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Abstract. Retinal morphological changes around the optic disc are looked at in 
the paper; more specifically the vascular network geometry in healthy patients 
and patients with peripapillary atrophy are quantified and compared using a 
multifractal approach. Segmented and skeletonized retinal images from the 
DRIVE database were analyzed. Multifractal and lacunarity analyses of the 
binary images were carried out using the Image J software. It was found that the 
vascular network geometry in patients with peripapillary atrophy has a 
multifractal geometry characterized by a hierarchy of exponents. 

Keywords: Multifractals, Lacunarity, Retina, Microvasculature, Peripapillary 
atrophy. 

1   Introduction 

1.1   Optic disc 

The optic disc – or optic nerve head (ONH) – is one of the distinctive anatomical 
features that are usually visible in a fundus image of the human retina. The ONH is 
the entrance of the blood vessels and of the optic nerve into the retina. The central 
retinal artery and central retinal vein emanate through the bundles of optic nerve.  The 
mentioned central retinal blood vessels carry the blood for the upper layers of the 
retina, while the optic nerve serves as the conduit of information flow from the eye to 
the brain. The ONH appears as a circular area, usually as a bright yellow or white 
region, with a diameter of roughly one-sixth of fundus image’s diameter. It is 
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perceivably brighter than the surrounding retinal area, and appears as the convergent 
area of the blood vessel vascular network. 

The identification of the ONH is an important processing step in the detection and 
the analysis of retinal structures, and – in case of pathologies – the problematic or 
unusual retinal features. In case of healthy retinas, all the aforementioned properties 
(i.e., shape, colour, size, blood vessel convergence) aid the identification of ONH’s, 
while in case of pathologies, only a subset of these properties can be used for the 
purpose. As mentioned above, the ONH’s usually appear as circular areas in the 
fundus images, however, in some snapshots, they are better approximated with 
ellipses. The latter case is due to the non-zero angle between image plane and the 
plane of the optic disc. See various ONH examples, geometric models and locating 
methods in [1], [2], [3] and [4]. 

1.2   Peripapillary atrophy 

Peripapillary atrophy (PPA) refers to a white or pigmented crescent-shaped area 
adjacent to the ONH. The atrophy may be confined to a small area adjacent to the 
ONH. The area in this case appears mostly either in the temporal or in the lower 
temporal direction from ONH. The atrophy can also be extensive; in this case it fully 
surrounds the ONH. Based on the extent of the tissue atrophy, the PPA can be 
categorized into two stages and the corresponding retinal regions are referred as zones 
α and β, respectively. Zone α is the region with pigmentary and structural irregularity 
of retinal pigment epithelial cells (RPE cells). Zone β corresponds to region with 
complete loss of the RPE cells accompanied by variable loss of the photo-receptors 
[5] and [6]. 

1.3   Digital imaging in ophthalmology 

Throughout the last three decades, consecutive generations of retinal cameras and 
digital imaging systems have offered higher and higher resolutions in respect of fundi. 
The advantage of digital imaging is markedly perceptible in retinal imagery and in 
ophthalmic imagery in general. The obtained ophthalmic images are unswervingly 
available for quantitative analysis, which is achieved by simple or more complex 
mathematical manipulations of the image data (e.g., fundus image data), even for long 
periods of time. As a consequence, ophthalmic image archives can be set up for 
individual patients and their ophthalmic medical history can be traced in their 
respective images.  

The fundus images used herein as examples are taken from the Digital Retinal 
Images for Vessel Extraction (DRIVE) database, which itself is a special purpose 
research database and does not contain individual medical histories, but as such it also 
illustrates the point made above. The DRIVE database was originally set up to 
facilitate comparative studies on segmentation of blood vessels in retinal images, [30] 
and [31]. 
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1.4   Fractal-like morphology of the retinal vascular network 

The morphogenesis of the human retinal vascular network can be considered as a 
diffusion-limited aggregation process [10]. Such processes may result in branching 
networks. These morphologically very similar branching networks appear in nature in 
seemingly unrelated areas; in areas studied by different disciplines [35].  

The resulting branching networks – including the human retinal vascular network – 
exhibit fractal-like structural characteristics, e.g., the self-similarity at low resolutions, 
see [7], [8], [9] and [10]. In case of the human retinal vascular network, these 
structural characteristics can be observed in vivo using a retinal camera.  

Fractal and multifractal analyses have been widely used in the medical assessment 
of the optic fundi, see e.g., [11], [12], [18], [21] and [22]. These mathematical 
analyses offer a natural description of the retinal vessel structure and morphology, see 
[14], [15], [16], [17], and are utterly useful in detection, description and diagnosis of 
various vascular and non-vascular pathological symptoms and cases, see e.g., [13], 
[19], [20] and [25].  

According to investigations reported in the literature, the fractal dimension of the 
vascular network present in a healthy human retina is approximately 1.7, see [7], [10]. 
However, there is no consensus in the literature concerning the fractal dimensions of 
the vascular networks in human retinas affected by particular pathological disorders, 
see e.g., [7], [19], [21] and [25] in this respect. 

In another study, the human retinal vascular network was found to have a 
multifractal geometrical structure [21]. Fractal and multifractal analysis of retinal 
vascular network pattern and geometry is considered a useful screening tool to assess 
the bifurcation geometry and vessel pattern complexity for quantifying and detecting 
retinal vascular diseases. 

2   Materials and methods 

2.1   Multifractal analysis 

In our study, the method defined by Chhabra and Jensen was used for the direct 
computation of the multifractal spectrum [26]. The generalized dimension Dq with its 
real parameter q, where q ≠1 and -∞ < q < +∞ and where q’s negative values 
correspond to and characterize the sparse regions of the structure to be evaluated and 
q’s positive values correspond to the dense regions, is defined as follows. 
 

ε
ε

ε ln
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1
1

0

qZ
q

Dq →−
=  (1) 

 
The partition function Z(q, ε) furnishes information – at different scales and using 

moments of different orders – about the structure to be evaluated, i.e., in our case, 
about the network of retinal blood vessels. The scale is represented by ε, which is the 
size of the boxes used for covering the structure, and the moments are computed at 
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order q.  To fill the missing Dq value at q = 1, D1 is defined as limit of Dq as q 
approaches to 1. Generalized dimensions D0, D1, and D2 are known as the capacity 
dimension, information dimension and correlation dimension, respectively. They 
satisfy the following inequality:  D0 ≥ D1 ≥ D2. The limits of the generalized 
dimension spectrum as q approaches negative infinity and positive infinity, 
respectively, are D-∞ and D∞, see [16], [21] and [26]. 

Methods are available from the literature for computing various multifractal 
spectra, see e.g., [27]. Apart from the mentioned generalized dimension spectrum 
D(q), i.e., Dq as function of q, also the f(α) spectrum is frequently used in multifractal 
analysis. α is the Hörder-, or singularity exponent, which is the local degree of 
singularity. 

For a fractal, its generalized dimension spectrum D(q) is constant for all q’s, while 
for a multifractal, D(q) is a monotone decreasing function. The relationship between 
D(q) and  f(α) is as follows. 

 

)()())(( qqqqf ταα −=  (2) 

 
where α(q) represents the Hölder-exponent of the q-th order moment and can be 
expressed as follows: 
 

dq
qdq )()( τα =  . (3) 

 
In the above equations, τ(q) is the mass correlation exponent of the corresponding 

generalized dimension spectrum D(q) and  it is defined as  
 

qDqq )1()( −=τ . (4) 

 
Another useful measure used for the characterization of fractal and multifractal 

structures is lacunarity. It is a measure of the structural heterogeneity in the structure 
[28]. It is a measure of how the fractal object fills the space. The use of lacunarity 
allows the determination of gaps in the pattern. 
 
 
2.2   Images used in the evaluation 

Four retinal images and their segmented and skeletonised versions were selected and 
used from the training images of the aforementioned image database. Two out of the 
four retinal images were taken of healthy retinas. The remaining two images were 
taken of retinas with pathology, namely peripapillary atrophy. The images were 
JPEG-compressed. The little bulge on the image-disk at 45º is ensures the proper 
orientation of the image and prevents accidental mixing up the images of the right and 
the left eyes. 
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In Figs. 1 and 2, two fundus images are shown – together with their corresponding 
segmented and skeletonised versions – out of the considered four. Normal fundus of a 
right eye is shown in Fig.1; while in Fig. 2, the fundus image of a left eye is 
presented. The retina appearing in the latter figure is affected by peripapillary atrophy.  

The images were acquired using a Canon CR5 non-mydriatic 3CCD camera with a 
45 degree field of view (FOV). Each image was captured using 8 bits per color plane 
at 768 by 584 pixels.  The FOV of each image was circular with a diameter of 
approximately 540 pixels. The images are cropped around the FOV and a mask image 
is provided that delineates the FOV. Mask images are in gif format. The binary 
skeletons were directly extracted using the morphologic operations from the original 
micrograph images.  
 

   

Fig. 1. Fundus image of a right eye with normal retinal blood vessel network (image 
27_training.tif from the DRIVE image database). From left to right: original color image, 
segmented image and its skeletonized version. 

   
 

Fig. 2. Fundus image of a left eye (image 26_training.tif from the DRIVE image 
database). Its retinal vessel network is affected by peripapillary atrophy. From left to right: 
original color image, segmented image and its skeletonized version. 
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3   Results 

Fractal and multifractal analyses were performed – in respect of the segmented 
images and their skeletonized versions mentioned in Subsection 2.2 – using the Image 
J software [32] and the FracLac plug-in [33]. These analyses were based on the well-
known box counting algorithm [38]. The central tendency and dispersion measure 
were expressed by the mean value and standard deviation.  

The evaluation of the images was carried out with the following program settings. 
Four different starting positions of the grid were used in box counting stage for each 
box-size. The grid calibres were computed for scaled series. The standard multifractal 
data processing package was used in respect of the best sample gained. Full scan was 
carried out for each sample. The evaluation was carried out five times for each image 
with slightly different selections of the processed image area. The final D(q) values 
were calculated as the averages over these repetitions. 

Table 1.  The generalized dimensions (Dq) for q = 0, 1 and 2; and the mean lacunarity Λ found 
in the analyzed images of healthy retinas. 

Image 
no. 

Status Type D0 D1 D2 Λ 

segm. 1.6913 1.6262 1.5895 0.5317 27_… normal 
skelet. 1.6755 1.6461 1.6241 0.2643 
segm. 1.7113 1.6160 1.5558 0.5402 28_… normal 
skelet. 1.6914 1.6616 1.6414 0.2368 
segm. 1.7013 1.6211 1.5726 0.5359 Average normal 
skelet. 1.6834 1.6538 1.6327 0.2505 

Table 2.  The generalized dimensions (Dq) for q = 0, 1 and 2; and the mean lacunarity Λ found 
in the analyzed images of retinas affected by peripapillary atrophy. 

Image 
no. 

Status Type D0 D1 D2 Λ 

segm. 1.6571 1.5907 1.5642 0.5803 26_… pathol. 
skelet. 1.6319 1.6083 1.6014 0.2561 
segm. 1.5997 1.5318 1.4951 0.6235 31_… pathol. 
skelet. 1.5680 1.5382 1.5146 0.3054 
segm. 1.6284 1.5612 1.5296 0.6019 Average pathol. 
skelet. 1.5999 1.5732 1.5580 0.2807 

 

The gaps in the vascular patterns were quantified by lacunarity values. The mean 
lacunarity Λ is computed by the Image J software as follows: 

 

[ ]( ) n/)/(1 2∑ +=Λ µσ  , (5) 
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where σ is the standard deviation, µ is the mean of the number of object pixels found 
per box – in case of a particular box-size – during a box count at a given orientation, 
while n is the number of box sizes.  

The multifractal and lacunarity results obtained for the mentioned fundus images 
are given in Table 1. 
 

3.1   Statistical analysis 

The statistical analysis of the multifractal results was accomplished using the 
GraphPad InStat software program [34]. The Kolmogorov-Smirnov test, for testing 
the normality of the distributions of generalized dimensions (Dq) and lacunarity 
parameter Λ, were performed for the healthy and the pathological retinas, as well. It 
has turned out that the generalized fractal dimensions of the vascular trees and the 
lacunarity parameters obtained from the image measurements described above 
followed normal distributions. Values with p < 0.05 were regarded statistically signi-
ficant. 

 

 
Fig. 3. The D(q) spectrum – obtained with Image J – of the vascular network of a healthy 
retina. 

 

 
Fig. 4. The D(q) spectrum of the vascular network of a retina affected by peripapillary atrophy. 

 
Table 1 show that the average of generalized dimensions D0, D1, and D2 computed 

for the entire retinal areas imaged and characterizing the retinal networks are 
somewhat lower for the retinas affected by peripapillary atrophy than for normal 
retinas. This statement is true for the segmented and for the skeletonised images of the 
retinal vascular trees images alike.  
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Furthermore, it was also observed that the mean lacunarity Λ is slightly greater for 
the pathological retinas than for normal retinas. Again, this statement is true for both 
segmentation methods used. The measurement data in Table 1 show that 
skeletonisation of the segmented blood vessels slightly reduces the generalized 
dimensions and lacunarity values.  

 

 
Fig. 5. The Hölder-exponent α (q) computed for the vascular network of a healthy retina. 

 

 
Fig. 6. The Hölder-exponent α (q)  computed for the vascular network of a retina affected by 
peripapillary atrophy. 

 
The results obtained from the multifractal and lacunarity analysis of image file 

27_training.tif – or more precisely from its manually segmented version 
27_manual1.gif – are plotted in Figs. 3, 5, and 7. The corresponding results 
computed for the manually segmented image file 26_manual1.gif – obtained from 
image file 26_training.tif – are plotted in Figs. 4, 6 and 8. 

Comparing the diagrams in Figs. 3 and 4, one can identify two important changes: 
the higher value of D(q) near q = -8 and the lack of buckle over range -1 < q < 1 
(characterizing the pathological case).  

Similar changes are apparent, if one compares the spectra plotted in Figs. 5 and 6 – 
showing the Hölder-exponent of healthy and pathological retinas, respectively – and 
the spectra plotted in Figs. 7 and 8, which show the f(α) spectra of the vascular tree of 
a healthy and a pathological retina, respectively. 
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Fig. 7. The f(α) spectrum of the vascular network of a healthy retina. 

 

 
Fig. 8. The f(α) spectrum of the vascular network of a retina affected by peripapillary atrophy. 
 
 
4   Discussion 

As in case of retinal vascular morphogenesis, which was mentioned earlier in 
connection with the fractal-like structure of the retinal vascular tree, adequate oxygen 
levels and the adequate oxygen supply to the retina plays an important role in the 
proper functioning of the retina.  

In vascularised retinas in general – and in human retinas in particular – oxygen is 
delivered to the retina via a combination of the choroidal vascular bed and the retinal 
vasculature. The high-oxygen demand of the retina and the relatively sparse retinal 
vasculature contribute to the particular vulnerability of the retina to vascular diseases. 

A large proportion of retinal blindness is associated with diseases having a vascular 
component, and disrupted oxygen supply to the retina is likely to be a critical factor in 
these. Much attention has therefore been directed at determining the intraretinal 
oxygen environment in healthy and diseased eyes [39]. Our present small-scale 
experiment and analysis is also part of this interdisciplinary research effort. 

In case of retinas affected by peripapillary atrophy, the reduction of the vascular 
tree affects unfavourably the nerve tissue. This reduction can be quantified using 
fractal and multifractal measures mentioned in the text. Considerable changes in 
particular values (e.g., D0, D1, and D2) compared to the their normal ranges and easily 
detectable changes in the shape of spectra D(q), α(q) and f(α) indicate the vascular 
loss. The presented small-scale experiment and analysis obviously should be seen as 
such. The found tendencies should be verified, measured and quantified in a more 
accurate manner in large-scale experiments and analyses. 
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5   Conclusion 

Retinal morphological changes around the optic disc were looked at in the paper. 
More specifically the geometry of the vascular network found in healthy patients and 
patients with peripapillary atrophy were quantified and compared using a multifractal 
approach. For this purpose, segmented and skeletonised retinal images from the 
DRIVE database were analyzed.  

The retinal vascular imaging offers the potential to provide information for 
quantifying the stage of peripapillary atrophy in human patients. 

It was found that the vascular network geometry in patients with peripapillary 
atrophy has a multifractal geometry characterized by a hierarchy of exponents. 
Furthermore, significant changes – compared to the healthy cases – were identified in 
respect of generalised dimensions D0, D1, and D2 and multifractal spectra D(q), α(q) 
and f(α).  
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