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Logical types and linguistic types

András Kornai
Institute of Linguistics, Hungarian Academy of Sciences

0 Introduction

One of the primary aims of linguistic semantics is to translate the expressions of
natural language into formulas of some logical calculus. These formulas, in turn,
can be interpreted in the appropriate models, and semantic notions like truth,
entailment, etc. can be formally defined in the usual manner. In addition to the
well-known theoretical advantages of such an intermediate logical form, there is a
practical advantage as well: given a system of rules for translation from formulas
to natural language, it will be possible to translate from one natural language to
another (via the interlingua) without actually evaluating the expressions of the
source language. Although the calculi used as intermediate language in machine
translation range from first-order predicate calculus (e.g. Schubert – Pelletier 1982)
to the higher order intensional calculus of Montague Grammar (e.g. Landsbergen
1977), so far no type-free calculus has been employed for this purpose.

The aim of this paper is to outline an intermediate language for machine
translation which is based on combinatory logic. Section 1 sketches the background
assumptions of type theory. Section 2 discusses some of the problems with the
traditional (typed) approach in Montague Grammar, and Section 3 outlines some
general problems with type theory. In Section 4 a type-free intermediate language
is defined and exemplified: its interpretation is discussed in the last section.

1 Naive type theory

The naive theory of semantic types is based on the assumption that the world is a
collection of ‘things’: these will correspond to the individual constants of the model.
Some of these things are animate (and thus can act upon others), and all of them
can be individuated, so it can be always known which is which. Although only a few
(and usually only animate) individuals have names, the common-sense assumption
is that we can give a name to every thing; thus, proper names will have the type e.

Common nouns are usually taken to represent collections of things: therefore,
they are interpreted as sets of individuals and will have the type (e → t). It
is less clear what to do with abstract nouns like love, and the decision here is
sometimes based on the linguistic similarity of abstract and concrete nouns (so
abstract nouns are also taken to be of type (e→ t)), and sometimes on the common
sense observation that love is between individuals, so it “must be” a relation (of type
e× e). What we see here is but the first conflict between the common sense guided
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by linguistic intuition and the (equally) common sense guided by ‘folk ontology’ –
most of the problems discussed here are the result of some similar conflict.

There is little doubt that adjectives refer to properties of things: therefore, the
most natural choice for their type is (e→ t). In the classical grammatical tradition,
we might even define nouns with the aid of this particular type: the linguistic
expression for a thing is a ‘noun substantive’, and for a property a ‘noun adjective’.
For reasons to be discussed in 2 below, more sophisticated type theories usually do
not assign the same type to nouns and adjectives (except for predicate adjectives),
but here we are concerned only with the naive theory of types. Intransitive verbs
are just like adjectives (to walk is to have the property is walking). This can also
be seen from the fact that the application of an intransitive verb (e.g. walks) to
an individual (e.g. John) gives a full sentence which “must be” of type t: on both
accounts, intransitive verbs are of type (e→ t). There seems to be no way to extend
the naive approach to transitive (ditransitive, etc) verbs: folk ontology considers
these to be ‘actions’, and actions belong to a fundamentally different (dynamic)
type. Actions like writing or killing can create new entities and destroy old ones:
this makes it particularly hard to interpret them, even as higher order functions,
in a (naive) set theoretical model.

2 Montague Grammar

The type theory of Montague (1970a, henceforth UG) is essentially the same as the
naive theory outlined above; adjectives, however, have the type (e→ t)→ (e→ t),
since (as it was pointed out e.g. by Parsons 1970) their denotation might depend
on the noun they modify.1 This solution is also in accordance with the observation
that adjectives combine with nouns into phrases syntactically equivalent to nouns
(using the notations of categorial grammar, A = N/N), so if adjectives take (e→ t)
elements as their arguments, their values must also be of type (e→ t).2 In general,
if x is of category A/B, the type of A is u, and the type of B is v, then x must
have type (v → u). I will call this requirement the soundness of type-assignment
(for a more formal statement, see 3 below). Although considerations of soundness
play an important role in type-assignment in Montague Grammar (especially for
higher types), it should be kept in mind that the above requirement is insufficient
for unique type-assignment unless we stipulate that the only permitted mode of
composition is application3 (of a function to an argument), and we know which
constituent is the function and which is the argument. The importance of this latter
condition is best exemplified by the radically different types assigned to proper

1 To use the original examples, a married man is a man having the property married, but
a big flea is not a flea having the (absolute) property big, and a former president is not
even a president.

2 To facilitate comparison with the naive theory, the intensional types of Montague
Grammar are systematically replaced by their extensional variants.

3 This stipulation is not necessarily a part of Montague’s original program (as formalized
in UG), but it is implicit in the work of most linguists in the Montague tradition. For
an explicit statement, see Hausser 1982 ch 1.
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names in the earlier work of Montague and in later treatments (Montague 1973,
henceforth PTQ). Proper names (type e in Montague 1970b) and intransitive verbs
(type e → t) combine to form sentences (type t). Therefore, if the verb is the
function, it must be of type (e→ t) for the type assignment to be sound, but if we
take the noun to be the function (as in PTQ), the only way to maintain the type
(e → t) for verbs and the type t for sentences is to assign the type (e → t) → t to
proper nouns.

It is questionable whether this type-assignment has any intuitive appeal, and
in any case, we have to introduce meaning postulates (as in PTQ) or to enrich
Russellian type theory considerably (as in Keenan 1981) in order to develop a
workable system.

But the main problem is that no version of Montague Grammar has a one-to-one
correspondence between logical types and linguistic types. For instance, common
nouns and intransitive verbs, though clearly different linguistically, have the same
logical type (e→ t) in every theory mentioned so far. The distinction between t/e

and t//e was made in PTQ precisely in order to cope with this problem, and in more
detailed systems (such as Partee 1977) the use of three, four, or even more slashes
is quite common. This makes it impossible to define a function from logical types
to linguistic types, and Williams (1983) argues that no function can be defined in
the opposite direction either.

3 Problems with types in general

In order to provide a formal definition of linguistic categories, it will be necessary to
treat natural languages as stringsets, i.e. formal languages. The terminal vocabulary
V will contain the morphemes of the language, and L ⊆ V ∗ is given by those strings
of morphemes which (when entered to the phonological component of the grammar
as input) give rise to grammatical sentences of the language in question. If we define
the syntactic congruence = in the usual manner, lexical categories will be simply
the congruence classes of V . 4 The syntactic categories of L will be the congruence
classes of V ∗ – some of these will be ‘lexical categories’ (if they contain strings
of length one) but there might be others that have no lexical representatives.5

In general, a type-assignment is simply a function f from V* to some set t of type
symbols. Usually, T has some internal structure: for instance, the set R of Russellian
types is generated from the atomic type symbols e and t by the rules

(i) e and t are in T

(ii) if a1a2 . . . an are in R then (a1→ a2) and (a1 × a2 × . . .× an) are in R

(iii) there are no other elements in R

4 a = b iff for every c, d in V ∗ cad is in L just in case cbd is in L, that is, a = b iff they have
the same distribution. These definitions are implicit in the early structuralist literature:
for a detailed statement, see Harris (1951 ch 15).

5 In the X-bar theory of syntactic categories (Harris 1951, Jackendoff 1977) it is sometimes
assumed that every constituent category is lexical. In purely distributional terms this
means that every constituent can be substituted by some lexical item.
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A type assignment f will be called syntactic if it is compatible with the syntactic
congruence: if rules of translation are required to be uniform for members of the
same syntactic category (as they usually are), f will necessarily be syntactic. (The
argumentation in Williams (1983) purports to show that no type assignment can
be syntactic – but the concept of syntactic category employed there is broader than
the definition used here.)

The soundness of f means that f is a homomorphism from the syntactic monoid
V ∗/= to T .6 Under this definition, only syntactic type-assignments can be sound.
Finally, a translation will be saturated if for every type either no relation of that type
is the interpretation of some expression, or every relation can be an interpretation.

Turner (1983) uses the process of nominalization to show that if we
translate English into formulas interpreted in Russellian typed models, than
the saturatedness of the translation and the soundness of the associated type-
assignment are incompatible. A similar argument can be based on the Hungarian
suffixes -́ıt and -ó. -́ıt can be used productively to form transitive verbs (type
f(N) × f(IV )) from adjective (type f(A)), and -ó can be used productively
to form adjectives from transitive (and also from intransitive) verbs. Therefore,
-́ıt establishes a one-to-one correspondence between adjectives and a subset
of transitive verbs, and -ó establishes a one-to-one correspondence between
adjectives and a subset of transitive verbs. Since the syntactic rules associated
with these suffixation processes are fully regular (and compositional), the same
correspondences must hold among verb and adjective translations as well.
Therefore, by the Cantor - Bernstein theorem, the cardinality of type f(N)×f(IV )
relations must be the same as that of type f(A) relations in any model, and this is
impossible if the fundamental set (of type e entities) is finite.

Since category-changing affixes of the above sort are present in most (perhaps
all) natural languages, either the soundness of type-assignment or the saturatedness
of the translation must be violated if we interpret our formulas in the usual
Russellian models. To resolve this problem, Keenan (1983) develops a weaker
notion of saturatedness (but retains the usual models), while Turner (1983) retains
saturatedness (but uses Scott domains as models). My proposal is to weaken the
requirement of soundness so that it will be satisfied trivially: this will be achieved
by taking the monoid T to be a one-member set.

4 The intermediate language

Readers conversant in Montague Grammar will have noticed that the above
presentation made no use of the ambiguation relation of UG: in other words, the
disambiguated language and the surface strings of natural language were taken to
be identical (modulo morphology). Although heavy use of (dis)ambiguation would
make it possible to reformulate almost every grammatical theory in UG terms (cf.

6 The monoid structure on R can be defined trivially with the adjunction of a single
element (which will be the product of those types that cannot be composed) – in
general, T is supposed to have some ‘natural’ monoid structure.
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Dowty 1979 ch 1), the introduction of another intermediate level of representation
(see Fig. 1) can hardly be justified in a computational setting, and I will continue
to use the simple model depicted in Fig. 2.

(1) (2)

surface strings

↑
disambiguation

↓
disambiguated language

|
translation

↓
logical form

|
interpretation

↓
model structure

surface strings

↑
translation

↓
logical form

|
interpretation

↓
model structure

In fact, there is nothing to stop us from interpreting surface strings directly in the
model, so even the logical form employed here needs some independent justification
other than purely semantic considerations.7 I submit that the primary motivation
for an intermediate level should be the use it can have as interlingua in machine
translation. In other words, the ‘logical form’ of natural language expressions should
contain those (and only those) pieces of information which are relevant for meaning-
preserving translation to other natural languages. This means that in general the
logical form of a source-language expression will depend on the target language
as well: in particular, the grammatical categories (gender, number, case, etc.) that
have to be preserved will have to be mapped on the coarsest common refinement
of the category systems of the languages in question.8

Therefore, we have a family of interlinguas (one for every set of natural
languages), rather than one fixed logical form; and as long as the common
refinement of all these languages is beyond our power to define, it is expedient
to work in a formalism in which various interlinguas can be uniformly expressed.
Such a formalism, here called a metainterlingua (MIL) can be defined as follows:

1. The primitive obs (atoms) of MIL form a finite set A. (Later on, we might
equip A with some internal structure – at this point, however, the only restriction
on the atoms is that they should be unique, and distinct from each other.)

2. The primitive functives of MIL are &, =, and perhaps also finitely many
operations P1, P2, . . . Pn – these are all supposed to be binary. & will also be denoted
by P0: H is a (metalanguage) variable ranging over the Pi(i = 0, 1 . . . n).

7 In UG, direct interpretation can be defined simply as the composition of the translation
and interpretation homomorphisms.

8 This idea is not at all original with me: for the first proposal along these lines, see
Mel’cuk (1960)
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3. If p and q are arbitrary obs, Hpq will be an ob, and p = q is an (elementary)
statement. (The only predicate of MIL is ‘=’) x, y, z . . . will be (metalanguage)
variables ranging over obs.

4. The system is defined inductively: the only obs, functives, and statements of
MIL are those resulting from the iterated application of 3.

5. The axioms of MIL are:

x = x

Hx&yz = &HxyHxz

&xx = x

H&xyz = &HxzHyz

&xy = &yx

6. The rules of deduction are:

x = y x = y y = z x = y x = y

----- ------------ --------- ---------

y = x x = z Hxz = Hyz Hzx = Hzy

MIL, as defined above, is an equational system in the sense of Curry - Feys (1958
ch 1E): the equivalence ‘=’ makes it possible to define a ‘conjunctive normal form’
with respect to &. To put it in other words, MIL is a free algebra over a finite set
A generated by the binary operations P1, P2, . . . Pn satisfying the equations in 5:
since the rules of deduction in 6 make = compatible with the operations, = is a
congruence, and its classes can be represented by terms in conjunctive normal form.

To give a concrete example, if the primitive obs are taken to be the (unanalyzed)
symbols PP, PA, and AA (corresponding roughly to nouns, adjectives, and
adverbs), ATRANS, PTRANS, PROPEL, MOVE, ... MBUILD (corresponding
to the primitive actions); and if the operations Pi are taken to be ACTOR,
OBJECT, INSTRUMENT, RECIPIENT, ... POSSESSION, we get the Conceptual
Dependency representation developed by Schank (1973a).9 If we want to
incorporate the theory of causality developed by Schank (1973b), we simply adjoin
the operations RESCAU, ENACAU, INICAU, and REACAU.

The role of & will be illustrated on the semantic representation proposed
by Kálmán - Kornai (1985): here the primitive obs are taken to be the (root)
morphemes of the language in question,10 and there are only two primitive
operations, namely attribution (U), and predication (V). Complex obs of the type
Uab (Vab) are depicted as edges in a graph- like structure: the vertices are labelled
by a and b, and the edge running from a to b is labelled by U (V).

9 The elaborate syntax of linkages between the conceptual categories is simply ignored
here: the reader is invited to construct a system of additional axioms reflecting the
restrictions on the operations.

10 Unlike Schank’s system, which is claimed to be the ultimate interlingua, this
representation is (as yet) monolingual.
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(3i) (ii) (iii) (iv)

b U

| V a---> b a---> b

a---> | b<---a---> c

U v V U V a---> c

c c---> d

Edges can be the starting point or the endpoint of other edges: structures like (3i)
correspond to obs like UaVbc. The operation & is interpreted as (set- theoretic)
union: expressions like &UabVcd are as depicted in (3ii). The atomic vertices are
taken from a finite set A. Expressions like &UabVac correspond to structures like
(3iii) – since atoms have to be unique, structures like (3iv) cannot be formed. The
postulates in 5. and 6. serve to make those structures that differ only in the order
in which they were built up indistinguishable.

5 Interpretation

In the kind of truth- conditional approach best exemplified by Montague Grammar,
the typical result is that after a long series of complex calculations we end up with
a formula like

Ez(chips’(z) & eat’(John’,z)) & Ew(fish’(w) & eat’(John’,w))

What does eat’, fish’, or chips’ mean here? From this analysis, all we can learn is
that they are constants (of various types). But except for a few ‘logical’ words like
not or therefore we can hardly define them in the metalanguage, and there seems to
be no way to specify their extensions at every index. The usual solution is to treat
such constants as abbreviations for more complex formulas: for instance in Dowty
(1979 ch 4) kill is translated using the paraphrase

CAUSE BECOME ¬alive′

Here BECOME can be defined logically, because the logical system employed in
Montague Grammar has some resources for handling temporal relations. CAUSE
is a borderline case, but primitives like ANIMATE or HONOURED are clearly
nonlogical.11 In any case, we will have some residual constants like alive’ – can we
specify their extensions at every index?

The evidence (e.g. Labov 1973) suggests that we can not: the limits of the the
extensions of words are, at best, fuzzy. Whether this fuzziness can be captured by
free interpretation in models constrained by meaning postulates remains to be seen.
However, it is clear from the outset that that the number of meaning postulates

11 It appears that they do not even have a logic of their own; unlike temporal notions
which, to a certain extent, reflect the objective structure of time (cf. Kamp 1979), these
primitives are not constrained by an externally given structure.
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necessary in such an approach is extremely great, and the task of drawing inferences
in accordance with all these postulates is computationally unfeasible.

The interpretation proposed here is of a rather different sort: the idea is to capture
the meanings of the constants in programs. It is at this point that the type-free
approach pays off: programs can have other programs as their input, and if we take
them to be functions (e.g. LISP functions), application is in principle unrestricted.
For instance, the noun praise and the verb praise mean essentially the same thing.
The difference between gain the praise and praise the gain stems not from the
different meanings of praise and gain (since both appear in both constructions),
but rather from the fact that they appear in different positions. There is no reason
to suppose that predication is commutative: f(g) and g(f) can (and does) mean
different things. In principle, self- application is also possible: praise the praise or
can the can are well- formed expressions of English. In a type-free language, f(f)
can be meaningful.

The main point here is that the knowledge stored in these program ‘objects’ is
organized linguistically: in the model outlined above, attribution and predication
correspond to flow of information and flow of control, respectively. Interpretation
means the activation of certain programs as prescribed by the given ob of MIL:
here & corresponds to parallel execution. This kind of interpretation makes good
sense in the case of imperatives, where the meaning of a command is simply the
action effected in response, and in the case of interrogatives, where the meaning of
a question is simply the set of possible answers the program can come up with.

If we add that programs can create other programs, the meaning of indicative
sentences can be defined as the representation created during the execution of
the programs corresponding to lexical items.12 In many languages, the ‘contentive’
lexical items themselves are type-free, and the categorial status of the constituents
is determined by various formatives (function words, affixes, word order) which,
aside from their grammatical meaning, are semantically empty. In the model
outlined here, the interpretation of these formatives causes no problems: the
syntactic structure of the surface expressions will determine only the control
structure (function- argument structure) of the programs to be executed, while
the information content of the expression resides in the programs encoding the
meanings of the contentive lexical items.
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