
Euclidean automata

Andras Kornai
Department of Algebra

Budapest University of Technology and Economics
andras@kornai.com

In this note we introduce Euclidean automata (EA), a sim-
ple generalization of Finite State Automata (FSA). EA oper-
ate not on symbols from a finite alphabet as usual, but rather
on vectors from a parameter space P , typically Rn. The
main motivation for EA comes from classification problems
involving a forced choice between a finite number (in the
most important case, only two) alternatives. Since we want
classifications to be stable under small perturbation of in-
puts, ideally the set of points in P classified to a given value
should be open, yet it is evident that we cannot partition Rn
or Cn into finitely many disjoint open sets. Approximate
solutions thus must give up non-overlapping, e.g. by per-
mitting probabilistic or fuzzy outcomes, or exhaustiveness,
e.g. by leaving ‘gray areas’ near decision boundaries where
the system produces no output. EA, as we shall see, sacrifice
non-overlapping but maintain sharp, deterministic decision
boundaries.

Using EA we offer the beginnings of an analysis of being
in a conflicted state, some situation where we know that we
should do A, since it is ‘the right thing to do’ yet we have a
strong compulsion to do some B (including doing nothing)
instead. To anchor the discussion we will use several spe-
cific examples, such as refraining from or taking some drug
such as tobacco, alcohol, or heroin, that is generally agreed
to have pleasant short-term but harmful long-term effects;
slipping into some recreational activity while there is still
work to do; keeping or not keeping some promise; etc.

The problem is complex, arguably it is the single most
complex problem we have to face in everyday life. There-
fore, some simplification will be necessary, and we will state
the main problem in a way that already abstracts away from
certain aspects that would take us far from our goal of an-
alyzing internal conflict. First, we are not interested in de-
fending the specific moral premisses used in the analysis of
drug addiction, laziness, and similar examples of conflict:
our focus is with the conflicted state itself, not the individ-
ual components. Second, we will pay only limited attention
of the issue of how we know that A is the right thing rather
than some alternative A′ or even B – we are interested in
the situation when we already know that A is right and B is
wrong. Third, real life conflicts are rarely between two, lab-
oratory pure components: often there are multiple factors,
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but the binary case must be addressed first. Finally, conflicts
are often gradient (perhaps a small glass of wine is quite OK
where a bottle would not be) but here we try to work with as
simple and minimalistic a setup as we can.

The mainstream assumption, embodied in AGI architec-
tures like OpenCog (Hart and Goertzel 2008) is that there
is some utility function that the agent intends to maximize.
If this function changes at all, it changes only adiabatically,
on the order of weeks and months, while the decision to do
the right thing often has to be taken on a subsecond scale.
Certain issues therefore can be stated in terms of a single
utility function that gets discounted on different scales. Let
u(t) measure the sensation of somatic well-being on a scale
of -1 (suffering) to +1 (exaltation) at time t. If our inter-
est is in maximizing

∫ T
0
u(t)e−Ctdt, choosing a large C

leads to behavior that focuses on the momentary exhilara-
tion, while choosing a small C models maximizing long-
term well-being. This is a nice and simple picture: if a
behavioral alternative, say smoking a cigarette, has some
known effect expressible as a transform A, while B has ef-
fect B, we simply compute

∫ T
0
A[u(t)]e−Ctdt and compare

it to
∫ T
0
B[u(t)]e−Ctdt.

Such an analysis, however, would suggest that conflict is
restricted to a few marginal cases when our best estimate of
A andB carry large uncertainties, and is therefore largely an
epistemological issue: as soon as we have better estimates
the conflict disappears. While this is a known philosophical
position going back to antiquity,1 it is not at all helpful in
predicting behavior: in reality, people spend a lot more time
in conflicted states than this analysis would suggest. Even
more damning, it ignores the central case, when the impact
of A and B are perfectly known. Rare is the addict who
doesn’t know she should quit, or the promise breaker who
doesn’t know better – the problem is not lack of knowledge,
but failure to act on it.

A somewhat richer model presumes not just one utility
function but several: u1 for somatic well-being, u2 for re-
productive success, u3 for danger avoidance, and so forth.
Under such a view, conflicts between A and B are simply

1Unlike Mohists and Yangists seeking grounds for right choice
Chuang-Tzu’s ideal is to have no choice at all, because reflecting
the situation with perfect clarity you can respond only in one way.
(Graham 1989:190)
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cases when some ui would lead to one choice but another
uj would lead to the other. Since there can be large do-
mains where the different us lead to different choices even
if they are selected from otherwise well-behaved classes of
functions (e.g. piecewise linear or low-order polynomial),
this model escapes the first criticism discussed above, but
not necessarily the second, a matter we will discuss shortly.
Such a model fits well in multi-agent theories of the mind
(Minsky 1986), by assigning each agent Ai a dedicated util-
ity function ui.

We will frame the problem in terms of multiple (compet-
ing) utility functions, each with its own little homunculus in-
tent on maximizing it, but first we have to discuss two signif-
icant reduction strategies. The first one would replace the ui
with their weighted sum

∑
i wiui using static or very slowly

changing weights. This makes a lot of sense when choices
are evaluated in terms of some resource that behaves addi-
tively, such as memory or CPU expenditure, as long as there
is only one of these which is truly scarce. But as soon as the
system deals with several resource dimensions (e.g. CPU
time, RAM, and disk space can all be limiting) we are back
to the multiple optimization scenario, except it is now the re-
source tallies rj that are to be minimized subject to (slowly
changing) tradeoffs between them. For the problem at hand,
moral correctness must be considered a separate resource on
its own, since it is well understood that most problems have
simple solutions as long as the moral constraints are ignored.

The second reduction strategy is based on a hard-line in-
terpretation of a single utility, say u1 (somatic well-being).
Competing utilities, such as u3 (danger avoidance), are con-
sidered epiphenomenal: big danger just means a high proba-
bility of complete zeroing out of u1, and a strategy aimed at
maximizing the area under the u1 curve will result in some
degree of u3 maximization just because of this. Similarly,
in a ‘selfish gene’ calculus, the intent is maximizing the
area under the u1 curves for all progeny, thus low repro-
ductive success is penalized without ascribing any specific
utility u2 to high reproductive success. Note that this strat-
egy does not guarantee a hierarchy among the ui, because
reducing uj to ui does not guarantee that a reduction in the
other direction is infeasible. For example, taking as primary
the (future-discounted) somatic well-being of progeny will
make direct somatic well-being of the individual an impor-
tant factor even if it receives zero direct weight in the sum,
since the individual deprived of well-being is very unlikely
to make the effort to reproduce successfully.

In Section 1 we introduce our principal formal tool for
analyzing conflict by a series of examples and a simple def-
inition. In Section 2 we discuss how internal conflict can
be analyzed in terms of the model, and discuss an essential
fact about conflicted states, that orderings are not transitive.
Some conclusions are offered in Section 3.

Euclidean automata
Euclidean automata (EA) are obtained from standard finite
state automata (FSA) by undoing the major abstraction con-
cerning inputs. In FSA, inputs are simply selected from
some finite alphabet Σ. In EA, inputs are given as parameter
vectors from a parameter space P , typically Rn, and states

are simply subsets Pi of P indexed from a finite index set S.
If Pi ∩ Pj = ∅ for all i, j ∈ S we call the EA deterministic,
if
⋃
i∈S Pi = P we call it complete.

Experience with general systems theory shows that undo-
ing the abstraction concerning outputs as well would lead to
a theory that is too general to have any utility, and we will re-
frain from doing so. We will define Euclidean versions of fi-
nite state transducers (FSTs) and Eilenberg machines (XMs)
that we will call Euclidean transducers (ETs) and Euclidean
Eilenberg machines (EEMs), keeping the output alphabet of
the transducer, and the side-effects of machines both dis-
crete and finite. But before turning to the formal definition,
let us provide some informal, easy to grasp examples both to
familiarize the reader with the terminology and to compare
and contrast Euclidean automata to better known models.

Example 1. Elevator A three-stop elevator running from
the basement to the top (first) floor will have three main in-
put parameters, the reading from the current position sensor,
a real number between −1 and +1; the reading from the
engine sensor, with possible values going up, stopped, go-
ing down; and the reading from the weight sensor, with any
possible nonnegative reading, but in effect quantized to two
discrete values, “above safety limit” or “below safety limit”.
By having a finite state space, even the continuous parame-
ters such as height above ground are effectively quantized:
whether the value is 0.3 or 0.9 makes no difference no mat-
ter how the other parameters are set: we see the same tran-
sition function at both. We will call two parameter vectors
indistinguishable as long as this is true in regards to transi-
tions for EA, both transitions and outputs for ETs, and both
transitions and effects for EEMs. By relying on represen-
tatives from indistinguishable classes of parameter settings
we can skeletonize Euclidean automata and obtain classical
FSA, but as we shall see, key aspects of EA behavior go
beyond what the skeleta can do.

Example 2. GSM phone Near national borders, GSM hand-
sets behave like EA: depending on which country the phone
is at, it will send the user welcome messages describing the
price of a call, etc. We can think of P as being composed
of two parameters, longitude and latitude, or as being com-
posed of several parameters representing the signal strengths
from various cell towers. Either way, it is the values of these
continuous parameters that determine (in addition to key-
board input) the behavior of the EA. Two aspects of this ex-
ample are worth emphasizing: first, that the immediate be-
havior of the EA is determined both by the input and its pre-
vious state (so the natural formulation will resemble Mealy,
rather than Moore, automata) and second, that the output
of one EA can impact the input of other EA, for we may
very well conceive of cell towers themselves as Euclidean
automata (though the changes in their inputs are effected by
changes in electricity, call load, etc. rather than by changes
in their physical location).

Example 3. The heap The heap or sorites paradox, known
since antiquity, probes the vagueness of concepts like ‘heap’
– clearly one grain is not a heap, and if k grains are not a
heap k + 1 grains will also not be, so the conclusion that
10,000 grains are not a heap seems inevitable. Here we



will take the following form of the paradox (Sainsbury and
Williamson 1995):

Imagine a painted wall hundreds of yards or hundreds
of miles long. The left-hand region is clearly painted
red, but there is a subtle gradation of shades, and the
right-hand region is clearly yellow. The strip is cov-
ered by a small double window which exposes only a
small section of the wall at any time. It is moved pro-
gressively rightwards, in such a way that at each move
after the initial position the left-hand segment of the
window exposes just the area that was in the previous
position exposed by the right-hand segment. The win-
dow is so small relative to the strip that in no position
can you tell the difference in colour between what the
two segments expose. After each move, you are asked
to say whether what you see in the right-hand segment
of the window is red. You must certainly answer “Yes”
at first. At each subsequent move you can tell no differ-
ence between a region you have already called red and
the one for which the new question arises. It seems that
you must after every move call the new region red, and
thus, absurdly, find yourself calling a clearly yellow re-
gion red.

We will model this situation by a EA with four states num-
bered 0 to 3, and a single numerical parameter correspond-
ing to the wavelength at the spectral peak and running from
720 (red, left end of wall) to 570 (yellow, right end of wall).
The arcs are 01, 13, 32, 20 and the self-loops 00, 11, 22, 33.
Outputs chosen from a two-letter alphabet {r, y} are emit-
ted on arcs (Mealy machine) rather than at states (Moore
machine) according to the following rule: the 00, 01, 20,
and 11 arcs emit r, the 33, 32, 13, and 22 arcs emit y. Eu-
clideanity is expressed by dividing the input range in three
non-overlapping intervals: the machine receives input in the
[720-620] range it settles in state 0, if the input is in the
[570–590] range it goes to state 3, and in the ‘orange’ range
(590-620) it will stay in state 1 if previously it was in state
1, and in state 2 if previously it was in state 2.
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If we provide input to this EA with slowly decreasing wave-
lengths λ running from 720 to 570 nanometers, it will move
from state 0 to state 1 at λ = 620, and from there to state 3
at λ = 590. The output switches from r to y when the 13 arc
is first used, at λ = 590. When we perform the opposite ex-
periment, increasing wavelengths from 570 to 720 in small
increments, the EA will switch from y to r as it passes from
2 to 0 at λ = 620. In the entire orange region, the model
shows hysteresis: if it came from the red side it will output
red, if it came from the yellow side it will output yellow.

The heap is an important philosophical issue on its own
right, but we must leave its full discussion to another oc-
casion, confining ourselves to a couple of remarks. First
that on the EA account the sorites paradox is not an edge
phenomenon, restricted to some critical point when the non-
heap becomes a heap and red becomes yellow (Sainsbury
1992), but something that characterizes a substantive range
of parameters with non-zero measure. Second, that the hys-
teresis seen in the example EA is consistent with perception
studies on single parameter spaces (Schöne and Lechner-
Steinleitner 1978, Poltoratski and Tong 2005, Hock et al.
2005).

The real take-home lesson from the heap, as far as our cur-
rent task of accounting for internal conflict is concerned, is
that such conflicts can be modeled as nondeterministic states
sharing the same range of input parameters. If we recast the
paradox of the painted wall in terms of moral precepts, we
see the conflict emerging between two, in themselves very
reasonable maxims:

Factuality I ought to report things as I see them

Consistency I ought not report differences where I don’t see
any

Importantly, the conflict arises even though we see the first
precept as superior to the second one. Consistency is at best
a refinement of Factuality, and we have a large number of
warnings attached to it, from Si duo faciunt idem, non est
idem to Emerson’s famous quip ‘A foolish consistency is the
hobgoblin of little minds’. Eventually, if λ is made small
enough, we sacrifice Consistency and say “No” because we
can’t live with a strong violation of Factuality. Before turn-
ing to a more detailed analysis in the next Section, let us first
define EA, ETs, and EEMs.
Definition 1.1 A Euclidean automaton (EA) over a pa-
rameter space P is defined as a 4-tuple (P, I, F, T ) where
P ⊂ 2P is a finite set of states given as subsets of P ; I ⊂ P
is the set of initial states; F ⊂ P is the set of accepting
states; and T : P ×P → P is the transition function that as-
signs for each parameter setting ~v ∈ P and each state s ∈ P
a next state t = T (~v, s) that satisfies ~v ∈ t.
Definition 1.2 A Euclidean transducer (ET) over a param-
eter space P is defined as a 5-tuple (P, I, F, T,E) where
P, I, F, and T are as in Def. 1.1 and E is an emission func-
tion that assigns a string (possibly empty) over a finite al-
phabet Σ to each transition defined by T .
Definition 1.3 A Euclidean Eilenberg Machine (EEM) over
a parameter space P is defined as a 5-tuple (P, I, F, T,R)
where P, I, F, and T are as in Def. 1.1 and R is a mapping



P × P → P which assigns to each transition a (not nec-
essarily linear, or even deterministic) transformation of the
parameter space.
We have already seen examples of EA. A particularly rel-
evant ET example is a vector quantizer (Gersho and Gray
1992), and if P = R, an AD converter. Since Eilenberg ma-
chines (Eilenberg 1974) are less well known, we discuss the
simplest cases individually. For |P| = 1 we have a single
mapping P → P , and for |P| = k we have a finite family
of P → P mappings. As the sets Pi collected in P may
be overlapping, there is no guarantee that the mappings to-
gether describe a function (as opposed to a relation) over P ,
and even in the locally deterministic case EEMs are capable
of realizing multivalued functions. Another example is
Example 4. The Artificial Neuron The elementary build-
ing blocks of Artificial Neural Networks (ANNs), both with
sigmoid squishing and without, can be conceived of as two-
state EEMs. The parameter space has d dimensions where
d counts the number of inputs (dendrites), and the opera-
tion of the EEM is deterministic: if the sum of the inputs is
smaller than the threshold (after squishing in a sigmoid AN,
or without squishing in a linear AN) the unit gets in state 0,
otherwise it gets in state 1. The output function is constant
0 in state 0, 1 in state 1.

Notice that ANs can also be conceptualized as ETs, with
output alphabet Σ = {0, 1}, and inputs taken from Σd – this
is because in standard ANs the outputs do not depend on
the details of the input vector, just on the state it transitions
to. In general, where there is no need to distinguish the sub-
types, or the subtype is evident from context, we will speak
of Euclidean Machines (EMs) as a cover term for EA, ETs,
and EEMs.

The conflicted state
EA are rather limited computational devices, yet they have
enough power to serve as homunculi in our model of
decision-making. In what follows, we think of EA as re-
ceiving input in discrete time, but this is not essential for
reaching, and maintaining, conflicted states. We will study
asynchronous networks composed of EA, with particular at-
tention to serially connected EAA1, A2, . . . , Ak where each
Ai+1 receives as its input the output of Ai, possibly cycli-
cally. As our first case, we look at the case k = 2, the kind
of direct conflict familiar from ‘Never Give Up’ cartoons:

We need two EA to model the situation, Frog and Stork,
which we can assume to be isomorphic. At time t, each can
be represented by two parameters, p(t) corresponding to the
power reserve it has, and q(t) corresponding to the pressure
it exerts on the other. We are less interested in the death
spiral F and S can found themselves than in paths to disen-
gagement, if there are any. We assume that for each party its
p(t + 1) depends on the other’s q(t) deterministically, and
that each party can set its q(t + 1) nondeterministically be-
tween 0 (standing down) and its own p(t) (maximum effort
to kill the other). If we take the abscissa p and the ordinate
qf , the skeleton can be depicted as follows:
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The Stork in (p, qf ) space

At every point, the Stork has an option of applying as little
force as it wishes, but no more than its power reserve. This
choice is free in the sense of moral philosophy, it is only
at the edges of the diagram that we see compulsion (deter-
ministic behavior). The nondeterministic choices provide
room for a broad variety of strategies ranging from esca-
lation through tit for tat to turning the other cheek. If we
couple an escalating Frog to an escalating Stork we obtain
the death spiral discussed above, and importantly, a tit for
tat player will also die as long as the other party relent-
lessly ratchets up the pressure – the only recourse of the non-
aggressor is to take the aggressor with them to the grave.

‘Never Give Up’ is closely related to, but not identical
with, the better known ‘War of Attrition’ game introduced
by J. Maynard Smith (1974), the most salient difference be-
ing that in wars of attrition the resource (wait time) of the
players is infinite while here the resource (power reserve)
that the players start out with is finite, and may even be
known in advance. We will not pursue a full game-theoretic
analysis here, as our chief concern is not with the possible
outcomes at the individual or population level, but rather
with formalizing the moral calculus that can operate within
the domain of free will. For this the simple Stork model is
insufficient, as it lacks the critical variables corresponding to
the hopes and fears of the player. A central idea of the paper
is that such hopes and fears are simply internal models of the
diagram edges, but before we turn to this in the concluding



section, let us take a closer look at the next simplest case,
k = 3, known in popular culture as a Mexican standoff.

The pioneers of cybernetics were already aware of the cir-
cularity of value anomaly, exhibited e.g. by rats starved
both for sex and for food: they prefer sex to exploration,
exploration to food, and food to sex. If we model differ-
ent drives by different agents, circularity of value anomalies
boil down to Condorcet’s paradox, but one does not need
to subscribe to a society of mind assumption to see McCul-
loch’s (1945) point that such circular preferences are “suf-
ficient basis for categorical denial of the subsumption that
values were magnitudes of any kind”. (For the converse,
that transitivity plus some additional assumptions are suffi-
cient for expressing preferences in terms of utility functions
see von Neumann and Morgenstern 1947.) Circularity of
value is seen in many settings besides economics (McCul-
loch mentions neurophysics ‘conditioned reflexology’ and
experimental aesthetics) and they demonstrate rather clearly
that utility-based models are too simplistic for describing the
behavior of rats, let alone those of humans or AGIs.

McCulloch’s original model of the phenomenon does not
lend itself to easy reproduction in terms of our contemporary
understanding of networks, which no longer conceptualizes
behavior in terms of reflex loops. The Euclidean Machines
advanced here have the advantage that their main features
can be analyzed without reference to recurrent behavior or
nuances of timing. For k = 2 and 3 only cyclic conflict mod-
els are available, but for k ≥ 4 we obtain a broader variety
by optionally adding chords to the main cycle. Taking into
account which parameters in the input of Ai are output by
Aj we obtain a rich typology of conflict. We begin with the
simplest case, the 4-state machine of our Example 3, which
represents conflicted behavior in a forced binary choice.

To see how this conflict is created, consider two homun-
culi, Af in charge of factuality, and Ac in charge of con-
sistency, with Ac the weaker of the two, so that in a game
of Never Give Up Af will eventually win. Without con-
sistency, Af by itself is not particularly conflicted: it will
opt for red when the input wavelength is sufficiently large,
say at λ > 620, and for yellow when λ < 590. The
simplest approach is to represent this by a linear function
y = (λ − 605)/15, which is −1 or less at the unambigu-
ously yellow range, +1 or more in the unambiguously red
range. Many alternate functions could be considered (ra-
dial basis neural nets are a very attractive possibility) but
we would like to see the qualitative emergence of conflicted
states without fine-tuning the network response. Skeletoniz-
ing Af leads to a simple two-state automaton, outputting r
in the 605 to 720 range; y in the 570 to 605 range. The be-
havior at the boundary of the attractor basins (which we take
to be 605) is irrelevant not just because this is a zero mea-
sure set, but because this behavior is completely shadowed
by hysteresis.

Sainsbury and Williamson set up the protocol taking par-
ticular care that Ac, the guardian of consistency, is always
aroused: “the window is so small relative to the strip that
in no position can you tell the difference in colour between
what the two segments expose”. At the beginning (left side,
λ = 720), Ac is inactive, and Af simply outputs r. As λ is

decreased, say in 1 nanometer decrements, though the exact
number is irrelevant, Ac will be active, and will always pull
the decision toward the last decision, whatever it was, with
force c < f . Skeletonizing Ac is a much more interesting
issue, since in general we would need to endow this automa-
ton with two memory registers, one to store the last output
whose consistency is to be maintained, and one to store the
last input to see if we are close enough that consistency is
required to begin with. For an increment of 1 nm and two
outputs, this would require 2 · 151 states, which is unattrac-
tive both because this number is too large, and because it
is inversely proportional to the step-size, a small but arbi-
trary parameter unlikely to be critical for our understanding
of the problem. A more attractive solution is to conceptual-
izeAc as an EEM, with only three states, ‘neutral’, ‘sticking
to red’, and ‘sticking to yellow’ with three transformations
of the inputs. The identity function is attached to the neu-
tral state where two subsequent inputs are too far apart for
consistency to make sense, a ‘red boost’ function of +15 is
attached to the ‘sticking to red state, and a ‘yellow boost’
function of −15 is attached to the ‘sticking to yellow’ state.

A subtle but important distinction from simpler additive
models is that Ac is seen as manipulating the input of the
main binary classifier Af , rather than contributing to, or
even reversing, its output. Once this is understood, we can
further simplifyAc by removing its memory (third state) and
assuming that it just adds back the output of Af to its input
when the unbiased input is seen as close to what it was be-
fore. For doing that, we need to address another property
that the standard treatment of networks generally abstracts
away from, seminumericity. Af , as we defined it so far,
takes numeric input (wavelengths measured in nanometers)
from 570 to 720, and produces symbolic outputs r and y.
One approach would be to freely rescale numerical values
between 0 and 1 (activation level), or between −1 and +1
(including inhibitory effects). Textbook treatments on neu-
ral networks generally opt for this solution, without much
discussion of the costs attendant to rescaling, and simply
pave over the difficulties of replacing categorical variables
like red/yellow by pseudo-numerical values such as the ±1
we used above. Historically, the subtle interplay between
the deductive and the numerical approach is well understood
from the numerical side (the entire second volume of Knuth
1969 is devoted to this issue), what is called for now is a bet-
ter understanding of the semi-symbolic nature of biological
computation.

λi

//
λi+λo

// Af
λo

//
λo

~~
λo

//

Ac as a feedback loop modifying Af
The approach proposed here, inspired by semantic ideas

from cognitive science (Rosch 1975), is to recast the sym-
bolic output of Euclidean automata and transducers to nu-
meric, e.g. to assume that the output of the classifier will be
the prototypical red, say 630, or the prototypical yellow, say
580. In the hysteresis case, as we decrease the input wave-
length from 720 to below the boundary point at 605, say to
600, Af would now report yellow, but because the previous



reports were all red, the input it sees is not 600 but 630 since
the previous output was mixed in by Ac. In fact, raw input
has to go below 580 for the mixture to get below 605, and
in the intermediate range we observe hysteresis. Conversely,
if we start from low wavelengths, we need to get above 630
to get away from the yellow and have the system switch to
red. By adjusting the mixture weights it would be possible to
increase or decrease the range of hysteresis, in the extreme
case to a point that a machine once committed to an answer
will never depart from it. This is obviously maladaptive in a
system of perception, but would make perfect adaptive sense
in a unit dedicated to memory.

Conclusions
We have introduced Euclidean Machines, a slight general-
ization of the classical finite automata, transducers, and ma-
chines, and sketched how simple, but typical conflict cases
can be described in terms of these. There are many other po-
tential applications, such as modeling reasoning with EA as
partially hidden information gets uncovered, but these would
stretch the bounds of this paper.

Perhaps the greatest value of EA lies in the fact that they
enable robust anthropocentric use of moral vocabulary. We
hold, with McCarthy (1979) that

to ascribe certain beliefs, knowledge, free will, inten-
tions, consciousness, abilities or wants to a machine or
computer program is legitimate when such an ascrip-
tion expresses the same information about the machine
that it expresses about a person. It is useful when the
ascription helps us understand the structure of the ma-
chine, its past or future behavior, or how to repair or
improve it

and indeed see our enterprise as “to do what Ryle (1949)
says can’t be done and shouldn’t be attempted – namely, to
define mental qualities in terms of states of a machine”. Be-
ing in a conflicted state comes out, unsurprisingly, not as a
single state of the EA, but rather as a set of nondeterministic
states tied together by their shared territory of input param-
eters. The EA framework enables making commonsensical
moral judgments about actions (state transitions) such that
Frog can relentlessly ratchet up pressure on Stork, or that re-
porting ‘red’ or ‘yellow’ is indeed a case of conflict between
two virtues, being factual and being consistent, and so forth.

Another key linguistic area opened up by the EA frame-
work is the study of hopes and fears. Since much, perhaps
too much, of our decision process is driven by our hopes and
fears, some formal mechanism to deal with these is neces-
sary for any attempt at AGI design. Putting oneself in the
place of Stork and Frog, it is evident that (within the con-
fines of this conflict) their fears are concentrated at the edge
of the parameter space where p(t) = 0.

The classical finite state machinery (McCulloch and Pitts
1943) does not fully capture McCulloch’s own ideas about
neural nets. In particular, the inhibitory and excitatory
mechanism are hard to capture without paying more atten-
tion to the largely neglected but conceptually nontrivial is-
sues of scaling and thresholding. Since EA can model stan-
dard (sigmoid) NNs, a simple first step in generalizing the

modern theory of ANNs to EA could be the transfer of stan-
dard training algorithms such as backprop to this domain.
Housebreaking the cybernetic turtle of Grey Walter is now
within reach.
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