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Abstract: Component mass conservation gives a linear first integral to the dynamic reaction
kinetic equations and greatly influences the set of admissible reactions. Therefore, mass
conservation can be related to the deficiency of the reaction network and thus to its dynamic
properties. In particular, it is shown that a mass conserving CRN without isomers and with a full
rank complex composition matrix has zero deficiency. The concepts and results are illustrated
on the example of the original and the lumped version of Michaelis-Menten kinetics.
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1. INTRODUCTION

It is well-known that kinetic systems form a wide class of
nolinear models with good dynamical descriptive proper-
ties [3]. Therefore (bio)chemical reaction networks (CRNs)
are often used to model complex biological mechanisms
[11], or even to describe dynamical systems in application
fields seemingly far from chemistry such as mechanical or
electrical systems [12]. The increasing and extended inter-
est towards this field is shown by the fact that numerous
surveys and tutorials have been published even in journals
where the primary scope is not chemistry [1, 2, 13].

The classical chemical theory of deterministic CRNs obey-
ing the mass action law (MAL CRNs) assumes closed
isotherm and isobaric conditions, where the total mass
is conserved. This mass conservation applies also for the
set of species that participate in any chemical reaction.
It is intuitively clear, that a MAL CRN system with
these mass conservations should not produce any “exotic”
nonlinear behavior, but will be globally stable within each
stoichiometric compatibility class.

The mathematical generalization of MAL CRN systems,
however, does not require conservation assumptions, that
allows the description of various nonlinear behaviour like
multiplicities, limit cycles or even chaotic phenomena.
Naturally, this generalization makes the MAL CRN system
class to be a wide class of smooth positive nonlinear
systems.
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The aim of this paper is to investigate the dynamic
consequences of conservations on the qualitative properties
of MAL CRN dynamics.

2. BASIC NOTIONS

Consider a CRN that obeys the mass action law. The
structure of the CRN is uniquely given in terms of its
Kirchhoff matrix Ak and its complex composition ma-
trix Y ∈ Z

n×m
+0 with non-negative integer elements, the

columns of which describe the composition of its complexes
Ci, i = 1, ...,m over its species Xj , j = 1, ..., n. The
Kirchhoff matrix Ak ∈ R

m×m describes the structure
of chemical reactions Ci 7→ Cj with the reaction rate
coefficient kij > 0.

The following general assumptions are considered through-
out this paper.

(G1) There is no isolated (i.e. unconnected) complex in the
CRN.

(G2) There is no inert (i.e. non-reacting) specie in the
system.

(G3) Y is of full rank.

Assumption (G3) implies that

• the columns of Y are linearly independent in the
n ≥ m case

• the rows of Y are linearly independent in the n ≤ m
case

Both the reaction graph determined by the matrix Ak

and the properties of Y influence the structural dynam-
ical properties of a CRN. Let us introduce the following
notations.
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[Y ]ij = αij , [Ak]ij =











−
m
∑

l=1

kil if i = j

kji if i 6= j

(1)

With the above matrices the time evolution of the specie
concentrations x = [x1, ..., xn]

T is described by the follow-
ing set of ODEs:

dx

dt
= Y Akϕ(x) , ϕi(x) =

m
∏

j=1

x
αij

j (2)

2.1 The reaction graph

The vertexes V of the reaction graph G = (V,E) corre-
spond to the complexes, and the edges E to the reactions.
Two complexes Ck and Cl are connected by a directed
edge CkCl, if a reaction in the form of Ck 7→ Cl exists.
Edge weights can be associated to the edges that are the
reaction rate constants kkl > 0, thus he reaction graph is
a weighted directed graph.

Note that the Kirchhoff matrix Ak of a CRN uniquely
determines its reaction graph and vice versa. However, the
Kirchhoff matrix of the reaction graph does not uniquely
determine the reaction kinetic system itself, since the
information on the composition of the complexes is missing
from the graph: it is contained in the complex composition
matrix Y .

2.2 The deficiency of a CRN

The stoichiometric subspace First we define the set of
reaction vectors as: R = {ρ(l,k) = η(l) − η(k) | CkCl ∈
E in G}, where η(i) denotes the ith column of Y .

The deficiency is an integer number which depends on
the properties of matrix Y , and on the structure of the
reaction graph G. The deficiency δ is defined as:

δ = m− ℓ − s (3)

where m is the number of complexes and ℓ is the number
of connected components in the reaction graph, while
s is the dimension of the stoichiometric sub-space, i.e.
s = rank(R).

The deficiency zero theorem An important structural
property of CRNs is (weak) reversibility. A CRN is called
weakly reversible if whenever there exists a directed path
from complex Ci to Cj in the reaction graph, then there
exists a directed path from Cj to Ci. The main result of
the well-known deficiency zero theorem is the parameter-
independent robust stability of weakly reversible deficiency
zero CRNs. The exact form of the theorem is taken from
[6].
Deficiency Zero Theorem. For any reaction network of
deficiency zero the following statements hold true:

(1) If the network is not weakly reversible then, for
arbitrary kinetics (not necessarily mass action), the
differential equations for the corresponding reaction
system cannot admit a positive steady state (i.e. a
steady state in R

n
+).

(2) If the network is not weakly reversible then, for
arbitrary kinetics (not necessarily mass action), the
differential equations of the corresponding reaction
system cannot admit a cyclic composition trajectory
along which all species concentrations are positive.

(3) If the network is weakly reversible then, for mass
action kinetics (but regardless of the positive values
the reaction rate coefficients take), the differential
equations of the corresponding reaction system have
the following properties: There exists within each
positive stoichiometric compatibility class precisely
one steady state; that steady state is asymptotically
stable; and there is no nontrivial cyclic composition
trajectory along which all species concentrations are
positive.

2.3 Conservation equations

Mass conservative chemical reactions Let us assume that
the given set of chemical reactions is physically plausible,
i.e. each reaction obeys the mass conservation. This means,
that for each reaction Cl 7→ Cp, the following equality
holds

n
∑

i=1

αilMi =

n
∑

i=1

αipMi = cs, (4)

where Mi > 0 is the molecular weight of the component
Xi, l and p are column indexes in Y and cs > 0 is a
constant weighted column-sum. Let us form a row vector
M ∈ R

n from the molecular weights, then the above
equation can be written as

M · η(l) = M · η(p) = cs, or M · ρ(l,p) = 0 (5)

where ρ(l,p) is the corresponding reaction vector. A set
of reactions with the above property will be called mass
conservative reaction set .

The zero complex is a special complex that is used to
describe the environment with infinite source and sink
capacity for all components. The zero complex ∅ is de-
scribed algebraically by a zero column vector in Y , i.e.
η(0) = 0Tn ∈ R

n. Eq. (4) shows that a reaction in the
form of Ci 7→ ∅ or ∅ 7→ Ci cannot be part of a mass
conservative reaction set.

Conservation in the specie concentration space The col-
umn conservation property of Ak can be expressed alge-
braically as 1m · Ak = 0m, where 1m is the m-elements
row vector with identically 1 entries. In addition, equation
(4) states that the weighted column-sum of any column in
Y is the same (cs), where the weights are the molecular
weights Mi. Therefore, we can form a weighted column-
summation vector w such that

w · Y = 1m ⇒ w · Y · Ak = 0m (6)

with w = [M1

cs
, ..., Mn

cs
], that is the weighted mass conser-

vation property in the specie concentration space.

3. THE EFFECT OF THE CONSERVATION
EQUATIONS ON THE STRUCTURAL PROPERTIES

OF A CRN

The conservation equations (4) or (5) show that they put
an algebraic constraint on the columns of the complex



composition matrix Y . At the same time, they partition
the set of reactions that is reflected in the linkage classes
of the CRN. Therefore, two different cases will be consid-
ered: first reaction graphs forming a single linkage class
(i.e. connected component) is investigated, thereafter the
multiple connected component case is discussed. The effect
of conservation equations on the deficiency of the CRN will
be investigated, because it may have a determining effect
on its dynamic properties.

3.1 The mass conservation relation between complexes

Based on the above, we say that two complexes Ci and
Cj in a CRN are in a mass conserving relation if there
exists an (elementwise) strictly positive vector M such
that Mη(i) = Mη(j). Clearly, any reaction Ci → Cj

obeys the mass conservation if and only if Ci and Cj

are in a mass conserving relation, and this property only
depends on the ith and jth columns of the complex
composition matrix Y . Naturally, it is not enough for a
CRN to be mass-conserving that the reacting complex-
pairs are individually in a mass conserving relation. E.g.
the following simple CRN consists of reacting complex-
pairs in mass conserving relations, although the entire
network is not mass conserving:

X1 +X2 → X3

X3 → 2X4 (7)
X1 +X2 → X4.

Therefore, it is possible only in certain cases to decide
whether a CRN violates mass conservation by inspecting
the reactions individually (see the examples later).

With a fixed M , the mass conserving relation is clearly
symmetric and transitive (and it is also reflexive, if we
consider complexes trivially reacting to themselves). Ob-
viously, an entire CRN is mass-conservative if and only if
all reacting complex pairs are in mass conserving relations
with one common positive M .

Note that our chemically motivated notion of mass con-
servation is not equivalent to the definition that is often
used in chemical reaction network theory. According to the
latter, a CRN is sometimes called mass-conservative if and
only if there exists a strictly positive vector in the kernel
of (Y · Ak)

T [7]. Consider the simple network in Eq. (7)
where all the rate coefficients are 1 for simplicity. Then,
the Y and Ak matrices of the network are the following:

Y =







1 0 0 0
1 0 0 0
0 1 0 0
0 0 2 1






, Ak =







−2 0 0 0
1 −1 0 0
0 1 0 0
1 0 0 0






(8)

It can be checked that the positive vector

[0.7693 0.0265 1.0611 0.5306]T

is in the kernel of (Y · Ak)
T but the CRN is not mass

conserving according to our definition.

3.2 The single connected component case

Assume we have a CRN with a mass conservative reaction
set (implying the absence of the zero complex). Recalling
that isolated complexes are not allowed, with m complexes
we should have at least rm = m − 1 reactions in the

single connected component (i.e. ℓ = 1) case. Moreover,
the constant cs > 0 in Eq. (5) is the same for all reactions,
and the Kirchhoff matrix Ak consists of a single column-
conservation block in this case.

A simple example A simple reaction graph with n = 3
species (A, B, C) and m = 3 complexes is shown in Fig.
1. The minimum set of reactions with reaction vectors

A + C
k12

2B 2A+B
k23

k31

k21

Fig. 1. The structure graph of the simple example of a
single linkage class

ρ(1,2) =

[

1
−2
1

]

, ρ(2,3) =

[

−2
1
0

]

(9)

is denoted by continuous edge lines in the figure.

The maximum number of complexes in a single connected
component with a mass conservative reaction set can be
determined by the defining equation (5) M ·η(j) = cs, j =
1, ...,m where η(j) ∈ Z

n
+0 is the column of the matrix Y

corresponding to the complex Cj , and MT ∈ R
n is the

vector of the molecular weights with positive elements.
There are two possible cases to consider.

(i) m ≤ n
As Y is of full rank, the complexes form a linearly
independent set of column vectors, and there is in-
finitely many such molecular weight vectors M that
satisfies Eq.(5). (In the case of m = n and fixed cs
one has a unique solution M).

(ii) m > n
Then, with cs and M fixed, we can have maximum
n different and linearly independent complexes, since
the linear set of equations

M · Y ∗ = [cs, cs, ..., cs] (10)

would uniquely determine M from a given Y ∗ ∈
Z
n×n
+ , where we have collected the set of linearly

independent complex vectors to the matrix Y ∗.
We shall now show that we can not have more

complexes corresponding to a column of η(j), j > n
from the rest of Y that is both linearly dependent
of the columns of Y ∗ (η(1), ..., η(n)) and satisfies M ·
η(j) = cs. Let us assume that this dependent column
of Y is in the form of a linear combination

η(j) = ϕ1η
(1) + ...+ ϕnη

(n) (11)

If we multiply both sides by the row vector M , the
equation

cs = cs(ϕ1 + ...+ ϕn) =⇒ ϕ1 + ...+ ϕn = 1 (12)

is obtained. But the coefficients in the linear combi-
nation (11) are uniquely determined, therefore they
can satisfy the additional constraint (12) originating
form the mass conservation only in a very special
fortunate case when Mi = Mk for some (i, k) specie



pair. The corresponding species Xi and Xk are then
called isomers in the chemical terminology.

An example of isomers Let us have only two species X1

and X2 in a CRN, and let M1 = M2 = 1 with cs = 2.
Then the columns of the complex composition matrix with
three complexes 2X1, 2X2, X1 +X2

Y =

[

2 0 1
0 2 1

]

satisfy both Eq. (11) and the additional constraint (12)
when 3 = m > n = 2.

Deficiency Now we only need to consider the n ≥ m case.
Because of the full rank property of Y the columns of it are
linearly independent and span a maximum m dimensional
stoichiometric subspace, i.e. s = rank(R) ≤ m. At the
same time we have s ≥ m − 1 because of the minimum
number of reactions.

If r ≥ m then the conservation equations (5) put an addi-
tional linear relationship to the reaction vectors, therefore
s = m− 1, otherwise s = rm = m− 1. Therefore, in both
cases we have δ = m− ℓ− s = m− 1−m+ 1 = 0.

Simple example continued Fig. 1 shows that m = n = 3
in this case. If one chooses the molecular weight of specie A
to be 1, then the molecular weight vector is M = [ 1 2 3 ],
and cs = 4. The reaction vectors in Eq. (9) span the
stoichiometric sub-space, therefore s = 2 and δ = 0.

Is is easy to see that the dimension of the stoichiometric
sub-space will not increase if one adds any further reaction
to the CRN. For example, the reaction vectors of two re-
actions denoted by dashed lines in Fig. 1 can be expressed
as ρ(2,1) = −ρ(1,2), and ρ(3,1) = −(ρ(1,2) + ρ(2,3)).

3.3 Multiple connected component cases

Assume a mass action law CRN with only mass conserva-
tive reactions that has ℓ linkage classes, i.e. ℓ connected
components in its reaction graph. Then the set of com-
plexes are partitioned according to these linkage classes,
where the partitions have mj , j = 1, ..., ℓ members, re-
spectively, where m = m1 + ...+mℓ.

Determination of the molecular weights As chemical re-
actions connect only complexes within the same linkage
class Lj, the conservation equation M · η(i) = c

(j)
s is valid

only if the corresponding complex Ci is in Lj , and the

constant c(j)s may be different for different linkage classes.
However, for any reaction vector ρ(i,p) the conservation
equation has the same form M · ρ(i,p) = 0. This enables to
compute the molecular weight vector M that is joint for
the entire CRN as follows.

Let us form the reaction matrix R from the reaction
vectors ρ(i,p), CiCp ∈ E of the reaction graph G. The
rank of this matrix is equal to the dimension of the
stoichiometric sub-space, i.e. n ≥ s = rank(R). At the
same time, the reaction vectors are formed as differences

of the component vectors ρ(i,p) = η(i) − η(p), thus the
rank of R is is constrained by n ≥ rank(Y ) ≥ rank(R).
Now we can form the matrix R∗ from a set of s linearly
independent reaction vectors, that gives rise to the linkage
class independent form of the conservation equations

M · R∗ = [0, 0, ...0] (13)

The elements Mi > 0 of the molecular weight vector can
be determined from the above equation by fixing n− s− 1
molecular weights Mi (such that Mi 6= Mp for i 6= p)
that we could uniquely determine the rest from Eq. (13).

Then for each linkage class Lj we can compute the con-

stant c
(j)
s by finding a complex η(i) from this class and

computing M · η(i) = c
(j)
s .

The maximal dimension of the stoichiometric sub-space
Because of the above linkage class independent form of
the conservation equations (13), and the given constant
positive nature of the component weight vector M ∈ R

n
+,

the maximal number of the linearly independent reaction
vectors is n− 1. This implies that the maximal dimension
of the stoichiometric sub-space sm = n− 1.

The maximal set of the linearly independent reaction
vectors can also be partitioned according to the linkage
class they belong to, as no reaction is taking place between
complexes in different linkage classes. Let the number of
such reactions belonging to the linkage class Lj be denoted
by rj ≥ 1, such that r1+ ...+ rℓ = s ≤ n−1. Here we have
accounted for the fact that the stoichiometric subspace
may not be maximal.

The number of complexes in a linkage class induced by
the set of linearly independent reaction vectors can be
determined from the fact, that at least mj = rj + 1
linearly independent column vectors ηi corresponding to
complexes Ci are needed to generate this set and to form a
connected component with rj edges. On the other hand, if
we added new different complexes within this linkage class
then the number of linearly independent reaction vectors
would increase, therefore we could only add new reactions
between the existing complexes to keep this situation.
Finally we conclude that rj linearly independent reaction
vector induces mj = rj+1 linearly independent complexes.

The overall number of complexes can be computed as

m =

ℓ
∑

j=1

mj =

ℓ
∑

j=1

(rj + 1) = s+ ℓ (14)

The deficiency Now we can assemble the above results
to determine the deficiency of the CRN with only mass
conservative reactions that has ℓ linkage classes. This is
computed by the definition as δ = m− s− ℓ = s+ ℓ− s−
ℓ = 0 using Eq. (14).



4. CASE STUDY: CONSERVATION IN THE
VERSIONS OF THE MICHAELIS-MENTEN

REACTION SCHEME

The aim of this section is to show how the model reduction
(or simplification) transformation can destroy the con-
servation properties of an originally physically plausible
model, and what are the structural and dynamic conse-
quences of this. The detailed description of the Michaelis-
Menten reaction scheme and the applied model reduction
transformations can be found in [8].

4.1 The original full scheme

The Michaelis-Menten reaction scheme describes a simple
enzyme-kinetic reaction with the following reaction and
dynamic model equations

E + S ⇄ ES ES ⇄ E + P ES + S ⇄ ESS

E :
dx1

dt
=−k+1 x1x2 + k−1 x3 − k−2 x1x5 + k+2 x3

S :
dx2

dt
=−k+1 x1x2 + k−1 x3 − k+3 x2x3 + k−3 x4

ES :
dx3

dt
=+k+1 x1x2 − k−1 x3 + k−2 x1x5 − k+2 x3 −

−k+3 x2x3 + k−3 x4

ESS :
dx4

dt
=+k+3 x2x3 − k−3 x4

P :
dx5

dt
=−k−2 x1x5 + k+2 x3

where the concentration state vector x is formed as
x1 = [E], x2 = [S], x3 = [ES], x4 = [ESS], x5 = [P ]

from the species E for the enzyme, S for the substrate,
P for the product, and ES and ESS being intermediate
chemical complexes.

The dynamical behavior of the concentration variables and
the reaction graph that consists of two reversible connected
components are seen in figure 2, with the following model
parameters used for the simulations:
k+1 = 1, k−1 = 0.8, k+2 = 1.1, k−2 = 0.75, k+3 = 2, k−3 = 1.8

E + S
k1

+

k1
-

k2
+

k2
-

ES E + P

ES + S

k3
+

k3
-

ESS

Fig. 2. The structure graph of the Michaelis-Menten reac-
tion scheme

Conservation analysis This CRN clearly obeys the mass
conservation. Now we have two "free" molecular weights
that we can fix, that are M1 = ME = 2 and M2 = MS =
1. Then a vector M obeying the mass conservation is

M = [ 2 1 3 4 1 ]

and the constants are c
(1)
s = 3 and c

(2)
s = 4.

The deficiency is computed from the definition, with
m = 5, ℓ = 2 and s = 3. Then the deficiency of this
reversible model is zero, therefore its equilibrium points
are stable because of the deficiency zero theorem.

4.2 The lumped reaction scheme

The two intermediate species ES and ESS with simi-
lar dynamics are lumped to form the lumped pseudo-
component ES with concentration x3 = [ES ]. Then the
equations needed for the transformation are

x3 = x3 + x4 , x3 =
1

2
x3 , x4 =

1

2
x3 (15)

and the concentration variable x4 is left out from the
model. The idea behind this transformation is that specie
concentrations with "similar" dynamics are essentially
approximately identical, that is seen from (15).

The reduced kinetic equations are

dx1

dt
=−k+1 x1x2 +

1

2
k−1 x3 +

1

2
k+2 x3 − k−2 x1x5 (16)

dx2

dt
=−k+1 x1x2 +

1

2
k−1 x3 +

1

2
k−3 x3 −

1

2
k+3 x2x3 (17)

dx3

dt
= k+1 x1x2 −

1

2
k−1 x3 −

1

2
k+2 x3 + k−2 x1x5 (18)

dx5

dt
=

1

2
k+2 x3 − k−2 x1x5 (19)

It is important to note that the number of complexes has
also been reduced by one, as both ES and ESS formed
complexes that were replaced by a new complex formed
by ES . Thus the new complex composition matrix Y is in
the form

Y =







1 0 0 0
1 0 0 1
0 1 0 1
0 0 1 0







and the reaction graph is depicted in Fig. 3

E + S
k1

+

½ k1
-

½ k2
+

k2
-

ES E + P

ES + S

½ k3
+

½ k3
-

Fig. 3. Reaction graph of the lumped Michaelis-Menten
scheme

Conservation analysis This CRN does not obey the mass
conservation, that is seen from the presence of the reaction

ES + S ⇄ ES

in the network. The reaction vector ρ(∗) = η(4) − η(2)

corresponding to this reaction pair is ρ(∗) = [ 0 1 0 0 ]T ,
that contains only a positive elements besides of the zero
ones, and thus can not fulfil the conservation constraint
Mρ(∗) = 0 for any positive molecular weight vector M .



Deficiency and structural stability Because of the con-
densation of two complexes, the number of complexes is
now m = 4, and the number of linkage classes is also
reduced by one, i.e. ℓ = 1. The dimension of the stoichio-
metric space remains s = 3, therefore the reduced model
is of zero deficiency, and therefore it is globally stable (we
remark that the modified CRN consists of only one linkage
class).

4.3 A simplified scheme by using quasi steady state for the
specie ES

Let us denote the steady state value of specie ES by
x∗
3, and let us notice that ES forms a complex in itself.

Therefore, the reduced complex composition matrix Y
becomes

Y =







1 0 1 0 0
1 0 0 1 0
0 0 0 0 1
0 0 1 0 0







that shows that the zero complex appears in the reaction
kinetic system (see 2nd column of Y ). The reduced kinetic
equations are

dx1

dt
=−k+1 x1x2 + k

−

1 − k−2 x1x5 + k
+

2 (20)

dx2

dt
=−k+1 x1x2 + k

−

1 − k
+

3 x2 + k−3 x4 (21)

dx4

dt
= k

+

3 x2 − k−3 x4 (22)

dx5

dt
=−k−2 x1x5 + k

+

2 (23)

where the new reaction rate constants are formed as k
±

i =
k±i x

∗
3.

The reaction graph of the reduced system is seen in Fig.
4.

E + S
k1

+

k1
-

k2
+

k2
-

E + P

S

k3
+

k3
-

ESS

Fig. 4. Reaction graph of the reduced Michelis Menten
kinetics with ES in quasi steady state

Conservation analysis For the zero complex that appears
in the place of ES there is no component mass balance,
but the presence of constant positive terms indicate that
the systems becomes open.

5. CONCLUSIONS AND FUTURE WORK

In this paper it was shown, that a mass action law CRN
with only mass conservative reactions, with a full-rank
complex composition matrix Y and without isomers is nec-
essarily of zero deficiency. Therefore, a weakly reversible

conservative CRN having the above mentioned properties
possess a unique stable positive equilibrium in each stoi-
chiometric compatibility class.

The mass conservation property can be checked by al-
gebraic methods using only the molecular weights of the
components and the complex composition matrix Y , but
it has implications on the possible set of complexes and on
the chemical reactions that may occur between them, i.e.
on the Kirchhoff matrix Ak.

Further analysis is needed to find out how one can rec-
ognize the presence of non mass conservative reactions in
the network (besides of detecting the zero complex), and
– when this fact is not by the intention of modeler – how
one can "repair" a non-conservative network when this
property is not realistic and/or non-desired.
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