∈ N := {1, 2, . . .} such that
ga = x (or to determine that no such a exists). We write a = logg x.

At first glance, it may be unclear how a quantum computer could compute
discrete logarithms in semigroups. Shor’s discrete logarithm algorithm relies
crucially on the function (a, b) 7→ gax−b, but x−b is not defined in a semigroup.
In fact, hardness of the semigroup discrete logarithm problem has been proposed
as a cryptographic assumption that might be secure against quantum computers
[11]. The particular scheme described in [11], based on matrix semigroups, has
been broken by a quantum attack [16]. However, the algorithm of [16] uses a
reduction from discrete logarithms in matrix groups to discrete logarithms in
finite fields [14], so it does not apply to general semigroups.

Here we point out that in fact quantum computers can efficiently compute
discrete logarithms in any finite semigroup. Our approach is a straightforward
application of known quantum tools. The structure of the semigroup generated
by g can be efficiently determined using the ability of a quantum computer to
detect periodicity, as shown in Section 2. Once this structure is known, an algo-
rithm to compute discrete logarithms follows easily, as explained in Section 3.

On the other hand, some problems for semigroups are considerably harder
than for groups. In Section 4, we consider a shifted version of the discrete loga-
rithm problem in semigroups, namely solving the equation x = yga for a. This
problem appears comparably difficult to the dihedral hidden subgroup prob-
lem, even though the corresponding problem in a group can be solved efficiently
by computing a discrete logarithm. In Section 5, we consider the problem of
writing a given semigroup element as a product of k ≥ 2 given generators of
a black-box abelian semigroup. This problem can also be solved efficiently in
groups, whereas the semigroup version is provably hard, requiring Ω(N

1
2− 1

2k )
quantum queries for an N -element semigroup. In fact, this bound is optimal up
to logarithmic factors, as we show using the algorithm for the shifted discrete
logarithm problem.

After posting a preprint of this work, we learned of independent related work
by Banin and Tsaban, who showed that the semigroup discrete logarithm prob-
lem can be solved efficiently using an oracle for the discrete logarithm problem
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Figure 1: The semigroup 〈g〉.

in a cyclic group [3]. In particular, this implies a fast quantum algorithm for
the semigroup discrete logarithm problem.

2 Finding the period and index of a semigroup
element

Given a finite semigroup S, fix some element g ∈ S. The element g generates a
subsemigroup 〈g〉 := {gj : j ∈ N} of S. The value

t := min{j ∈ N : gj = gk for some k ∈ j + N}

is called the index of g. The index exists since S is finite. The value

r := min{j ∈ N : gt = gt+j}

is called the period of g. These definitions are illustrated in Figure 1. If j ≥ t,
we say that gj is in the cycle of g; if j < t, we say that gj is in the tail of g.

We suppose that the elements of S are represented using logN bits, and
we consider an algorithm to be efficient if it runs in time poly(logN). Since
|〈g〉| = t + r, clearly t + r ≤ N . Typically, logN = poly(log(t + r)), in which
case an efficient algorithm runs in time poly(log(t+ r)).

We claim that there is an efficient quantum algorithm to compute t and r.
(Throughout this article, we consider bounded-error quantum algorithms.)

Lemma 1. There is an efficient quantum algorithm to determine the index and
the period of an element g of a black-box semigroup.

Proof. First we find the period, as follows. Create the state 1√
M

∑M
j=1 |j〉|gj〉

for some sufficiently large M (it suffices to take M > N2+N). Note that we can
compute gj efficiently even for exponentially large j using repeated squaring, so
this state can be made in polynomial time. Next, we discard the second register.
To understand what happens when we do this, suppose we measure the second
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register. If we obtain an element in the tail of g, then the first register is left
in a computational basis state, which is useless. However, with probability at
least (M − t + 1)/M ≥ 1 − N/M , we obtain an element in the cycle of g, and
we are left with an r-periodic state

1√
L

L−1∑
j=0

|x0 + jr〉

for some unknown x0 ∈ {t, t+ 1, . . . , t+ r−1}, where L is either b(M − t)/rc or
d(M − t)/re (depending on the value of x0). This is precisely the type of state
that appears in Shor’s period-finding algorithm (see for example [5, Algorithm
5]). After Fourier transforming this state over ZM and measuring, we obtain
the outcome k ∈ ZM with probability

Pr(k) =
1

LM

∣∣∣∣∣
L−1∑
j=0

e2πik(x0+jr)/M

∣∣∣∣∣
2

=
sin2(πkrLM )

LM sin2(πkrM )
.

A simple calculation (see for example [5, Eqs. (57)–(60)]) shows that the prob-
ability of obtaining a closest integer to one of the r integer multiples of M/r is
at least 4/π2. By efficient classical postprocessing using continued fractions, we
can recover r with constant probability by sampling from such a distribution
[19]. Since we are in the cycle of g with overwhelming probability, the over-
all procedure succeeds with constant probability (which could be boosted by
standard techniques).

Given the period of g, we can find its index by an efficient classical procedure.
Observe that we can efficiently decide whether a given element gj is in the tail
or the cycle of g: simply compute gr by repeated squaring and multiply by gj

to compute gj+r. If gj+r = gj , then gj is in the cycle of g; otherwise it is in the
tail of g. Let

γ(gj) :=

{
1 if gj+r = gj (i.e., gj is in the cycle of g)

0 otherwise (i.e., gj is in the tail of g).

The list (γ(g), γ(g2), . . . , γ(gN )) consists of t − 1 zeros followed by N − t + 1
ones, so we can find t in O(logN) iterations by binary search.

3 Computing discrete logarithms

We now show how to efficiently compute discrete logarithms in semigroups on
a quantum computer.

Theorem 1. There is an efficient quantum algorithm to compute logg x on
input x, g ∈ S (or to determine if no such value exists).
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Proof. First, we use Lemma 1 to compute the index t and the period r of g.
Then we determine whether x is in the tail or the cycle of g. As described in the
proof of Lemma 1, this can be done efficiently by determining whether xgr = x.

If x is in the tail of g, then we compute p, the smallest positive integer
such that γ(xgp) = 1. This can be done efficiently by using binary search to
find the first 1 in the list (γ(xg), γ(xg2), . . . , γ(xgt)). Then we can compute
logg x = t− p.

On the other hand, suppose x is in the cycle of g. Then we use the well-
known fact (see for example [9]) that C := {gt+j : j ∈ Zr} is a group with
identity element gt+s where s = −t mod r. In fact C is a cyclic group generated
by gt+s+1; in particular, for j ≥ t we have gt+s+1gj = gj+1. Now we use
Shor’s discrete logarithm algorithm to compute loggt+s+1 x. While we cannot
immediately compute the inverse of x in C, we know that the inverse of gt+s+1 is
gt+s+r−1, so we can compute the hiding function f : Zr×Zr → C with f(a, b) =
xag(t+s+r−1)b = xa(gt+s+1)−b, which suffices to efficiently compute discrete
logarithms in C. Thus we can compute logg x = t+ [(s+ loggt+s+1 x) mod r].

Finally, given a candidate value a for logg x, we check whether ga = x. If
this check fails then we conclude that logg x does not exist. This conclusion is
correct (with bounded error) because the algorithm succeeds in finding logg x
(with bounded error) when it does exist.

4 A shifted version of the discrete logarithm
problem

While the discrete logarithm problem is no harder in semigroups than in groups,
some problems that have efficient quantum algorithms in groups are more diffi-
cult in semigroups. In this section, we discuss a shifted version of the discrete
logarithm problem that appears to be closely related to the dihedral hidden
subgroup problem.

The shifted discrete logarithm problem is as follows: given x, y, g ∈ S, find
some a ∈ N such that x = yga (or determine that no such value exists). If S is
a group, then this problem reduces to the ordinary discrete logarithm problem,
since it suffices to find a ∈ N such that ga = y−1x. However, if S is a semigroup,
then the best quantum algorithm we are aware of is the following.

Lemma 2. There is a quantum algorithm that, on inputs x, y, g ∈ S, finds a ∈ N
such that x = yga (or determines if no such value exists) in time 2O(

√
log |S|).

Furthermore, there is an algorithm using only poly(log |S|) quantum queries.

Proof. Similarly to j 7→ gj , the function j 7→ ygj has index

t̃ := min{j ∈ N : ygj = ygk for some k ∈ j + N}

and period

r̃ := min{j ∈ N : ygt̃ = ygt̃+j};
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we say that ygj is in the cycle if j ≥ t̃ and in the tail if j < t̃. The period r̃
and the index t̃ can be computed efficiently along the same lines as described
in Section 2.

The case where x is in the tail can be treated as in Section 3. If x is in the
cycle, so that x = ygt̃+` for some nonnegative integer `, then we must solve a
constructive orbit membership problem for a permutation action of the group
Zr̃ on the set of elements of the form ygt̃+j . Specifically, the action of j′ ∈ Zr̃ is
multiplication by gj

′
and we must find the element ` ∈ Zr̃ transporting ygt̃ to

x. To this end, we consider the efficiently computable function f : Z2 nZr̃ → S
with f(0, j) = ygt̃+j and f(1, j) = xgj . The function f(0, j) is injective since

it has period r̃. Furthermore, f(1, j) = xgj = ygt̃+`+j = f(0, j + `), i.e.,
f(1, j) is a shift of f(0, j) by `. Therefore, f hides the subgroup 〈(1,−`)〉 of
the dihedral group Z2 n Zr̃ (i.e., it is constant on the cosets of this subgroup
and distinct on different cosets). It follows that the Kuperberg sieve [12] finds

` (and hence a = t̃ + `) in time 2O(
√
log r̃). Finally, since the dihedral hidden

subgroup problem can be solved with only polynomially many quantum queries
to the hiding function [6], we can solve the shifted discrete logarithm problem
in a black-box semigroup S with only poly(log |S|) queries.

As in the proof of Theorem 1, given a candidate value a, we can check
whether x = yga. If this check fails, we can conclude (with bounded error) that
no solution exists.

The dihedral hidden subgroup problem (DHSP) is apparently hard. Despite
considerable effort (motivated by a close connection to lattice problems [17]),
Kuperberg’s algorithm remains the best known approach, and it is plausible
that there might be no efficient quantum algorithm. Note that the DHSP can
be reduced to a quantum generalization of the constructive orbit membership
problem, namely, orbit membership for a permutation action on pairwise or-
thogonal quantum states [7, Proposition 2.2]. Thus, intuitively, a solution of
the shift problem for a (classical) permutation action (such as in the shifted
discrete logarithm problem) should exploit that the action is on classical states,
unless it also solves the DHSP.

In Section 5, we describe another variant of the discrete logarithm problem
that is even harder than the shifted discrete logarithm problem, requiring ex-
ponentially many queries. We also show that our lower bound for that problem
is nearly optimal using the algorithm of Lemma 2 as a subroutine.

5 Constructive semigroup membership

Given an abelian semigroup generated by g1, . . . , gk and a semigroup element x ∈
〈g1, . . . , gk〉, the constructive membership problem asks us to find a1, . . . , ak ∈
N0 := {0, 1, 2, . . .} with a1 + · · ·+ak ≥ 1 such that x = ga11 · · · g

ak
k . The notation

g0i simply indicates that no factor of gi is present, so solutions with ai = 0 for
some values of i are well defined even though the semigroup need not have an
identity element.
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This natural generalization of the discrete logarithm problem is easy for
abelian groups (see for example [10, Theorem 5]). In that case, let ri :=
|〈gi〉| for all i ∈ {1, . . . , k}, r := |〈x〉|, and L := Zr1 × · · · × Zrk × Zr. The
values (r1, . . . , rk, r) can be computed efficiently by Shor’s order-finding algo-
rithm [19]. Now consider the function f : L → G defined by f(a1, . . . , ak, b) =
ga11 · · · g

ak
k x−b. This function hides the subgroupH := {(a1, . . . , ak, b) ∈ L : ga11 · · · g

ak
k =

xb} ≤ L, so generators of H can be found in polynomial time [15]. To solve
the constructive membership problem, it suffices to find the solutions with
b = 1 mod r. This corresponds to a system of linear Diophantine equations,
so it can be solved classically in polynomial time (see for example [18, Corollary
5.3b]).

Here we show that the constructive membership problem in semigroups is
considerably harder. Specifically, given a black-box semigroup S, we need ex-
ponentially many quantum queries (in log |S|) to solve the constructive mem-
bership problem with respect to k ≥ 2 generators.

Theorem 2. For any fixed k ∈ N, there is a black-box semigroup S with k
generators for which at least Ω(|S| 12− 1

2k ) quantum queries are required to solve
the constructive membership problem.

Proof. For any n ∈ N, consider the abelian semigroup

S = {ga11 · · · g
ak
k : a1, . . . , ak ∈ N0, 1 ≤ a1 + · · ·+ ak ≤ n} ∪ {0}

generated by g1, . . . , gk, with the following multiplication rules:

0(ga11 · · · g
ak
k ) = 0

(ga11 · · · g
ak
k )(gb11 · · · g

bk
k ) =

{
ga1+b11 · · · gak+bkk if

∑k
i=1(ai + bi) ≤ n

0 if
∑k
i=1(ai + bi) > n.

Let Σ := {(a1, . . . , ak−1) ∈ Nk−10 : a1 + · · · + ak−1 ≤ n}. We show that the
problem of inverting a black-box permutation π : Σ→ Σ (i.e., computing π−1(σ)
for any fixed σ ∈ Σ given a black box for π) reduces to constructive semigroup
membership in a black-box version of S with respect to the generators g1, . . . , gk.
Since inverting a permutation of m points requires Ω(

√
m) quantum queries

[1], |Σ| =
(
n+k−1
k−1

)
= Θ(nk−1), and |S| =

(
n+k
k

)
= Θ(nk), this shows that

constructive semigroup membership requires Ω(
√
nk−1) = Ω(|S| 12− 1

2k ) queries.
To construct the black-box semigroup, we specify an encoding

enc: S → {(a1, . . . , ak) ∈ Nk0 : 1 ≤ a1 + · · ·+ ak < n} ∪ Σ ∪ {0}

defined by

enc(ga11 · · · g
ak
k ) := (a1, . . . , ak) if a1 + · · ·+ ak < n

enc(ga11 · · · g
ak−1

k−1 g
n−a1−···−ak−1

k ) := π(a1, . . . , ak−1)

enc(0) := 0.
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We can compute enc(gh) using at most one call to π given the encodings enc(g),
enc(h) of any g, h ∈ S. Now suppose we can solve the constructive membership
problem for some semigroup element with encoding σ ∈ Σ, with respect to the
generators g1, . . . , gk with encodings (1, 0, . . . , 0), . . . , (0, . . . , 0, 1). Then we can

find the values a1, . . . , ak−1 such that enc(ga11 · · · g
ak−1

k−1 g
n−a1−···−ak−1

k ) = σ, so
that (a1, . . . , ak−1) = π−1(σ), thereby inverting π.

Note that Theorem 2 gives a lower bound on the worst-case query complexity.
In fact, the same lower bound holds if we are given a random element of Σ.
However, we leave the problem of the average-case quantum query complexity
where, say, x is chosen uniformly from the semigroup, as an open problem.

We also show that for any fixed k, the lower bound of Theorem 2 is nearly
tight.

Theorem 3. For any fixed k ∈ N, there is a quantum algorithm to solve the con-
structive membership problem for x ∈ S = 〈g1, . . . , gk〉 with respect to g1, . . . , gk
in time |S| 12− 1

2k+o(1). Furthermore, the quantum query complexity of this prob-

lem is at most |S| 12− 1
2k poly(log |S|).

To prove this, we use the following simple observations.

Lemma 3. Let S be a finite abelian semigroup and let x, g1, . . . , gk ∈ S.
Let (a1, . . . , ak) be the lexicographically first k-tuple from Nk0 such that x =
ga11 · · · g

ak
k . Then (a1 + 1) · · · (ak + 1) ≤ |S|.

Proof. Assume for a contradiction that (a1 + 1) · · · (ak + 1) > |S|. Then, by the
pigeonhole principle, there must exist c1, . . . , ck, d1, . . . , dk ∈ N0 with ci, di ≤ ai
(for all i = 1, . . . , k) such that gc11 · · · g

ck
k = gd11 · · · g

dk
k and (c1, . . . , ck) 6=

(d1, . . . , dk). Suppose without loss of generality that (c1, . . . , ck) is lexicograph-
ically smaller than (d1, . . . , dk). Let bi := ai + ci − di for all i, and note that
ai − di ≥ 0. Thus ga11 · · · g

ak
k = gd11 · · · g

dk
k g

a1−d1
1 · · · gak−dkk and gb11 · · · g

bk
k =

gc11 · · · g
ck
k g

a1−d1
1 · · · gak−dkk . This implies gb11 · · · g

bk
k = x. Also, for the first in-

dex i with ci 6= di, we have ci < di. Therefore (b1, . . . , bk) is lexicographically
smaller than (a1, . . . , ak), a contradiction.

Lemma 4. For any r, L ∈ N, let

D(r, L) := {(a1, . . . , ar) ∈ Nr0 : (a1 + 1) · · · (ar + 1) ≤ L}.

Then for fixed r, |D(r, L)| = O(L logr−1 L).

Proof. By induction on r, we show that |D(r, L)| ≤ L( 3
2 log2 L)r−1 for every

integer L > 1. Clearly |D(1, L)| = L. We have (a1, . . . , ar+1) ∈ D(r + 1, L) if
and only if (a1, . . . , ar) ∈ D(r, bL/(ar+1 + 1)c). Therefore

|D(r + 1, L)| =
L∑
a=1

|D(r, bL/ac)| ≤
L∑
a=1

bL/ac( 3
2 log2bL/ac)r−1

≤
L∑
a=1

(L/a)( 3
2 log2 L)r−1 ≤ L( 3

2 log2 L)r
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where we used the fact that for every integer L > 1,
∑L
a=1

1
a <

3
2 log2 L.

We are now ready to prove the lower bound for constructive semigroup
membership.

Proof of Theorem 3. By Lemma 3, there are some a1, . . . , ak ∈ N0 with x =
ga11 · · · g

ak
k and some j ∈ {1, . . . , k} such that

∏
i 6=j(ai + 1) ≤ |S|(k−1)/k. To see

this, note that
∏k
j=1

∏
i 6=j(ai + 1) =

(∏k
j=1(aj + 1)

)k−1 ≤ |S|k−1. Thus, for
each j ∈ {1, . . . , k}, we perform a Grover search [8] over the set

{(a1, . . . , aj−1, aj+1, . . . , ak) ∈ Nk−10 :
∏
i 6=j

(ai + 1) ≤ |S|(k−1)/k},

where for each (k−1)-tuple we use Lemma 2 (with y =
∏
i 6=j g

ai
i and g = gj) to

find aj such that x = ga11 · · · g
ak
k (or to exclude its existence). By Lemma 4, the

running time of this procedure is k|S| k−1
2k +o(1) = |S| 12− 1

2k+o(1). Using the query-
efficient (but not time-efficient) algorithm for the dihedral hidden subgroup

problem in place of Kuperberg’s algorithm, we require only |S| 12− 1
2k poly(log |S|)

queries.

While Theorem 2 shows that the constructive membership problem is prov-
ably hard in black-box semigroups, the problem is also known to be NP-hard in
explicit semigroups. In particular, Beaudry proved NP-completeness of mem-
bership testing in abelian semigroups of transformations of (small) finite sets
[4].

6 Discussion

We have considered quantum algorithms for the semigroup discrete logarithm
problem and some natural generalizations thereof. While discrete logarithms
can be computed efficiently by a quantum computer even in semigroups, the
shifted semigroup discrete logarithm problem appears comparable in difficulty
to the dihedral hidden subgroup problem, and the constructive membership
problem in a black-box semigroup with respect to multiple generators is prov-
ably hard. Thus, while hardness of the discrete logarithm problem in semigroups
is not a good assumption for quantum-resistant cryptography, one might build
quantum-resistant cryptosystems based on the presumed hardness of other prob-
lems in semigroups.

Testing membership in abelian semigroups is related to a cryptographic prob-
lem known as the semigroup action problem (SAP) [13]. Given an (abelian)
semigroup S acting on a set M and two elements x, y ∈ M , the SAP asks one
to find an element s ∈ S such that x = sy. Constructive membership testing
in a monoid (i.e., a semigroup with an identity element, which can be adjoined
artificially if necessary) is an instance of SAP: consider S acting on itself by
multiplication and let y be the identity. (More precisely, to obtain a decom-
position with respect to generators g1, . . . , gk, consider the natural action of
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〈g1〉 × · · · × 〈gk〉 on S.) On the other hand, the SAP over an abelian semigroup
can be reduced to membership of x in a subsemigroup generated by y and S
of the abelian semigroup S′ = S ∪M ∪ {0} with a semigroup operation that
naturally extends the multiplication of S and the action of S on M . In particu-
lar, the SAP for a cyclic semigroup action reduces to an instance of the shifted
discrete logarithm problem discussed in Section 4.

A natural open question raised by our work is the quantum complexity of
the shifted semigroup discrete logarithm problem: is this task indeed as hard as
the DHSP, or is there a faster algorithm using additional structure? In general,
it might also be interesting to develop new quantum-resistant cryptographic
primitives based on hard semigroup problems.
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