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Abstract

Zipf (1949) already noted that the linear relation-
ship that he observed between log frequency and log
rank is strongest in the middle range: both very high
and very low frequency items tend to deviate from
the log-log regression line. In this paper the causes
for such deviations are investigated and a more de-
tailed statistical model is offered. The subgeomet-
ric mean property of frequency counts is introduced
and used in proving that the size of the vocabulary
tends to infinity as sample size is increased without
bounds.

0 Introduction

In spite of its venerable history (starting with Pareto
1897, Estoup 1916, Willis 1922, Yule, 1924) and con-
siderable empirical support, Zipf’s law remains one
of the least understood phenomena in mathemati-
cal linguistics. Given a corpus of N word tokens,
arranging word types in order of descending token
frequency (called “rank” and denoted by r in what
follows), the plot of log frequencies against log ranks
shows, at least in the middle range, a reasonably lin-
ear relation. Fig. 1 shows this for a single issue of an
American newspaper, the San Jose Mercury News,
or Merc for short.
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Figure 1: Log-log plot for a newspaper issue (150k
words)

Denoting the slope of the linear portion by −B,
B is close to unity, slightly higher on some plots,
slightly lower on others. As Mandelbrot repeatedly
stressed in the Simon-Mandelbrot debate and else-
where, the apparent flexibility in choosing any num-
ber close to 1 is actually cause for serious concern,
inasmuch as for B ≤ 1, log(pr) ∼ r−B would imply
that

∑∞
r=1 pr diverges. Some authors like Samuels-

son (1996) in fact reserve the term “Zipf’s law” to
the case B = 1 and observe, quite correctly, that
this formulation of the law implies a finite vocabu-
lary. While the narrower terminology would be his-
torically more faithful (for a discussion and critique
of Zipf’s original notion of an optimum corpus size
see Powers 1998) in this paper we will use the term
“Zipf’s law” in the broader sense. Since our very first
Theorem states that under very general conditions
vocabulary size can not be expected to be finite, it
is worth discussing this matter in some detail.

Let us assume for the moment that the primary
focus of our interest is the journalistic/nonfiction-
literary style exemplified by the Merc, or that even
more narrowly, our focus is just the Merc and we
have no intention of generalizing our results to other
newspapers, let alone other stylistic ranges. While
the Merc is a finite corpus, growing currently at a
rate of 60M words/year, our goal is not an exhaus-
tive characterization of past issues, but rather pre-
dicting word frequencies for future issues as well.
Therefore, the population we care about is an infinite
one, comprising all potential issues written in “Merc
style” and each issue is but a finite sample from this
infinite population. Though undoubtedly this pop-
ulation shows a certain amount of diachronic drift
as new words enter the language and old ones fall
into disuse, here we take an “adiabatic” perspective
on increasing sample size, and treat our population
(and by means of randomizing article order, also our
samples) essentially as a synchronic slice.

Given some sample S of articles and some word w,
it is a simple matter to obtain a sample count FS(w)
of w and divide it by the sample size N to obtain
the relative sample frequency fS(w) = FS(w)/N .
Standard textbooks like Cramér (1955) take it as
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axiomatic that by randomly increasing S without
bounds, fS(w) → f(w) as N →∞, i.e. that for ev-
ery word, sample frequencies will converge to a fixed
constant 0 ≤ f(w) ≤ 1 that is the probability (pop-
ulation frequency) of the word. In the context of
using ever-increasing corpora as samples this stabil-
ity property of frequency ratios has often been ques-
tioned, both on grounds of diachronic drift, which
we can safely disregard here, and on the basis of
the following argument: if the lexicon is not closed,
then the true probability of a word should, on av-
erage, decay as sample size is increased. While it
is certainly true that the average will tend to zero,
the probabilities of individual words need not tend
to zero.

Section 1 of this paper provides a fully worked out
example of this phenomenon, compares Zipf’s law
to a simple exponential decay model and derives a
lower bound on vocabulary growth. The case of high
frequency items is discussed in Section 2, and we
turn to the case of low frequency items in Section 3.
Unless noted otherwise, we illustrate our main points
with a corpus of some 300 issues of the Merc totaling
some 43M words. While this is not a large corpus
by contemporary standards, it is still an order of
magnitude larger than the classic Brown and LOB
corpora on which so much of our current ideas about
word frequencies was first developed and tested, and
empirical regularities observed on a corpus this size
can not be dismissed lightly.

As a practical matter, we need a definition of when
a token belongs to a type that is capable of han-
dling the issues of lexing (punctuation, capitaliza-
tion, etc.) that inevitably arise in the course of any
corpus-based work. This will have little effect on
our conclusions, but for the sake of concreteness we
will assume here that all characters are lowercased
and all special characters, except for hyphen and
apostrophe, are mapped on whitespace. The termi-
nal symbols or letters of our alphabet are therefore
L = {a, b, ...z, 0, 1, ...9,′ ,−} and all word types are
strings in L∗, though word tokens are strings over
a larger alphabet including capital letters, punctua-
tion, and special characters.

1 Exponential decay

Since word frequencies span many orders of magni-
tude, it is difficult to get a good feel for their rate
of convergence just by looking at frequency counts.
The log-log scale used in Zipf plots is already an
indication of the fact that to get any kind of visi-
ble convergence exponentially growing corpora need
to be considered. Much of traditional quantitative
linguistic work stays close to the Zipfian optimum
corpus size of 104 − 105 words simply because it is
based on a closed corpus such as a single book or
even a short story or essay. But as soon as we go

beyond the first few thousand words, relative fre-
quencies are already in the 10−6 range. Such words
of course rarely show up in smaller corpora, even
though they are often perfectly ordinary words such
as uniform that are familiar to all adult speakers of
English. Let us therefore begin by considering an ar-
tificial example, in which samples are drawn from an
underlying geometrical distribution f(wr) = 1/2r.

Example 1. If the rth word has probability
pr = 2−r, in a random sample S of size N = 2m we
expect 2m−1 tokens of w1, 2m−2 tokens of w2, . . . , 2
tokens of wm−1, 1 token of wm and one other token,
most likely another copy of w1. If this expectation is
fulfilled, the frequency ratio based estimate fS(wr)
of each probability pr = f(wr) is correct within 1/N
i.e. convergence is limited only by the resolution
offered by corpus size N , yet the number of types
V (N) observed in a sample of N tokens still tends
to infinity with log2(N).

Discussion. Needless to say, in an actual ex-
periment we could hardly expect to get results this
precise, just as in 2N tosses of a fair coin the actual
value of heads is unlikely to be exactly N . Never-
theless, the mathematical expectations are as pre-
dicted, and the example shows that no argument
based based on the average decline of probabili-
ties could be carried to the point of demonstrating
that a closed/finite vocabulary is logically necessary.
Though not necessary, finite vocabulary is still pos-
sible: what we will demonstrate in Theorem 1 is
that this possibility is logically incompatible with
observable properties of corpora, as long as these
are treated as random samples from an underlying
probability distribution rather than as objects fully
defining a probability distribution.

In short, we assume that population frequencies
give a probability distribution over L∗, but for now
remain neutral on the issue of whether the under-
lying vocabulary is finite (closed) or infinite (open).
We also remain neutral on the rate of convergence of
frequency ratios, but note that it can be seen to be
rather slow, and not necessarily uniform. If rates of
convergence were fast to moderate, we would expect
empirical rankings based on absolute frequencies to
approximate the perfect ranking based on popula-
tion frequencies at a comparable rate. For example
one could hope that any word that has over twice the
average sample frequency 1/V (N) is already “rank
stabilized” in the sense that increasing the sample
size will not change its rank. Such hopes are, alas,
not met by empirical reality: doubling the sample
size can easily affect the ranking of the first 25 items
even at the current computational limits of N , 109-
1010 words. For example, moving from a 10M corpus
of the Merc to a 20M corpus already affects the rank-
ings of the first four items, changing the, of, a, to to
the, of, to, a.



Since sample rank is an unreliable estimate of pop-
ulation rank, it is not at all obvious what Zipf’s
law really means: after all, if we take any set of
numbers and plot them in decreasing order, the re-
sults charted on log-log scales may well be approx-
imately linear. As a first step, we will normalize
the data, replacing absolute rank r by relative rank
x = r/V (N). This way, the familiar Zipf-style plots,
which were not scale invariant, are replaced by plots
of function values f(x) restricted to the unit square.
f(1/V (N)) = f(w1) is the probability of the most
frequent item, f(1) = f(V (N)/V (N)) = 1/N is
the probability of the least frequent item, and for
technical reasons we define the values of f between
r/(V (N)) and (r +1)/V (N) to be p(wr+1). A small
sample (four articles) is plotted in this style in Fig. 2.
Since the area under the curve is 1/V (N), by in-
creasing the sample size plots of this kind get in-
creasingly concentrated around the origin.
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Figure 2: Bounded plot of 4 articles (1.5k words)

In approximating such a curve an obvious choice
would be to try exponential decay i.e. f(x) ∼ Ce−Dx

with some constants C,D > 0. However, for reasons
that will shortly become apparent, no such curve
provides a very good fit, and we merely use the expo-
nential model as a tool to derive from first principles
a lower bound for V (N). We will use the following
facts:

(1) For any f obtained from a random sample S of
size N , f(1/V (N)) tends to p1, the frequency
of the most frequent item, as N →∞

(2) For any f obtained from a random sample S of
size N , f(1) = 1/N

(3) Word frequencies decay subexponentially
(slower than exp(−Dx) for any D > 0).

Theorem 1. Under conditions (1-3) V (N) grows
at least as fast as log(N)(1− 1/N).

Proof: 1/V (N) =
∑V (N)

r=1 f(r/V (N))/V (N) is a
rectangular sum approximating

∫ 1

0
f(x)dx. Since

f(x) is subexponential, for any g(x) = exp(−Dx)
that satisfies g(1/V (N)) ≥ p1 and g(1) ≥ 1/N ,
we have g(x) ≥ f(x) everywhere else in the
interval [1/V (N), 1], and therefore 1/V (N) <∫ 1

0
exp(−Dx)dx = (1 − exp(−D))/D. Using (2) we

compute D = log(N), V (N) ≥ log(N)(1− 1/N).
Discussion. Since any theorem is just as good as
its premises, let us look at the conditions in some
detail. (1) is simply the axiom that sample frequen-
cies for the single most frequent item will tend to
its population frequency. Though this is not an en-
tirely uncontroversial assumption, we believe that
the preceding discussion provides sufficient grounds
for adopting it. On the surface (2) may look more
dubious: there is no a priori reason for the least
frequent word in a sample to appear only once. For
example, in closed vocabulary Bernoulli experiments
we would expect every word to appear at least twice
as soon as the sample size is twice the inverse proba-
bility of the least frequent word. In the final analysis,
(2) rests on the massively supported empirical obser-
vation that hapaxes are present in every corpora, no
matter how large.

It may therefore be claimed that the premises of
the theorem in some sense include what we set out
to prove (which is of course true of every theorem)
and certainly in this light the conclusion that vo-
cabulary size must be infinite is less surprising. In
fact a weaker bound can already be derived from
g(1/V (N)) ≥ p1, knowing g(x) = exp(−Dx) and
D = log(N). Since exp(− log(N)/V (N)) ≥ p1 we
have V (N) ≥ log(N)/ log(1/p1), an estimate that is
weakest for small p1.

The most novel of our assumptions is (3), and it
is also the empirically richest one. For any exponent
D, exponentially decaying frequencies would satisfy
the following geometric mean property:

if r and s are arbitrary ranks, and their
(weighted) arithmetic mean is t, the fre-
quency at t is the (weighted) geometric
mean of the frequencies at r and s.

What we find in frequency count data is the sub-
geometric mean property, namely that frequency ob-
served at the arithmetic mean of ranks is systemati-
cally lower than frequency computed as the geomet-
ric mean, i.e. that decay is slower than exponential.

This may not be strictly true for very frequent
items (a concern we will address in Section 2) and
will of necessity fail at some points in the low fre-
quency range, where effects stemming from the res-
olution of the corpus (i.e. that the smallest gap be-
tween frequency ratios cannot be smaller than 1/N)
become noticeable: if the rth word has i tokens but
the (r + 1)th word has only i− 1 tokens, we can be



virtually certain that their theoretical probabilities
(as opposed to the observed frequency ratios) differ
less than by 1/N . At such “steps” in the curve, we
cannot expect the geometric mean property to hold:
the observed frequency of the rth word, i/N , is ac-
tually higher than the frequency computed as the
geometric mean of the frequency of e.g. the (r−1)th
and (r +1)th words, which will be

√
i(i− 1)/N . To

protect our Theorem 1 from this effect, we could es-
timate the area under the curve by segregating the
steps up to log(log(N)) from the rest of the curve
by two-sided intervals of length N ε, but we will not
present the details here because log(N) is only a
lower bound on vocabulary size, and as a practical
matter, not a very good one.

In fact, if we repeatedly double the size of our
Merc corpus to include 1,2,. . . ,128 issues, and plot
log vocabulary size against log sample size we get
a very good linear relationship (see Fig. 3), indi-
cating that V (N) ∼ Nq, with q ≈ 0.75. A sim-
ilar “power law” relationship has been observed in
closed corpora (including several Shakespeare plays)
by Turner (1997). The assumption that a power law
relates vocabulary size to sample size goes back at
least to Guiraud (1954) (with q = 0.5) and Herdan
(1960) – the only novelty in our approach is that we
will derive this power law as a consequence of Zipf’s
second law in Theorem 2 later.
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Figure 3: Growth of vocabulary size V(N) against cor-
pus size N in the Merc on log-log scale

The lesson that we would like to take away from
Theorem 1 is not the quantitative form of the re-
lationship V (N) ≥ log(N)(1 − 1/N), since this is
a rather weak lower bound, but the qualitative fact
that vocabulary size grows in an unbounded fashion
when sample size is increased. Less than logarithmic
growth is logically inconsistent with the characteris-
tic properties of corpora, namely their subexponen-
tial decay and that singletons (hapaxes) are present

in every sample, no matter how large.

2 High frequency items

Implicitly or explicitly, much of the work concern-
ing word frequency assumes a Bernoulli-style setup,
in which words (tokens) are randomly drawn (with
replacement) from a large urn containing all word
types in fixed proportions. Though clearly not in-
tended as a psychologically realistic model of speech
or writing, it is nevertheless a very useful model,
and rather than abandoning it entirely, our goal here
is to refine it to fit the facts better. In particu-
lar, we follow Mandelbrot’s (1961c) lead in assuming
that there are two urns, a small one UF for function
words, and a larger one UC for content words.

Inasmuch as the placement of function words is
dictated by the rules of syntax rather than by ef-
forts to choose the semantically appropriate term,1
it seems appropriate to set aside function words in
UF . Also, the use of function words is subject to so
much individual variation that principal component
analysis on the function word counts is effective in
separating different authors (Burrows, 1987).

Our first task is to estimate the relative sizes of
the two urns. Let fN (x) be a family of [0, 1] → [0, 1]
functions with the following properties:

(4) exponential decay, fN (x) = exp(−DNx)

(5) left limit, fN (1/N) is a constant, say exp(−c)

(6) linear area law,
∫ (V (N)+1/2)/N

1/2N
fN (x)dx = 1/N

To fix ideas, the fN should be thought of as nor-
malized frequency distributions, but the x axis is
scaled by N rather than V (N) as before: values of
fN for x > V (N)/N are simply 0. Also, we think
of the values fN (r/N) as providing the ordinate for
trapezoidal sums approximating the integrals, rather
than the rectangular sums used in Section 1. Since
the width of the trapezoids is 1/N and their height
sums to 1, the trapezoidal sum is 1/N rather than
1/V (N) as before.

From (4) and (5) we get DN = cN , which for
(6) gives 1/N =

∫ (V (N)+1/2)/N

1/2N
exp(−cNx)dx =

(1/cN)[exp(−c/2) − exp(−c(V (N) + 1/2))]. Since
V (N) → ∞ as N → ∞, the last term can be ne-
glected and we get c = exp(−c/2). Numerically,

1The same point can be made with respect to other Pareto-
Zipf laws. For example, in the case of city sizes it stands to
reason that the growth of a big city like New York is primar-
ily affected by local zoning laws and ordinances, the pattern
of local, state, and federal taxes, demographic and economic
trends in the region, and immigration patterns: the zoning
laws etc. that affect Bombay are almost entirely irrelevant
to the growth of New York. But once we move to mid-sized
and small population centers, the general spatial patterns of
human settlement can be expected to assert themselves over
the special circumstances relevant to big cities.



this yields c = 0.7035 meaning the frequency of the
most frequent item is 49.4866%.

While our argument is clearly heuristic, it strongly
suggests that nearly half of the tokens may come
from function words i.e. the two urns are roughly
the same size. An alternative to using two sepa-
rate urns may be to tokenize every function word as
an instance of a catchall ‘functionword’ type. The
standard list in Vol 3 of Knuth (1971) contains 31
words said to cover 36% of English text, the 150 most
frequent used in Unix covers approximately 40% of
newspaper text, and to reach 49.5% coverage on the
Merc we need less than 200 words. By grouping the
appropriate number of function words together we
can have the probability of the dominant type ap-
proximate 49.5%.

Because tokenization is from the statistical per-
spective arbitrary, but reorganization of the data in
the tokenization step (using only finite resources) is
often desirable, it should be emphasized that at the
high end we cannot in general expect Zipf-like reg-
ularity, or any other regularity. For example, Fig. 1
completely fails to show the linear pattern predicted
by Zipf’s law, and because of the multiple inflection
points, fitting other smooth curves is also problem-
atic at the high end. The geometric mean property
is also likely to fail for very high frequency items, but
this does not affect our conclusions, since the proof
can be carried through on UC alone, either by seg-
regating function words in UF or by collecting them
in a single functionword type that is added to UC .

Since some function words like on are homo-
graphic to content words (e.g. in The cat is on the
mat we see the locative meaning of on rather than
the purely prepositional one as in go on ‘continue’)
ideally UC should also contain some function word
homographs, albeit with different probabilities. It
would require sophisticated sense disambiguation to
reinterpret the frequency counts this way, and we
make no further efforts in this direction here, but
note that because of this phenomenon the use of
two separate urns need not result in a perceptible
break in the plots even if the functional wordsenses
are governed by laws totally different from the laws
governing the contentful wordsenses.

It will be evident from Table 1 below that in the
Merc no such break is found, and as long as markup
strings are lexed out just as punctuation, the same
is true of most machine readable material. Several
explanations have been put forth, including the no-
tion that elements of a vocabulary “collaborate”,
but we believe that the smooth interpenetration of
functional and contentful wordsenses, familiar to all
practicing linguists and lexicographers, is sufficient
to explain the phenomenon. Be it as it may, in the
rest of this Section we assume the existence of some
rank boundary k, (30 < k < 200) such that all words

in 1 ≤ r ≤ k are function words and all words with
r > k are content words. As we shall show shortly,
the actual choice of k does not affect our argument
in a material way.

We assume that the function words have a total
probability mass Pk =

∑k
r=1 pr(0.3 ≤ Pk ≤ 0.5)

and that Zipf’s law is really a statement about UC .
Normalizing for the unit square, now using V (N)
as our normalizing factor, sample frequencies are
f(x)(k/V (N) ≤ x ≤ 1). The following properties
will always hold:

(7) right limit, fN (1) = 1/N

(8) left limit, fN (k/V (N)) is a constant

(9) area power law,
∫ 1

k/V (N)
fN (x)dx = (1 −

Pk)/V (N)

To this we can provisionally add Zipf’s law,
log(fN (xV (N))) = CN − BN log(xV (N)) or more
directly
(10) fN (xV (N)) = exp(CN−BN log(xV (N)))

Condition (7) means f(1) = exp(CN ) = 1/N there-
fore CN = − log(N). The logarithmic change in CN

corresponds to the fact that as corpus size grows,
unnormalized Zipf plots shift further to the right –
notice that this is independent of any assumption
about the rate of vocabulary growth. In fact, if we
use Zipf’s law as a premise, we can state that vocab-
ulary grows with a power of corpus size as
Theorem 2. If corpora satisfy Zipf’s law, grow such
that assumptions (7-8) above hold, and BN tends
to a fixed Zipf’s constant B, vocabulary size V (N)
must grow with Nq, q = 1/B.
Proof. By (7) we have Zipf’s law in the form
fN (x) = 1/NxBN . If fN (k/V (N)) is to stay con-
stant as N grows, N(k/V (N))BN must be con-
stant. Since k (the number of function words) is
assumed to be constant, we get log(N)+BN log(k)−
BN log(V (N)) constant, and as BN converges to B,
log(N) ∼ B log(V (N)). Therefore, N = V (N)B

within a constant factor.
In our notation, q = 1/B, and as V (N) ≤ N , we

obtained as a side result that frequency distributions
with B < 1 are sampling artifacts in the sense that
larger samples from the same population will, of ne-
cessity, have a B parameter ≥ 1. Thus we find Man-
delbrot (1961b) to be completely vindicated when
he writes

[...] Zipf’s values for B are grossly underes-
timated, as compared with values obtained
when the first few most frequent words are
disregarded. As a result, Zipf finds that the
observed values of B are close to 1 or even
less than 1, while we find that the values of
B are not less than 1 [...] (p196)



We leave the special case B = 1 for Section 3, and
conclude our investigation of high frequency items
with the following remark. Equation (9), what we
called the “power law” for area under the curve,
gives, for B > 1, (1−Pk)/Nq =

∫ 1

k/Nq 1/(NxB)dx =
[1− (k/Nq)1−B ]/N(1−B). Differentiating with re-
spect to k = xNq gives ∂Pk/∂k = k−B meaning that
at the boundary between content words and function
words we expect pk ∼ 1/kB . Looking at four func-
tion words in the Merc in the range where we would
like to place the boundary, Table 1 summarizes the
results.

Word Rank Frequency B
be 30 0.0035 1.66
had 75 0.0019 1.45

other 140 0.0012 1.36
me 220 0.00051 1.41

Table 1: B = − log(pk)/log(k) (estimates)

Our goal here is not to compute B on the basis
of estimated ranks and frequencies of a few function
words, but rather to show that a smooth fit can be
made at the function word boundary k. The proper
procedure is to compute B on the basis of fitting the
mid- (and possibly the low-) frequency data, and se-
lect a k such that the transition is smooth. As the
chart shows, our normalization procedure is consis-
tent with a wide range of choices for k.

3 Low frequency items

The fundamental empirical observation about low
frequency items is also due to Zipf – it is some-
times referred to as his “second law” or the number-
frequency law. Let us denote the number of single-
tons in a sample by c1, the number of types with
exactly 2 tokens by c2 etc. Zipf’s second low states
that if we plot log(n) against log(cn) we get a linear
curve with slope close to -1/2. This is illustrated in
Fig. 4 below:
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Figure 4: Num-freq law on the Merc (10M words)

Some of the literature (e.g. the excellent web
article by Landini (1997)) treats these as separate
laws, but really the “second law”, log(i) = HN −
DN log(ci), is a straightforward consequence of the
first, as Zipf already argued more heuristically.
Theorem 3. If a distribution obeys Zipf’s first law
with slope parameter B it will obey Zipf’s second
law with slope parameter D = B/(1 + B).
Proof. Using the notation established above, for
sample size N we have fN (x) = 1/NxB , so the prob-
ability that an item is between i/N and (i + 1)/N
if i ≤ x−B ≤ i + 1. Therefore we expect ci =
V (N)(i−q − (i + 1)−q). By Rolle’s theorem, the
second term is qy−q−1 for some i ≤ y ≤ i + 1.
Therefore, log(ci)/(q + 1) = log(V (N))/(q + 1) −
log(q)/(q + 1) − log(y). Since log(q)/(q + 1) is a
small constant, and log(y) can differ from log(i)
by no more than log(2), rearranging the terms we
get log(i) = log(V (N))/(q + 1) − log(ci)/(q + 1).
Since HN = log(V (N))/(1 + q) tends to infinity, we
can use it to absorb the constant term bounded by
(q − 1)/2 + log(2).
Discussion. The normalization term HN is necessi-
tated by the fact that “second law” plots would oth-
erwise show the same drift as “first law” plots. Using
this term we can state the second law in a much more
useful format. Since log(i) = log(V (N))/(q + 1) −
log(ci)/(q + 1) plus some additive constant,

ci = V (N)/iq+1

times some multiplicative constant m. If we wish∑∞
i=1 ci = V (N) to hold we must choose m to be

1/ζ(q + 1). Since this argument assumes Zipf’s sec-
ond law to extend well to high frequency items, the
case for using m = 1/ζ(q + 1) is not totally com-
pelling, but it is reassuring to see that for B ≥ 1 we
always find a bound constant (6/π2 for B = 1) that
will make the distribution consistent.

Therefore we find Mandelbrot’s (1961c) criticism
of B = 1 to be somewhat less compelling than the
case he made against B < 1. Recall from the pre-
ceding that B is the reciprocal of the exponent q
in the vocabulary growth formula V (N) = Nq. If
we choose a very “rich” corpus, e.g. a table of log-
arithms, virtually every word will be unique, and
V (N) will grow faster than N1−ε for any ε > 0, so
B must be 1. The following example sheds some
light on the matter.
Example 2. Let L = {0, 1, . . . , 9} and our word to-
kens be the integers (in standard decimal notation).
Further, let two tokens share the same type if their
smallest prime factors are the same. Our size N
corpus is constructed by N drawings from the ex-
ponential distribution that assigns frequency 2−i to
the number i. It is easy to see that the token fre-
quency will be 1/(2p − 1) for p prime, 0 otherwise.



Therefore, our corpora will not satisfy Zipf’s law,
since the rank of the ith prime is i, but from the
prime number theorem pi ∼ i log(i) and thus its log
frequency ∼ −i log(i) log(2). However, the corpora
will satisfy Zipf’s second law, since, again from the
prime number theorem, ci = N/i2(log(N) − log(i))
and thus log(V (N))/2 − log(ci)/2 = log(N)/2 −
log(log(N))/2 − log(N)/2 + log(i) + log(log(N) −
log(i))/2 which is indeed log(i) within 1/ log(N).

Example 2 shows that Theorem 3 can not be re-
versed without additional conditions (such as B >
1). A purist might object that the definition of to-
ken/type relation is weird. However, it is just an
artifact of the Arabic system of numerals that the
smallest prime in a number is not evident: if we used
the canonical form of numbers, everything after the
first prime could simply be discarded as mere punc-
tuation. More importantly, there are several stan-
dard families of distributions that can, when condi-
tions are set up right, satisfy the second law but not
the first one with any B > 1.

Yule (1922) and Simon (1955) explored variants
of the beta distribution in this context. This is
not the place to give a full appraisal of the Simon-
Mandelbrot debate (Mandelbrot 1959 1961a 1961b,
Simon 1960 1961a 1961b), but it seems clear to us
that the use of such models can hardly be faulted
on grounds of mathematical rigor. It can, however,
be faulted on grounds of empirical validity. One ex-
ample used in Simon (1955) and subsequent work is
Joyce’s Ulysses. The general claim of V (N) = αN
is made for Ulysses with α ≈ 0.115. However, in-
stead of linear vocabulary growth, in Ulysses we find
the same power law that we have seen in the Merc
(cf. Fig. 3 above). To be sure, the exponent q is
closer to 0.9, while in the Merc it was 0.75, but it
is still very far from 1. Leaving out the two longest
chapters Oxen of the Sun and Circe we are left with
roughly two-thirds of Ulysses, yielding an estimate
of α = 0.111 or q = 0.822. Applying these to the
two chapters left out, which have 96268 words total,
we can compute the number of different words based
on αN , which yields 10723, or based on Nq, which
yields 12422. The actual number of words used in
these two chapters is 13448, so the error of the power
law estimate is 8.5% versus the 25.5% error of the
linear estimate.

Tweedie and Baayen (1998) survey a range of for-
mulas relating V (N) to N , and identify our q as Her-
dan’s C. If we are satisfied with Zipf’s Law at least
as a first approximation to the empirically observ-
able frequency distribution, clearly C = q = 1/B,
where B > 1 is the Zipfian parameter. In light
of our results so far, type token ratio must tend
to zero since V (N)/N ∼ Nq−1 and q = 1/B < 1.
Guiraud’s R will tend to zero or infinity if B < 2 or
B > 2 respectively. Dugast’s and Rubet’s k, defined

by Tweedie and Baayen as log(V (N))/ log(log(N)),
must tend to infinity. From the second law, the ratio
of hapax legomena to vocabulary size c1/V (N) is a
constant m, the ratio of dis legomena to vocabulary
size is a different constant c2/V (N) = m/2q+1, and
in general ci/V (N) is m/iq+1. On the whole we ex-
pect better estimates of m from dis legomena than
from hapaxes, since the latter serve as a grab-bag for
typos, large numerals, and other marginal phenom-
ena. In light of these simple asymptotic considera-
tions it comes as no surprise that most of the “lex-
ical richness” measures discussed by Tweedie and
Baayen are not constant. From the Zipfian vantage
point it is also clear that Yule’s K, which is essen-
tially

∑∞
i=1 p2

i , entropy, given by
∑∞

i=1−pi log(pi),
and indeed all of Good’s (1953) spectral measures
with Bt > 1 are converging to constant values, as
sample size increases without bounds.

Our results therefore cast those of Tweedie and
Baayen in a slightly different light: some of the
measures they investigate are truly useless (diver-
gent or converging to the same constant indepen-
dent of the Zipfian parameter B) while others are at
least in principle useful, though in practice estimat-
ing them from small samples may be highly prob-
lematic. In many cases, the relationship between a
purely Zipfian distribution with parameter B and a
proposed measure of lexical richness such as K is
given by a rather complex analytic relation (in this
case, K = ζ(2B)/ζ(B)) and even this relation can be
completely obscured if effects of the high-frequency
function words are not controlled carefully. This im-
portant methodological point, made very explicitly
in Mandelbrot’s early work, is worth reiterating, es-
pecially as there are still a large number of papers
(see Naranan and Balasubrahmanyan (1993) for a
recent example) which treat the closed and the open
vocabulary cases as analogous.

Finally, let us consider another class of distribu-
tions that has considerable support in the literature,
the lognormal family (see e.g. Carroll 1967). Here
the problem is in the opposite direction: while the
beta distribution assumes there to be too many dif-
ferent words, lognormal would require there to be
too few. Theorem 1 proves that under reasonably
broad conditions V (N) →∞, meaning that the av-
erage frequency, 1/V (N), will tend to zero as sam-
ple size increases. But if average frequency tends
to zero, average log frequency will diverge. In fact,
using Zipf’s second law we can estimate it to be
− log(N) within an additive constant R. As a sim-
ple “left limit” argument shows, the variance of log
frequencies also diverges with

√
B log(N)/2. To see

this, we need to first estimate f
′

N (k/V (N)), because
the functional equation for lognormal distribution,



f2
N (x) =

−f
′

N (x)√
2π

exp(
−1
2

(log(fN (x))− µN )2

σ2
N

)

contains this term. Using the difference quotient we
obtain pk+1 − pk/V (N), and we have V (N) = Nq

for some constant q < 1. By Zipf’s law log(fN (x)) =
− log(N)−B log(x). Using (8) we get that

1/V (N)√
2π

exp(
−1
2

(−Bq log(N))2

σ2
N

)

is constant, which can hold only if q log(N) =
(1/2) log(N)2/σ2

N i.e if (B/2) log(N) = σ2
N . In other

words, the lognormal hypothesis does not lead to a
stable limiting distribution: the means drift down
with log(1/N) and, more importantly, the variances
open up with

√
log(N). Another way of putting

our result is that a lognormal that fits the Zipfian
midrange N ε < i < Nq−ε well can never fit the low
range well, if the latter satisfies Zipf’s second law.

4 Summary and conclusions
In this paper we inspected Zipf’s law separately for
the high-, mid-, and low-frequency ranges. For the
high-frequency range we proposed that a separate
urn, containing only a few dozen to a few hundred
function words, be used, and argued that this urn
will contain somewhere between 30% and 50% of the
total probability mass.

For the mid- and low-frequency range we noted
the following subgeometric mean property: for ranks
r and s, the observed frequency f( r+s

2 ) is less than
the geometric mean of f(r) and f(s). Using this
property and a simple normalization technique we
proved in Theorem 1 that vocabulary size V (N)
tends to infinity as N →∞.

It is in the middle range that Zipf’s law appears
strongest, and here estimates of the Zipf constant B
clearly give B > 1 which corresponds, as we have
shown in Theorem 2, to a vocabulary growth rate
V (N) = N

1
B . We could use this theorem to give a

simple proof that a mixture of Zipfian distributions
with constants B1, B2, . . . Bt will always be domi-
nated by the smallest Bi, independent of the size of
the mixture weights.

Because distributions that satisfy Zipf’s first law
in the the mid- and the low-frequency range will
also satisfy “Zipf’s second law” in the low-frequency
range (Theorem 3), there seems to be no compelling
need for a separate urn in the low frequency range,
and we have not endeavored to introduce one, partic-
ularly as the B of this urn, were it lower than the B
of the mid-frequency urn, would dominate the whole
distribution for large N .

Altogether, there appears to be considerable em-
pirical support for the classical Zipfian distribution

with B > 1, both in the Merc and in standard closed
corpora such as Ulysses. There seems to be no way,
empirical or theoretical, to avoid the conclusion that
vocabulary size grows with a power q < 1 of N , and
competing hypotheses, in particular the lognormal,
are not well suited for characterizing distributions
that satisfy this power law.
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