
Implementation trade-offs of the density matrix
renormalization group algorithm on kilo-processor

architectures
Csaba Nemes∗, Gergely Barcza‡, Zoltán Nagy∗†, Örs Legeza‡, and Péter Szolgay∗†
∗Faculty of Information Technology, Péter Pázmány Catholic University, Budapest, Hungary

Email: nemes.csaba@itk.ppke.hu
†Cellular Sensory and Wave Computing Laboratory, Computer and Research Automation Institute,

Hungarian Academy of Sciences, Budapest, Hungary
‡Strongly Correlated Systems ”Lendület” Research Group, Department of Theoretical Solid State Physics,

Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary

Abstract—Numerical analysis of strongly correlated quantum
lattice models has a great importance in quantum physics. The
exponentially growing size of the Hilbert space makes these
computations difficult, however sophisticated algorithms have
been developed to balance the size of the effective Hilbert space
and the accuracy of the simulation. One of these methods is
the density matrix renormalization group (DMRG) algorithm
which has become the leading numerical tool in the study of low
dimensional lattice problems of current interest. In the algorithm
a high computational problem can be translated to a list of dense
matrix operations, which makes it an ideal application to fully
utilize the computing power residing in both current multi-core
processors and novel kilo-processor architectures.

I. INTRODUCTION

DMRG is a variational numerical approach developed to
treat low-dimensional interacting many-body quantum systems
effectively [1]–[3]. In fact, it has become an exceptionally
successful method to study the low energy physics of arbitrary
strongly correlated quantum system which exhibits chain-like
entanglement structure [4].

The original DMRG algorithm [1] was introduced in 1992
by Steven R. White and was formulated as a single threaded
algorithm. In the past various works have been carried out
to accelerate the DMRG algorithm [5]–[8], however, none
of them took advantage of recent kilo-processor architectures
such as the graphical processing unit (GPU).

II. MODEL

In order to illustrate the underlying features of the algo-
rithm, we apply it to the so-called spin-1/2 Heisenberg model.
In the model a magnetic system is simulated on a lattice
of interacting spins, i.e., a microscopic magnetic moment
(spin) is localized at each lattice site j which is described
by a quantized, two-valued variable, σj ∈ {↑, ↓}, related
to the two possible orientation of the spin. Limiting the
interactions between neighbouring spins – which is often a
good approximation – the Hamiltonian of the model is written

as

H =
1

2

N−1∑
j=1

(
S+
j S
−
j+1 + S−j S

+
j+1

)
+ ∆

N−1∑
j=1

Szj S
z
j+1 (1)

where S+, S−, Sz are operators acting on a given site. The
effect of these operators is to change the orientation of the
spin on a given lattice site or to measure its orientation. The
overall behaviour of the system can be tuned via the interaction
parameter ∆. The explicit matrix representation of an operator
O acting on site j of a chain with N spins is given as

Oj =

j−1⊗
i=1

I⊗O ⊗
N⊗

i=j+1

I (2)

where I is the identity and O is one of the followings

S+ =

(
0 0
1 0

)
, S− =

(
0 1
0 0

)
, Sz =

1

2

(
−1 0
0 1

)
. (3)

The Hamiltonian of N spins acts on the tensor product space
of dimension 2N , (C2)⊗N , that is the dimension of the
complete Hilbert space grows exponentially as the size of the
system increases. From the engineering point of view the main
task is to find some of the low-lying eigenvalues and eigen-
vectors of the Hamiltonian by a diagonalization algorithm.
In practice, however, instead of solving the problem for the
complete Hilbert space directly, various physical phenomena
can be exploited to reduce the complexity of the problem.

III. SYMMETRIES TO BE EXPLOITED

In many systems the Hamilton operator does not change
the value of a measurable quantity, i.e., it commutes with
the operator connected to that measurable quantity. These
operators are called symmetry operators and can be used to
cast the Hilbert space to smaller independent subspaces [9].
Consequently, instead of solving a large matrix eigenvalue
problem, the eigenvalue spectrum can be determined by solv-
ing several smaller problems. In the presented model, the total
spin projection, Sz =

∑N
j=1 S

z
j , is such a symmetry operator.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/48294507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A given symmetry operator shares the same eigenvectors of
the Hamiltonian, thus the eigenstates of the Hamiltonian can
be labelled by the eigenvalues of the symmetry operator (quan-
tum number, Q), and the Hilbert space can be decomposed
into subspaces (sectors) spanned by the eigenvectors of each
quantum number value [10]. Introducing a quantum number
based representation, the sparse operators (Eq. 2) can be
decomposed to a set of smaller but dense matrices, furthermore
the Hamiltonian operator (Eq. 1) becomes blockdiagonal.

IV. ALGORITHM

The DMRG approach has two phases, in the infinite-lattice
algorithm the approximated Hilbert space of a finite system of
N interacting spins is built up iteratively, while in the finite-
lattice algorithm similar optimization steps are carried out,
keeping the size of the problem fixed, in order to increase
the accuracy of the computed results. As optimization steps in
both cases are similar, for sake of simplicity, we consider only
the infinite-lattice algorithm. The detailed description of the
algorithm can be found in the original work [1] and various
reviews [2], [3], here only the key steps of an iteration of
the infinite-lattice algorithm are summarized in Pseudocode 1
providing the basis of our analysis.

Algorithm 1 One iteration of the infinite-lattice algorithm
1: Load a left and a right block.
2: Form the superblock configuration based on the symme-

tries.
3: Compute the lowest eigenstate of the superblock Hamilton
HSB . (Davidson method)

4: for each block do
5: Construct the density matrix for the given block from

the lowest eigenstate.
6: Compute the eigenvalues of the density matrix. (Lanc-

zos method)
7: Renormalize the basis of the block while keeping states

with high eigenvalues.
8: end for

In the two-site DMRG procedure four subsystems (left
block describing l sites, 1 site, 1 site, right block describing r
sites) compose the finite system of N = (l+2+r) sites called
superblock. The sites contained in each block are described
maximally by m, optimally chosen states, which represen-
tation can be significantly smaller then the exactly required
2l basis. Meanwhile, the central sites of the superblock are
represented exactly by 2-2 states, so the size of the superblock
Hilbert space is 4m2. Considering, however, the projection
symmetry mentioned above, the problem can be restricted to
a subspace of the superblock corresponding to a particular Q
value.

The infinite-lattice algorithm starts with the four site con-
figuration, where both blocks contain a single spin. In each
iteration step both blocks are enlarged by a single site, making
the complete system increase by two, until the desired system
size, N , is reached. In each iteration of the DMRG algorithm,

the lowest-lying eigenvector of the corresponding superblock
Hamiltonian (HSB) is obtained by the iterative Davidson
algorithm.

The most time-consuming part of a full iteration step is the
Davidson routine carrying out the matrix-vector multiplication
operation (X ′ = HSBX). Instead of constructing and storing
the enormous HSB matrix of size O

(
m4
)

explicitly, it is
computationally favourable to obtain the projected vector X ′

directly via the matrices of size O
(
m2
)

composing HSB .
The HSB can be expressed by the operators of the 4

subsystems (so called l-1-1-r strategy) and the computation
of the projected vector X ′ can be formulated as 4-indexed
tensor multiplications. However, in the paper the simpler LR
strategy is implemented, where the HSB is expressed by
operators A(L)

α and B
(R)
α , defined on blocks enlarged by the

neighbouring site, i.e., L = l + 1, R = r + 1, as

HSB =
∑
α

A(L)
α ⊗B(R)

α , (4)

where the index α iterates over the distinct operator com-
binations required to construct the superblock Hamiltonian.
Furthermore, exploiting Kronecker multiplication properties,
the projected vector X ′ can be computed by matrix-matrix
multiplications as

X̃ ′ =
∑
α

A(L)
α X̃B(R)T

α , (5)

where the vector X of dimension (mq)2 is reshaped to the
matrix X̃ dimension of (mq ×mq).

In the practical implementation Equation 5 is decomposed
to even smaller matrix operations of the same type as the oper-
ators are already decomposed according to quantum numbers.
This means that instead of a sparse matrix A(L) dense matrices
A

(L)
qi→qj are stored representing how A(L) transforms the

subspace (sector) corresponding to qi to the one corresponding
to qj . For an example A(L)

qi→qj and B
(R)
qk→ql projects only the

ik segment of a vector X to the jl segment:

X̃ ′jl = A(L)
qi→qj X̃ikB

(R)T
qk→ql (6)

where X̃ik again indicates the reshaped the ik segment of the
X vector.

In the rest of the iteration the density matrices are con-
structed from the lowest eigenstate and used to optimally
truncate the basis of the enlarged block (m� 2L) in order to
keep the problem size manageable.

V. ACCELERATION STRATEGIES

A. Acceleration on CPU

The DMRG implementation shall use as much parallelism
as possible to exploit the enormous performance available
in nowadays multi-core CPUs. Inherent parallelism can be
observed at two level of the algorithm. First, at low level,
all the matrix and vector operations can be accelerated in a
multi-core environment, secondly at the level of the projection
computation the (AX)BT operations in Equation 5 can be
computed independently.



128 256 512 1024 2048 4096 8192 8192
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Davidson (core-i7 1
thread)

Davidson (core-i7 4
threads)

Davidson (GPU and
core-i7 )

(AX)B^T operation
(core-i7 1 thread)

(AX)B^T operation
(core-i7 4 thread)

(AX)B^T operation
(GPU and core-i7)

Number of retained block states

P
er
ce
n
ta
g
e
o
f
th
e
to
ta
l
ti
m
e

Fig. 1. Runtime of the Davidson algorithm and (AX)BT operations
compared to the total time of a full iteration step as the number of the
retained block states increases. In case of CPU all the algebraic operations
are accelerated, while in GPU only the (AX)BT operations are accelerated
and the rest tends to be slow.

The first is accomplished by using the Basic Linear Algebra
Subroutine (BLAS) interface and the Intel MKL Library [11]
for algebraic operations including operator contractions, inner
operations of both Davidson and Lanczos algorithms [12]
and operator transformations. The second parallelism is not
implemented yet in the CPU reference code, however, this
affects only the small-scale performance. As shown in Figure 3
the CPU performance reaches its maximum (∼ 85 Gflops) in
case of (AX)BT operation at a relatively small matrix size.

As the number of the retained block states increases the
Davidson algorithm and the (AX)BT operations become the
most dominant part of the computation (see Figure 1). In case
of single threaded CPU implementation the computation time
of the independent (AX)BT operations reaches almost 90% of
the total time, therefore, the benefit of the acceleration of these
operations on kilo-processors architectures is self-evident.

B. Acceleration on GPU

The acceleration of the (AX)BT operations in GPU is
based on the observation that A and B matrices are already
available before the Davidson algorithm starts and do not
change during the Davidson iterations. The projection oper-
ation (HSBX) is described by a list of operation records
in which each record contains the necessary informations to
compute an operation like Equation 6. An operation record
stores the information from which segment (input) of X to
which segment (output) of X ′ the operation transforms.

Algorithm 2 Host side algorithm to handle the operation
records

1: Partition operation records between CPU and GPU.
2: Selects scheduling strategy for the operations to be com-

puted on GPU.
3: Apply scheduling strategy.

The host side algorithm to handle the operation records
is summarized in Pseudocode 2. First operation records are
partitioned between the CPU and the GPU in the ratio of the

4
8

16
32

64
128

256
512

1024
2048

4096
8192

8192
8192

0

0

0.01

0.1

1

10

100

1000

Medium strategy

Small strategy

Number of retained block states

M
em

o
ry

 f
o

o
tp

ri
n

t 
(M

B
)

Fig. 2. Memory footprint on GPU in case of two strategies. As the number of
kept states doubles, the memory footprint on GPU approximately quadruples.
It is obvious the number of sustained states will be affect the selected strategy
and thus the performace of the GPU accelerator.

performance capability of the two architectures. Currently all
the operating records corresponding to the same output shall
be computed on the same architecture, however, later a more
sophisticated partitioning can be implemented. As we already
discussed and shown in Figure 3, CPU has a significant per-
formance capability which shall also be exploited in combined
CPU+GPU design.

The DMRG algorithm is implemented such a way that three
different strategies for scheduling of the competitive (AX)BT

operations can be tested. The first strategy (small) is designed
for small problem size, when all A, B, X , X ′ matrices and
temporary matrices T for storing intermediate results can be
held in the GPU memory. The second strategy (medium) is
designed for medium-sized problems, where all A, B and X ′

matrices can be stored in GPU memory. In case of extra-sized
problems a third strategy (large) can be designed in which
only those A and B matrices are loaded which are explicitly
needed for the given operation record.

The proper strategy shall be automatically selected based on
the memory requirements of the operation records, however,
currently only the second strategy is implemented. The mem-
ory footprint of the matrices in case of different strategies are
shown in Figure 2. In the demonstrated experiment the second
strategy was adequate as the GPU card has a memory of 1GB.

The (AX)BT operations are implemented using the
cuBLAS libary [13], which is a BLAS implementation ded-
icated for Nvidia GPUs. In the demonstrated strategies two
important features of the GPUs are exploited, which are
provided via the CUDA driver [14] and also accessible through
the cuBLAS library. The first feature is that multiple CUDA
kernels can be executed simultaneously on the GPU, while the
second feature is that memory I/O operations can be executed
in the background. From the aspect of programming both
feature can be accessed via the CUDA streams. Streams are
sequence of operations that execute in issue-order, but opera-
tions in different streams may run concurrently or interleaved.

In the small strategy we have enough GPU memory to
execute several (AX)BT simultaneously. We can create one
stream for each output, and operations corresponding to a



32 64 128 256 512 1024 2048 4096
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

GPU, no streams

GPU, 16 streams

GPU, 16 streams, 
without 
communication 
overhead

Core i5 3.3 GHz, 
mkl 4 threads

Matrix size

(A
X

)B
^

T
 p

er
fo

rm
an

ce
 i

n
 M

F
lo

p
s

Fig. 3. (AX)BT performance in MFlops. NVidia GTX 570 is compared
to Intel Core-i5 3.3GHz.

given output are assigned to the same stream to avoid inter-
ference. Practically one sufficiently large temporary matrix is
allocated for each stream to store the temporary result of AX .
As shown in Figure 3 when the matrices are small several op-
erations shall be executed concurrently to keep all the CUDA
cores busy resulting in a higher performance. Operations on
large matrices provide enough work for each CUDA core to
reach the maximum double performance without streams.

In the medium strategy only A and B matrices and the
outputs X ′ can be stored in the GPU memory. In this scenario
only one working stream can be implemented, however, the
size of matrices are in the range where the multiple streams
have no advantages. To hide the latency of loading of inputs X
a dedicate I/O stream is used to implement a double buffered
reading. Operation records are sorted based on inputs and
while the operations corresponding to the same input are
processed the next input can be loaded in the background.

VI. IMPLEMENTATION RESULTS

The presented GPU+CPU combined implementation is
compared to the CPU only reference code in a PC equipped
with an Intel Core-i7 2700 3.4 GHz processors and an NVidia
GTX 570 GPU in Figure 4. The quality of the partitioning of
workload highly affects the performance gain reached by the
combined version, therefore, more attention shall be paid to it
later.

GPU and CPU contributions to the overall performance can
be compared to the maximum performance achievable via the
(AX)BT operation on the given architectures (see Figure 3).
In the range of 2048..8096 problem size the medium strategy
looks promising and both architectures operate with an accept-
able performance. If the workload is properly distributed 244
GFlops can be reached resulting in a 2.7 speed-up compared
to the performance of the reference code (88 GFlops).

VII. CONCLUSION

The most computationally demanding part of the DMRG
algorithm is a set of dense matrix operations of type (AX)BT

which can be executed independently. The dense matrix op-
eration is an ideal application to exploit the performance

128 256 512 1024 2048 4096 8192 8192
0

50000

100000

150000

200000

250000

300000

0%

10%

20%

30%

40%

50%

60%

70%

80%

GPU time in
percentage

GPU workload in
percentage

GPU contribution

CPU contribution

GTX 570 + Core-
i7 together

Reference, Core-
i7 3.3Ghz, mkl 4
threads

Number of retained block states

R
ea

l
D

M
R

G
p

er
fo

rm
an

ce
in

M
F

lo
p

s

p
er

ce
n

ta
g

e
o

f
th

e
to

ta
l

ti
m

e/
w

o
rk

lo
ad

Fig. 4. The performance of the projection operation of the DMRG algorithm.
If the workload is properly distributed 244 GFlops can be reached which is
a 2.7 speed-up compared to the CPU only reference code (88 GFlops).

capabilities of both CPU and GPU, in the later case even
reaching the maximum performance what CUDA cores can
give. In our case the performance of core-i7 CPU is not negli-
gible compared to the GPU, therefore, a combined CPU+GPU
application has been designed where the workload can be
shared to reach a 2.7 speed-up even with a midrange GPU.
As a future work a 6 times more powerful GPU (K20) will
also be tested.

REFERENCES

[1] S. R. White, “Density matrix formulation for quantum renormalization
groups,” Phys. Rev. Lett., vol. 69, pp. 2863–2866, Nov 1992.

[2] R. M. Noack and S. R. Manmana, “Diagonalization and Numerical
Renormalization-Group-Based Methods for Interacting Quantum Sys-
tems,” AIP Conf. Proc., vol. 789, pp. 93–163, October 2004.

[3] U. Schollwöck, “The density-matrix renormalization group,” Rev. Mod.
Phys., vol. 77, pp. 259–315, Apr 2005.

[4] O. Legeza, R. Noack, J. Sólyom, and L. Tincani, “Applications of
quantum information in the density-matrix renormalization group,” in
Computational Many-Particle Physics, ser. Lecture Notes in Physics.
Berlin Heidelberg: Springer-Verlag, 2008, vol. 739.

[5] G. K.-L. Chan, “An algorithm for large scale density matrix renormal-
ization group calculations,” J. Chem. Phys., vol. 120, Dec 2004.

[6] G. Hager, E. Jeckelmann, H. Fehske, and G. Wellein, “Parallelization
strategies for density matrix renormalization group algorithms on shared-
memory systems,” Journal of Computational Physics, vol. 194, no. 2,
pp. 795 – 808, 2004.

[7] Y. Kurashige and T. Yanai, “High-performance ab initio density matrix
renormalization group method: Applicability to large-scale multirefer-
ence problems for metal compounds,” J. Chem. Phys., vol. 130, June
2009.

[8] S. Yamada, M. Okumura, and M. Machida, “High performance com-
puting for eigenvalue solver in density-matrix renormalization group
method: Parallelization of the hamiltonian matrix-vector multiplication,”
in High Performance Computing for Computational Science - VECPAR
2008, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2008, vol. 5336, pp. 39–45.

[9] A. I. Tóth, C. P. Moca, O. Legeza, and G. Zaránd, “Density matrix
numerical renormalization group for non-abelian symmetries,” Phys.
Rev. B, vol. 78, p. 245109, Dec 2008.

[10] J. F. Cornwell, Group Theory in Physics, An Introduction. Academic
Press, Jul. 1997.

[11] Intel, “Math kernel library 11.0,” http://http://software.intel.com/en-
us/intel-mkl, 2013.

[12] Y. Saad, Numerical Methods for Large Eigenvalue Problems. Manch-
ester: Manchester University Press, 1992.

[13] “CUBLAS library 5.0,” https://developer.nvidia.com/cublas, NVIDIA
Corp, 2013.

[14] “CUDA library 5.0,” http://www.nvidia.com/object/cuda home new.html,
NVIDIA Corp, 2013.


