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In this note we offer a reply to Idsardi (2006b) responding to Kornai (2006), where we questioned the
strength of the demonstration offered in Idsardi (2006a) that the decision problem whether a particular
string is licensed by an OT grammar is NP-hard. Since there doesn’t appear to be any disagreement be-
tween Idsardi’s (2006a, 2006b) and Kornai (2006) as to the method to be followed in such a demonstration,
we begin with disposing with the final rhetorical question So what is the “it” that isn’t broken? – “it” is
the central Gen/Eval mechanism of Optimality Theory, as currently understood by practicing phonolo-
gists everywhere. To be sure, this understanding is neither perfect nor entirely invariant under choice of
phonologist, but there is enough coherence that we can dispense with the general philosophical arguments
and move directly to the heart of the matter, especially as Idsardi was careful to build his demonstration
on dissimilation phenomena that no phonologist would want to disregard.

There are two, strongly interconnected issues: the size of the domain on which the self-conjuction
constraints operate and the size of the inventory involved in the phenomena. If either of these turns out
to be finite, the standard definition of NP-hardness, where the complexity of a problem is defined as a
function of the size of the input, loses its applicability. To make this point clear, consider chess, a game
that is intuitively felt to be “hard”. In the complexity-theoretic sense chess is not an NP-hard problem:
there are only finitely many games (given the threefold repetition rule, itself a self-conjunction constraint
of sorts), and in principle these could be enumerated, and the optimal strategy could be implemented by
table lookup. For a problem to be NP-hard, one needs to be able to create arbitrarily large instances.

Idsardi (2006a) used phonemes as the inventory and words as the domain, and Idsardi (2006b) cites
Swingley (2003) as an indication that there is more to phoneme inventory size than meets the eye. Indeed,
if we read Swingley’s paper in an extreme way, we can conceive of a primal phonemic inventory wherein
every potential feature contrast is kept, so that for some three dozen binary features we would obtain a set
of 236 or about 69 billion phonemes. This number is large enough to make us feel that asymptotic theory
is of some value even though strictly speaking the dataset is still finite. Now, given that all of the three
dozen features are active in some languages, it is not at all clear why we don’t have substantially larger
phonemic inventories than we actually have, but, as Idsardi notes, the cardinality p of attested phoneme
systems tops out at around 100. Still, aren’t a hundred distinct phonemes enough to make Idsardi’s point
that “100! permutations is not a tractable search space”?

The answer depends on whether other limiting factors are present. There is a clear tendency of languages
with larger p to have shorter words (Nettle 1995), and if domain size is limited to some small n, the maximal
Hamilton path search that could be encoded will be limited to this n even if p is large. For example, if
the language permits only trisyllabic or shorter stems, CC onsets but only C codas, the maximum stem
length will be 12, and no amount of self-conjunction constraints over stems could encode a directed graph
with more than 12 nodes. A search space of size 12! is no longer that formidable, and it is worth
emphasizing that many of the classical morpheme structure constraints adduced by Idsardi operate over
strictly bounded domains: for example, the Semitic point of articulation constraints typically over trilateral



(rarely quadrilateral, and never, say, septilateral) roots.
So far, we have seen that problem size is bounded by min(n, p), but there is a third, highly relevant

limiting factor, 2c, where c is the number of self-conjuction constraints in play. To see what is involved
here, consider Lyman’s Law, disallowing the occurrence of more than one voiced obstruent per morpheme.
We will allow morphemes (or prosodic words) of arbitrary size, and allow a fictional Japanese that has
considerably more than 20 consonants and 5 vowels. What we do not allow, in this example, is more
than two constraints, Lyman’s Law and deaccentuation. This renders our generosity in regard to phoneme
inventory or domain size irrelevant: the largest problem we can encode must be based on the distinctions
voiced obstruent v. all other consonants and accented vowels v. unaccented, for a total of four graph nodes.
Our final bound (still generous, as it assumes no further phonotactic restrictions that could mess up the
encoding) is min(n, p, 2c), and it is an interesting question why this number is so low in all phonologies.
This puts constraints like *Repeat(stem) in a different light: the actual resources to verify the satisfaction
of a single constraint of this sort are linear in the size of the domain, and a word that contains all stems
of the language (a full permutation by *Repeat) is inconcievable.

Here the situation is strictly analogous to Barton’s (1986) demonstration that Kimmo systems can
encode NP-hard problems, except Barton used assimilation rules (harmony processes) where Idsardi uses
dissimilation rules. To revisit Barton’s logic, his argument was that (i) Kimmo systems are hard to run and
(ii) natural language words are easy to analyze, so (iii) Kimmo systems do not do enough to sufficiently
constrain the class of natural languages. The Koskenniemi-Church response essentially embraces this logic,
saying in effect that Kimmo systems without the proviso that there aren’t to many harmony processes
operating in parallel are hard to run, and therefore the required characterization of natural languages uses
Kimmo systems with this proviso.

Here we embrace Idsardi’s logic in the same fashion: OT without a proviso for small inventories and
not too many dissimilation processes operating in parallel is hard, and as such it must be an insufficient
characterization of natural language phonologies. Also, we must clearly admit we don’t really know why
phoneme inventories are so drastically simplified compared to the capabilities of the perceptual apparatus,
or why large numbers of unbounded harmony or disharmony processes don’t operate in parallel. We
may speculate that these have to do with performance limitations, but in reality the relation between the
number of logical operations (as counted by complexity theory) and the difficulty for a human to perform
a deductive task (as measured by psycholinguistic experiment) is rather tenuous – people have a lot less
difficulty with chess (requiring teraflop capacity in a machine) than with long division of two thousand-digit
numbers (requiring a few dozen machine operations all told).

To summarize, we don’t know what deeper reasons guard OT from blowing up computationally, but in
practice it is evident that the decision problem whether a particular string is licensed by an OT grammar
is not at all hard. What the reductions show are the limits of computational complexity theory rather
than the limits of OT: there is reason for guarded optimalism.
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