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Abstract Using an asymptotic characterization of probabilistic finite state languages over
a one-letter alphabet we construct a probabilistic language with regular support that cannot
be generated by probabilistic CFGs. Since all probability values used in the example are
rational, our work is immune to the criticism leveled by Suppes (1970) against the work of
Ellis (1969) who first constructed probabilistic FSLs that admit no probabilistic FSGs. Some
implications for probabilistic language modeling by HMMs are discussed.

Keywords probabilistic grammar · probabilistic language · PFSA · PCFG

1 Background

We tend to think of mathematical theorems as eternal, clearly demonstrating the conclusion
from the premises. Here we will deal with the fate of a classic theorem of Ellis (1969), which
serves as something of a cautionary tale: no matter how clear the mathematical evidence in
favor of a particular view, people vested in an opposing viewpoint will find a way around it.

Ideas from statistics and probability theory have penetrated our scientific thinking to
such an extent that

shortly after 1930 it became virtually certain that at bottom our world is run at best
by laws of chance. In epistemology [...] it is now a commonplace that much of
our learning from experience, and much our foundations for knowledge, are to be
represented by probabilistic models. (Hacking 1987)

Yet for the past fifty years, theoretical linguistics has largely steered clear of statistical ar-
gumentation. Chomsky (1957) presented the famous colorless green ideas sleep furiously
argument purporting to show that the very notion of probability is linguistically meaning-
less, since sleep ideas furiously green colorless also has zero probability, yet the first sen-
tence is grammatical while the second is not. Another widely read and cited paper from the
formative period of generative grammar, Miller and Chomsky (1963), used the poverty of
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stimulus argument to show that ‘reasonable’ Markov models cannot possibly be learned by
children, who will not be exposed to more than 109 sentences (assuming one sentence per
second for 24 hours a day for their first 20 years of life). Their notion of reasonableness
required a Markovian parameter k large enough to capture grammatical phenomena such as
number agreement in constructions like The people/person who called and wanted to rent
your house when you go away next year are/is from California, where the grammatically
connected elements are separated by 14 or more units.

During the neogrammarian and structuralist periods, in keeping with the general tenor
of scientific research, linguistic arguments based on statistical notions, ranging from the
simple counting of cases supporting or escaping some rule to the sophisticated criteria for
segmentation proposed by Bloch,1 were treated as a standard tool of inquiry. With the advent
of generative grammar, probability fell in grave disfavor. In the flurry of research activity
that brought us transformational grammars, time-varying grammars, matrix grammars, pro-
grammed grammars, ordered grammars, scattered context grammars, indexed grammars,
and many other algebraic string manipulation systems, probabilistic grammars barely made
a blip on the radar screen. To the limited extent they were investigated, probability was
generally treated as an afterthought, giving primacy to the algebraic characterization of the
system. What we have at this point are weighted grammars, where the weights can be taken
from any number field, and not at all required to be probabilities: examples include integer
weights, counting the multiplicity of derivations (degrees of ambiguity) and acceptance level
weights (degrees of grammaticalness). The mathematical underpinnings of using weights in
the context-free case are published in Chomsky and Schützenberger (1963), but the issue of
degrees of grammaticalness is already explored in Chomsky (1961).2

Into this situation walked Skip Ellis, the first ever African American to earn a PhD in
computer science. He proved that there are probabilistic languages (p-languages) that are
not generated by any probabilistic finite state grammar (PFSG) even though their support
(the set of strings with nonzero probability) is regular. The conclusion seems quite clear: the
variety of probabilistic structures cannot be reduced to the variety of algebraic structures,
there are more things in probabilistic heaven and earth than are dreamt of in your gram-
matical philosophy. This conclusion, however, was not one that linguists or philosophers
of language were ready to hear at the time. Scientometry is a crude tool, but in this case
the facts are rather striking: according to Google Scholar the dissertation where the proof
appeared gathered a total of 28 citations (one from this author), while the debunking paper,
Suppes (1970), is cited 70 times.

Ellis’ proof (which we strengthen in Section 2 from PFSGs to PCFGs, Theorem 1) is
highly algebraic, and gives no indication why such p-languages exist. Suppes (1970) ar-
gued that Ellis’ result is irrelevant and his construction is just an artefact of using irrational
probability values, since the probabilities that matter all go back to frequency counts i.e.
rational numbers. What is at stake here is the nice, well-groomed picture of p-languages,
which should neatly fit in the Chomsky hierarchy. The goal was to treat the algebraic model
of string-manipulation as fundamental and the statistical issues as secondary. One way to

1 In contemporary terms, Bloch used local perplexity maxima to find morpheme boundaries, see Harris
(1951)

2 The earlier publication date is not necessarily indicative of an earlier stage in Chomsky’s thinking. At this
point, much of Chomsky’s own work is devoted to further exploration of material intended for his PhD thesis,
written in 1955-56. Not all chapters of this ms. were widely read, since the thesis, as published by University
Microfilms, omitted several, and so did the 1975 book version (Chomsky 1975). In 2007 the full ms. was
made available as pdf, http://alpha-leonis.lids.mit.edu/chomsky. Fully tracing the provenance of these ideas
is a task beyond the limits of this paper.
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achieve this is by treating statistical issues by a mere retrofitting of the grammar rules with
application probabilities: a type i probabilistic grammar (or p-grammar for short) is defined
as a type i grammar where all productions have some nonzero probability of application.
If the sum of probabilities assigned to productions sharing the same left hand side is 1, we
speak of normalized p-grammars – these formalize the concept that derivations proceed in
some random order as dictated by the probabilities assigned to the rules. Once the rules are
viewed as probabilistic entities, the probability of a derivation is the product of the probabil-
ities of the rules that appeared in it (with multiplicity), and the probability of a string is just
the sum of the probabilities of its derivations. Remarkably, the concept of rules as proba-
bilistic entities embodied in this retrofit is not at all close to the concept of probabilistic rule
application that the the minority of linguists who cared about such matters began to explore,
variable rules: in p-grammars the rule probabilities are static entities, fixed once and for all,
quite independent of the contextual factors that sociolinguists took to be the central point of
inquiry.

It was clear from the outset that there are problems with this nice picture: as is well
known (see e.g. Levelt 1974), the fact that a p-grammar is normalized is insufficient to guar-
antee that the probabilities it assigns will sum to 1. For example, the CFG that generates all
binary branching structures, S → SS|a, when both rules are applied with p = 0.5, will yield
weights that sum to 0.5. But these problems can be easily paved over, e.g. by assigning the
missing weight to the empty string or by renormalizing the productions. Also, the issue that
the probabilities do not add to one, or will add to one in every annulus (set of strings with
the same length) was seen as less than worrisome – the fine distinction between a Markovian
language and a Markovian process was really not for linguists to worry about. Now if Ellis
proves the existence of p-languages that apparently tear apart the probabilistic generaliza-
tion of the leading theoretical construct of the period, the Chomsky hierarchy, so much the
worse for these p-languages. Altogether, since a p-grammar is simply a grammar plus an
assignment of probabilities, and a p-language is simply a language plus an assignment of
probabilities, it is reasonable to have the following

Conjecture 1 Type i p-grammars correspond to type i p-languages.

In one direction, the retrofit makes the proof quite easy: ignoring the production probabilities
a type i p-grammar G will, by definition, yield a type i language L, and it is clear that all
and only strings in L will have nonzero derivation probability. If we assign the start symbol
S ∈ T the value 1, and make an appeal to the fact that the p-grammar is normalized, it is easy
to see that the total probability mass assigned to sentential forms reachable from S in at most
n steps by leftmost derivation is always 1, partitioned so that terminal strings so reachable
have t and those with nonterminals still present have 1− t. By a limit argument it follows
that the total probability mass assigned to members of L will be ≤ 1 (and if it is strictly less
than 1 we can always renormalize to absorb the difference). It is in the other direction that
Ellis (1969), found a stumbling block: even over a one-letter alphabet, and already among
type 3 languages, he presented a p-language L3 for which no finite state p-grammar (or p-
acceptor) will ever work. In Section 3 we will present a version of his proof that extends his
result to type 2 grammars (and can be pushed further, but this would take us away from the
main line of argumentation).

As the simplest case, studying the issue over a one-letter alphabet T = {a}, has method-
ological priority: if counterexamples can be found in this limited setup, they are trivial to
extend to alphabets with more letter, while the converse is not true. By assigning each string
an a weight f (an) = pn > 0 such that ∑

∞
i=1 pi ≤ 1, and possibly padding out this sum by
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assigning p0 = 1−∑
∞
i=1 pi to the empty string, we can guarantee that the support language,

the set of all strings with or without the empty string, is regular.

2 The Suppes/Levelt conjecture

A probabilistic language (or p-language) is a language L and some assignment p : L → R+

such that the sum of the assigned values is 1. In the finite state domain the normalization
restriction is sufficient: normalized right-linear grammars generate strings with probabilities
that sum to 1. However, the relationship between right-linear grammars and finite automata
is more complex in the probabilistic case, and we will settle on a definition of probabilis-
tic finite state automata (PFSA) that is different from the classic definition of probabilistic
automata given in Rabin (1963). The issue is that in the typical case, Rabin-style automata
define probabilistic processes, but do not define probabilistic languages. To see this, consider
Rabin’s first example, a machine with two states 0 (the start state) and 1 (the only accepting
state), over a two-letter alphabet {0,1}, with transitions for symbol i being defined as a loop
(probability 1) over state i, and as equiprobable between states i and 1− i out of state 1− i.
This automaton assigns the string 1 probability 0.5, the string 11 probability 0.75, and in
general the string 1n probability 1−2−n. In other words, the values assigned by the machine
do not converge. We obtain a full probability distribution for every annulus Ln composed of
exactly n-letter strings, but not for the language as a whole.

In a probabilistic language, we could always extend p to assign 0 to all strings not in L,
and it is generally sufficient to speak of functions f : T ∗ → R+

0 for which P = ∑α∈T ∗ f (α)
is convergent. The exact value of P is not a central concern: if P < 1 we can always pad
it out (e.g. by assigning the remainder to the empty string) and if P > 1 we can divide all
values by P. We identify the p-language L as the support of f i.e. the set of strings α for
which f (α) > 0. (In Rabin’s terminology, we assume the cut-point to be 0.) In particular,
a probabilistic language always induces a length distribution given by p(n) = ∑α∈Ln f (α).
Since actual corpora have a length distribution with a finite mean (e.g. the average sentence
in the Brown corpus is less than 25 tokens long), it only makes sense to treat corpora as
samples from probabilistic languages, as opposed to probabilistic processes. Technically,
the issue amounts to the existence (or lack thereof) of a sink state the automaton gets into
when presented with an end marker. We return to the matter shortly when we formally define
PFSA, but note here that the trivial machine, with one (accepting) state and all input looping
back with probabilities summing to 1, will not be a PFSA as it lacks a sink.

Theorem 1 PCFGs over a one-letter alphabet do not generate all one-letter p-languages with
regular support.

Proof Define the weights as a set with infinite transcendence degree over Q. (That such
sets exist follows from the fundamental theorem of algebra and from the existence of irre-
ducible polynomials of arbitrary degree. If t1, t2, t3, . . . is such a set, so will be s1,s2,s3, . . .
where si = |ti|/(1+ |ti|)2i, and the latter will also sum to ≤ 1). Now consider the generating
functions which are defined by taking the nonterminals as unknowns and the terminal a as a
variable in the manner of Chomsky and Schützenberger (1963), except using the probabil-
ities assigned to the rules as weights: for example the grammar of binary trees used above
yields the functional equation S = 0.5S2 +0.5a. In the general case, solving the set of equa-
tions for the generating function associated to the start symbol S is very hard, but over a
one-letter alphabet the only variable introduced by CF rules will of necessity commute with
all probabilistically weighted polynomials in the same variable. Since all defining equations
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are polynomial, the output probabilities are algebraically dependent on the rule probability
parameters. Since a CF rule system with n rules can generate at most n algebraically in-
dependent values, it follows that s1,s2,s3, . . . ,sn+1 cannot all be obtained from the CFG in
question. ut
Discussion The original proof by Ellis constructs an infinite set of weights as 1/

√
pi, where

pi is the smallest prime larger than 4i, and proceeds by counting the degree of the field
extensions. This works well for the finite state case, where the functional equations are
linear and the solutions are rationally dependent on the rule probabilities, but for CF and
more complex grammars the equations are polynomial and only algebraic dependence can
be assumed.

In the regular domain already there are p-languages outside the reach of regular or even
context free p-grammars. The situation is made particularly nasty by demonstrating the phe-
nomenon over a one letter alphabet: clearly if we find grammatically unreachable probability
distributions over this alphabet we can create examples over any size alphabet whatsoever.
In response, Suppes (1970) argued that

From the empirically oriented standpoint (...) Ellis’ example, while perfectly
correct mathematically, is conceptually unsatisfactory, because any finite sample of
L drawn according to the density p could be described also by a density taking only
rational values. Put another way, algebraic examples of Ellis’ sort do not settle the
representation problem when it is given a clearly statistical formulation. Here is one
such formulation. (...)

Let L be a language of type i with probability density p. Does there always exist
a probabilistic grammar G (of type i) that generates a density p′ on L such that for
every sample s of L of size less than N and with density ps the null hypothesis that s
is drawn from (L, p′s) would not be rejected?

I have deliberately imposed a limit N on the size of the sample in order directly
to block asymptotic arguments that yield negative results.

Suppes conjectured that the problem, stated thus, has an affirmative solution. That this was
generally viewed as highly desirable is clear from Levelt (1974:44), who takes the extraordi-
nary step of listing this as a theorem. Even though the surrounding text makes the conjectural
status quite clear, this is truly a momentous decision: it would be hard to imagine a number
theory textbook presenting the ‘Goldbach Theorem’ or the ‘Riemann Theorem’ in bold-
face, leaving the reader with the impression that essentially all the work is done, no further
research is needed.
Conjecture 2 (Suppes/Levelt) p-languages with type i support are statistically indistin-
guishable from languages generated by type i p-grammars.
Here we will investigate whether this conjecture is tenable by explicitly characterizing the
languages that can be generated by type 3 p-grammars or, what is the same, by PFSA, over
a one letter alphabet. Our main result is Theorem 2, which asserts that PFSA, (possibly also
endowed with silent λ -moves that change state but emit no symbol) generate all and only
p-languages with probabilities that show exponential decay. Next we show that Conjecture 2
can be strengthened (p-languages with type i support are statistically indistinguishable from
languages generated by PFSA) but only in a trivial sense: for more ambitious language mod-
eling efforts Theorem 2 still presents an insurmountable barrier. This is somewhat surprising
in light of the fact that finite state language modeling, in the form of Hidden Markov Mod-
els (HMMs) remains, to this day, the dominant algorithm in computational linguistics – we
investigate the reasons for the disconnect between theory and practice in the concluding
Section 4.
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3 PFSA over a one letter alphabet

To define a probabilistic finite state automaton (PFSA) over a one-letter alphabet {a} re-
quires a set of states Σ = {s1, . . . ,sn}, for each state i a set of values ti, j that characterizes the
probabilities of moving from state si to s j upon consuming (emitting) the letter a, and a set
of values li, j that characterizes the probabilities of moving from state si to s j by λ -move i.e.
without consuming (emitting) a. In what follows we will treat PFSA as generating devices –
the results presented here remain true for acceptors as well. To simplify the notation, we add
a start state s0 which only has λ -transitions to si for i > 0 – this has the technical advantage
that instead of a single designated initial state we can now have an initial probability dis-
tribution. We also replace all blocked transitions by transitions leading to a sink state sn+1
that has all (emitting and non-emitting) transitions looping back to it and has weight 0 in the
vector w that encodes the mixture of accepting states.

Discussion Consider the trivial single-state Rabin automaton over a one-letter alphabet {a}:
if we wish to write a right-linear grammar for this case we notice that the rule S → aS is
insufficient (there is no way to eliminate the S from a sentential form) so we must add a
rule S → λ . But once we do this, the probability p of the rule S → aS must be set to strictly
less than 1, since in p-grammars all rules, including the rule that eliminates the nonterminal,
must have nonzero probability, and the total probability of rules rewriting S must be kept at
1. This restores convergence, both in that the total probability assigned will now be 1 and in
that the mean string length is now finite, p/(1− p).

In a PFSA we can assume that in every state si and at every time tick the automaton
A will, with probability 1, move on some state s j and emit (or not emit) a symbol during
transition with probability ti, j (resp. li, j) collected in the matrix T (resp. L). We have the
following

Theorem 2 If p : {a}∗ → R+ is a PFSA p-language it is ultimately periodic in the sense
that there exists a fixed k and l such that for all 0≤ i < k either all weights p(ai+rk) are zero
once i+ rk > l or none of the weights p(ai+rk) are zero for any r such that i+ rk > l and all
weight ratios p(ai+rk+k)/p(ai+rk) tend to a fixed value λ k

1 < 1.

Proof We only sketch the proof here – for details see Kornai (2008) Theorem 5.8. The
probability P(ak|A) of A emitting ak is the sum of the probabilities over all paths that emit
a k times. We add a zero symbol z and consider the automaton A′ that emits z wherever
A made a λ -transition: we collect the probabilities in a formal power series p(a,z) with
non-commuting variables a and z – in matrix notation, p(a,z) = ∑k≥0(aT + zL)k. Given a
fixed start state s0 and some weighted combination w of accepting states, the probability of a
string x1, . . . ,xn ∈ {a,z}n being generated by A′ is obtained as the inner product of the zeroth
row of (T +L)n with the acceptance vector w. The spectral radius of L is less than 1 (since
states with no emission ever can be eliminated) and the matrix series I + L + L2 + L3 + . . .
converges to (I−L)−1. This gives

P(ak|A) = eL((I−L)−1T )k(I−L)−1w (1)

Since the only parts of (1) dependent on k are the kth powers of a fixed matrix (I−L)−1T ,
the growth of P(ak|A) is expressible as a rational combination of k-th powers of constants
λ1,λ2, ...,λn (the eigenvalues of (I − L)−1T arranged in decreasing order) with the fixed
probabilities ti, j and li, j. Therefore, the probabilities P(an|A) and P(am|A) will be both dom-
inated by a rational function of λ n

1 (resp λ m
1 ) (recall that by the Perron-Frobenius theorem λ1

will be real, positive, unique, strictly greater in absolute value than all other λi, and strictly
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less than 1 for each connected component) so their ratio will tend to λ
n−m
1 . (Because of mul-

tiple transitive components connected by one-way λ -transitions linear multiplicative terms
can accompany the exponential main term, but these tend to 1 as we take the limit of the
ratio.) ut

Example 1 Let p0 = 2−1, p1 = p2 = p3 = p4 = 2−2/221
, p5 = . . . = p20 = 2−3/222

and in
general divide the probability mass 2−n among the next 22n

strings. By Theorem 2 this distri-
bution will differ from any distribution that is obtained from PFSA by inspecting frequencies
is finite samples, even though all components are rational, since in PFSA log probabilities
can change at most linearly, rather than exponentially as the example demands.

Theorem 2 provides, and Example 1 exploits, exactly the kind of asymptotic characterization
that Suppes wanted to avoid by limiting attention to samples of a fixed size < N. In hindsight,
it is easy to see where the strict empiricism embodied in Conjecture 2 misses the mark:
with the availability of corpora (samples) with N > 1010 (in the world of machine learning,
there is no poverty of stimulus in the sense urged by Miller and Chomsky) it is evident
that our primary goal is not to characterize the underlying distribution to 10 significant
digits, but rather to characterize the tail, where probabilities of 10−40 or many orders of
magnitude below are quite common. Since perfectly ordinary words often have frequencies
below 10−6 or even 10−9, rather short sentences containing these, e.g. In our battalions,
dandruffy uniforms will never be tolerated will have probability well below 10−40.

There is no surprise that perfectly grammatical sentences can have extremely low prob-
ability. The primary goal is to make reasonable predictions about unattested events without
memorizing the details of the corpus. In an automaton with 106 states (quite feasible with
today’s technology) and 102 letters (the size of commonly used tagsets), we would have
over 1014 free parameters, a huge number that could only lead to overfitting, were we to fol-
low Suppes’ dictum and restrict ourselves to precisely matching samples of size 1012. The
poverty of stimulus argument still holds in that a childhood lasting 108 seconds is unlikely to
be long enough for gathering sufficient data and computing 1014 parameters, but as long as
we can be profligate with parameters, Conjecture 2 trivially holds, and not just for one-letter
alphabets:

Theorem 3 For any p-language of any type i ≤ 3 we can fit a PFSA to the first N terms of a
distribution to any required precision.
Proof In fact, we can do more: given any p-language f : T ∗→R+

0 and any positive ε we can
find a PFSA with rational probabilities such that the p-language g : T ∗→R+

0 generated by it
satisfies ∑α∈T ∗ | f (α)−g(α)| ≤ ε i.e. the total absolute error of the approximation is bound
by ε . First, we arrange the strings of T ∗ lexicographically, and select an N such that the total
probability mass assigned to strings {si|i > N} is less than ε/2 – this is always possible since
f converges. Next, we approximate f (s0) by a rational within ε/4, this will be g(s0), and
similarly we approximate f (s1) within ε/8, f (s2) within ε/16 and so on, for a total error ≤
ε . Finally, we construct the PFSA to generate the first N approximate g values (the remaining
values of f will be approximated by 0) by creating a separate chain automaton for each string
si and using their probability g(si), a rational number, as the transition weight for a λ -move
from the initial state into the starting point of the i-th automaton. For a string a1a2 . . .ak the
chain automaton moves from state i to state i+1 on emitting ai with probability 1, so if only
the last state is accepting it generates a1a2 . . .ak with probability 1. This, multiplied with the
cost of the silent initial move, gives exactly the p-language g.ut
Discussion Theorem 3 makes the Suppes/Levelt conjecture come out literally true, but de-
stroys the entire intellectual agenda that led to it. Once we invoke the notion of statistical
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indistinguishability, there is no correspondence between type i p-grammars and type i p-
languages: all that remains is that every p-language can be approximated by a PFSA to any
degree, just as every number can be approximated by a rational to any degree. In a corpus
of size N the smallest probability distinction that can be empirically made is 1/N. By pick-
ing ε = 1/2N in Theorem 3 we can construct a PFSA with all rational coefficients whose
language will be statistically indistinguishable from the original p-language.

4 Conclusions

Conjecture 1 expressed the belief that the Chomsky hierarchy will generalize smoothly from
standard (unweighted) grammars and languages to the probabilistic (weighted) case. When
Ellis showed that this is untrue, Suppes sought out a fallback position, Conjecture 2, ex-
pressing the same belief. This was not an unreasonable move, especially in light of what
was known at the time about the Type 0 case. For Turing machines, an important reduction
was presented in De Leeuw et al (1956), showing that a TM with access to a random number
generator that produces 1s and 0s with some fixed probability p is equivalent to a standard
TM without random components as long as p itself is computable – in other words, adding
random operations to the deterministic Turing operations adds nothing to generative capac-
ity. There is nothing wrong with the strategy Suppes tried, excluding the pathological cases.
This could have been a step in the right direction, but as Example 1 shows, it was not: the
key issue is that p-grammars have a structure on their own right, and this structure is largely
unrelated to the numerical values the probabilities may take. Whether these numbers are ra-
tional, algebraic, or transcendental, matters but little for the purpose of statistical language
modeling, since every number of the more complex transcendental type can be replaced by
a simple (rational) number with any desired precision.

What of the road not taken for so long? In linguistics, the brilliant technical work of
Chomsky and Schützenberger (1963) served more as a boundary marker than as a starting
point for further work – few people felt comfortable going in a direction Chomsky him-
self declared useless. In mathematics, the work was not only preserved but significantly
enlarged by Schützenberger, Berstel, and their students. Yet in spite of a lively ‘French
School’ that continued to produce excellent work (of which we single out Schützenberger
1976, Reutenauer and Schützenberger 1991, Berstel 1973, 1979, 1988), it wasn’t until the
groundbreaking work of Mohri (1994), himself a student of Berstel, that this line of re-
search caught the interest of linguists again. The original weighted FST library that Mohri
and his colleagues built at AT&T (see Mohri, Pereira and Riley 1996, Kornai 1996) had
strong proprietary restrictions, but an open source version is now widely used. In some re-
spects, the story of weighted finite state automata and transducers is eerily reminiscent of
the unweighted case, of which we wrote the following:

To understand some of the main trends in finite state NLP it is worth looking
back at the origins of the field. Though neither Mealy (1955) nor Kleene (1956)
had NL applications in mind, finite state methods were applied in this domain as
early as 1958 (see Joshi and Hopely 1999). In the early sixties, however, finite state
models were soon submerged in a flood of transformational models. It is hard to
speculate about such matters, but it is quite conceivable that the finite state approach
to NLP would have lost all credibility, were it not for the extraordinary impact of
Thompson (1968) and the grep family of unix tools. While theoretical linguists
accepted the arguments put forth in Miller and Chomsky (1963) at face value, from
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the seventies it became part of the received computer science wisdom that if you
want to do something with text you need to build finite automata. By making his
implementation of regexp(3) freely redistributable, Spencer (1986) transmitted this
wisdom to the free software movement. Given the dominant position of finite state
technologies in topic search, in retrospect it is hard to understand why mainstream
syntactic theory continued to shun finite state methods throughout the seventies and
eighties, but in fact these methods reappeared on the scene through a back door
left open by the context sensitive rule systems of phonology. Only two years after
the seminal Sound Pattern of English (Chomsky and Halle 1968), Johnson (1970)
demonstrated that the context sensitive machinery of SPE can be replaced by a much
simpler one, based on finite state transducers (FSTs), and independently the same
conclusion was reached by Kaplan and Kay, whose work remained an underground
classic until it was finally published in 1994. (Kornai 1999).

The wake-up call delivered, however inadvertently, by Ken Thompson, a computer scientist
with little discernible interest in language, was rather mild compared to the harsher wake-
up call delivered by two electrical engineers, Fred Jelinek and Jim Baker, whose speech
recognition system, based on Hidden Markov Models, massively outperformed the rule-
driven systems popular at the time (Woods et al 1976). By the time Brown at al (1990)
established that not just phonetics and phonology, but also syntax and semantics (and in
particular the Holy Grail of half a century’s work, machine translation) can benefit from
statistical ideas, few people entering the field thought that the received wisdom, still a part
of the standard linguistics curriculum, was valid.

But what of the objections to statistics that held back this line of research for three
decades? The first one, as emphasized in Pereira (2000), is simply false: the fact that col-
orless green ideas sleep furiously and sleep ideas furiously green colorless both have zero
frequency by no means implies that they have zero probability, or even the same nonzero
probability. As for the poverty of stimulus argument, this certainly remains valid, indeed,
this may be the only form of the argument that is robust enough to stand up against the
objections of Pullum and Scholz (2002). However, from an engineering standpoint there is
nothing particularly worrisome: all that is required is to create models that have fewer pa-
rameters, and much of contemporary linguistic theory aims exactly at this goal, primarily by
exploring various parameter tying strategies. To see what is involved here, let us consider
some rough estimates of the number of parameters in an n-gram POS tagger HMM. In the
unigram case, the hidden states are simply the POS tags, so there are on the order of 102 to
consider, and there are 104 transition parameters. In the general n-gram case there are 102n

states and 102n+2 nonzero transition parameters: Miller and Chomsky (1963) are quite right
in noting that 1032 parameters are impossible to train (or to acquire as a human).

In a unigram model, there are only a few times more emission probabilities than words
in its dictionary, since each word can have only a few POS tags: 106 is a reasonable estimate.
In a bigram model there will be about 108 and in a trigram model 1010 emission values, and
it is common practice to tie these together (i.e. to make emissions dependent only on the
last member of a POS n-gram, as in TnT, see Brants 2000) in order to avoid overfitting. The
typical nonzero transition probability (zeros are actually replaced by small numbers obtained
from smoothing in practical applications) is in the range 10−1 − 10−4, while the typical
emission probability can vary greatly, as much as 8-9 orders of magnitude, within a single
(n-gram) state. Thus the probability differences between sentences are largely driven by the
emissions, while the exponential decay in Theorem 2 comes from the transitions alone. In
other words, in the process of fitting a model to an observed distribution, the straight PFSA
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model will of necessity have a large number of very low transition parameters, causing both
overfitting and a very fast exponential decay, while a straight HMM, which is a PFSA but
with parameters tied in a manner more appropriate to the task, will have higher transition
probabilities (slower exponential decay) and much less of an overfitting problem.

In general, Theorems 2 and 3 do not stand in the way of training statistically reasonable
language models, they just signal the difficulty, overfitting, that the naive empirical approach
runs into. The answer is not to abandon fitting regular models, or to abandon the probabilis-
tic framework entirely, as was suggested e.g. in Chomsky (1957), but to proceed with the
appropriate parameter tying strategies.
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