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Abstract. Formal verification is becoming a fundamental step in as-
suring the correctness of safety-critical systems. Since these systems are
often asynchronous and even distributed, their verification necessitates
methods that can deal with huge or even infinite state spaces. Model
checking is one of the current techniques to analyse the behaviour of
systems, as part of the verification process. The so-called saturation
algorithm has an efficient iteration strategy combined with symbolic
data structures, providing a powerful state space generation and model
checking solution for asynchronous systems. In this paper we present
the first approach to integrate two advanced saturation algorithms —
namely bounded saturation and constrained saturation-based structural
model checking— in order to improve on previous methods. Bounded
saturation utilizes the efficiency of saturation in bounded state space ex-
ploration. Constrained saturation is an efficient structural model check-
ing algorithm. Our measurements confirm that the new approach does
not only offer a solution to deal with even infinite state spaces, but in
many cases it even outperforms the original methods.

1 Introduction

Assuring the quality of safety critical, embedded systems is a challenging task.
Advances in technology are making it even more difficult: components are be-
coming more complex, and systems have more components that interact using
complicated communication and synchronisation mechanisms. Due to this com-
plexity it is impossible to make claims about the correctness of these systems
without the help of formal methods. On the other hand, exactly this complexity
raised the need for highly efficient formal verification algorithms.

Formal verification usually starts with the creation of a formal model of the
studied system. Then the behaviour of the formal model is analysed to prove its
adequacy. One of the most prevalent analysis techniques is model checking [4], an
automatic technique to check whether the model (and thus the modelled system)
satisfies its specification. The specification is typically expressed in temporal
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logic. Computation Tree Logic (CTL) is a popular temporal logic language due
to the efficient and relatively simple analysis algorithms supporting it.

Model checking traverses the state space of the model being analysed. Safety
critical systems are often asynchronous, even distributed, so the composite state
space of their asynchronous subsystems can be as large as the Cartesian product
of the local components’ state spaces, i.e., the state space of the whole system ex-
plodes. Symbolic methods [4] are advanced techniques to handle huge state spaces
of synchronous systems. Instead of storing states explicitly, symbolic techniques
rely on an encoded representation of the state space such as decision diagrams.
These are compact graph representations of discrete functions. Ordinary sym-
bolic methods, however, usually perform poorly for asynchronous systems.

Saturation [1] is considered as one of the most effective state space gen-
eration and model checking algorithms for asynchronous systems It combines
the efficiency of symbolic methods with a special iteration strategy. Saturation-
based state space exploration computes the set of reachable states. The so-called
saturation-based structural model checking algorithm can analyse temporal logic
properties. Nowadays, the so-called constrained saturation-based structural model
checking algorithm is one of the most efficient algorithms for model checking [12].

However, many complex models still have a state space, which is either too
large to be represented even symbolically, or it is infinite. In these cases bounded
model checking can be a solution, as it explores and examines the prescribed
properties on a bounded part of the state space. Bounded saturation-based state
space exploration was introduced in [11], where the authors described a new
saturation algorithm that explores the state space only to some bounded depth.

1.1 Motivation

Former approaches solved only one of the problems: they could either be used
for structural model checking over the entire state space; or they could traverse
the state space up to a given bound, but without being able to check complex
properties on it. In this paper we introduce a new saturation-based bounded
model checking algorithm that integrates both approaches. Our algorithm in-
crementally explores the state space and performs structural model checking on
the uncovered bounded part. To our best knowledge, this is the first attempt
to combine bounded saturation-based state space exploration with constrained
saturation-based CTL model checking, in order to gain the advantages of both
techniques.

Furthermore, bounded model checkers usually do not support full CTL. Even
though there were theoretical results in this area, former bounded model checking
approaches did not work well with CTL due to its branching characteristics.
Our work is a step towards efficient bounded CTL model checking with many
directions to be explored in the future.

This paper extends our former work [8] described in 3.1 with an efficient
iteration strategy (namely constrained saturation) to traverse the bounded state
space. This is the first time where the efficiency of constrained saturation based
state space traversal is utilized for bounded model checking.
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The structure of our paper is as follows: section 2 introduces the back-
ground and prerequisites of our work. Section 3 gives an overview of the ad-
vanced saturation-based algorithms our work relies on. Section 4 describes the
new bounded CTL model checking algorithm and its details. Section 5 presents
our measurements results. At the end our conclusions and ideas for future work
complete the paper.

2 Background

In this section we outline the theoretical background of our work. First, we de-
scribe the underlying data structures of our algorithms for storing the state space
during model checking: Multiple-valued Decision Diagrams (MDDs) and Edge-
valued Decision Diagrams (EDDs). EDDs extend MDDs with extra information:
in addition to storing the state space they also provide the distance information
for bounded state space generation. Finally, we summarize the saturation-based
state space exploration algorithm and the model checking background.

2.1 Decision Diagrams

This section is based on [10]. Decision diagrams are used in symbolic model
checking for efficiently storing the state space and the possible state changes of
the models. A Multiple-valued Decision Diagram (MDD) is a directed acyclic
graph, representing a function f consisting of K variables: f : {0, 1, . . .}K →
{0, 1}. An MDD has a node set containing two types of nodes: non-terminal and
two terminal nodes (terminal 0 and terminal 1). The nodes are ordered into K+1
levels. A non-terminal node is labelled by a variable index 1 ≤ k ≤ K, which
indicates to which level the node belongs (which variable it represents), and has
nk (domain size of the variable, in binary case nk = 2) arcs pointing to nodes
in level k − 1. A terminal node is labelled by the variable index 0. Duplicate
nodes are not allowed, so if two nodes have identical successors in level k, they
are also identical. These rules ensure that MDDs are canonical and compact
representation of a given function or set. The evaluation of the function is the
top-down traversal of the MDD through the variable assignments represented
by the arcs between nodes.

Figure 1(a) depicts a simple example Petri net [7] model of a producer-
consumer system. The producer creates items and places them in the buffer, from
where the consumer consumes them. For synchronizing purposes the buffer’s
capacity is one, so the producer has to wait till the consumer takes away the item
from the buffer. This Petri net model has a finite state space containing 8 states.
Figure 1(b) depicts an MDD used for storing the encoded state space of the
example Petri net. Each edge encodes a possible local state [1], and the possible
(global) states are the paths from the root node to the terminal one node. (The
model has to be decomposed to be able to represent its state space using decision
diagrams efficiently. This decomposition will be discussed in Section 2.3.)
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Fig. 1. Producer-consumer example

An Edge-valued Decision Diagram (EDD) is an extended MDD that can
represent the following function: f : {0, 1, . . .}K → N∪{∞}. Figure 1(c) depicts
an EDD storing the encoded state space enriched with the distance information
(computed from the initial state). The differences between an MDD and an EDD
are the following:

– Every p node is visualized as a rectangle with k slots, where k is the number
of children (domain of the variable).

– On the terminal level there is only one terminal node, named ⊥. This is
equivalent to the terminal one node in an MDD.

– Every edge has a weight and a target node. The ith edge starts from the
ith slot of the p node, and the value p[i].value (the weight of the edge) is
written to that slot. We write 〈n,w〉 if the edge has weight w ∈ N ∪ {∞}
and has target node n. In addition, we write p[i] = 〈n,w〉 if the ith edge of
the node p is 〈n,w〉 and p[i].value ≡ w, p[i].node ≡ n.

– If p[i].value = ∞, then p[i].node = ⊥. This is equivalent to an edge in an
MDD which goes to the terminal zero node. Usually the zero valued dangling
edges and the ∞ valued edges are not shown.

– Every non-terminal node has an outgoing edge with weight 0.

In the example of Figure 1(c) let the node on the left side of the consumer
level be x. This x node has two children: x[0] = 〈⊥, 0〉 and x[1] = 〈⊥, 3〉.

2.2 Model Checking and Bounded Model Checking

Given a formal model, model checking [4] is an automatic technique to decide
whether the model satisfies the specification. Formally: let M be a Kripke struc-
ture (i.e., the model in the form of a labelled state-transition graph). Let f be a
formula of temporal logic (i.e., the specification). The goal of model checking is
to find all states s of M that M, s � f .

Bounded model checking decides whether the model satisfies the specification
in a predefined number of steps, i.e., the depth of the state space traversal.
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Formally: let M be a Kripke structure, and f be a formula of temporal logic.
The bounded model checking problem for the k-bounded state space is to find
all states s of M such that M, s �k f . Among others, bounded model checking
is useful when the full state space is not needed to decide on a property. This is
e.g. the case for shallow bugs that can be found in a bounded state space quickly.

Structural model checking uses a set operations to evaluate temporal logic
specifications by computing fixed-points in the state space. CTL (Computation
Tree Logic) [4] is widely used temporal logic specifications formalism, as it has
expressive syntax, and structural model checking yields efficient algorithms to
analyse CTL specifications. CTL expressions contain state variables, Boolean
operators, and temporal operators. Temporal operators occur in pairs in CTL:
the path quantifier, either A (on all paths) or E (there exists a path), is followed
by the tense operator, one of X (next), F (future, or finally), G (globally), and
U (until). However, only three: EX, EU, EG of the 8 possible pairings need to be
implemented due to duality [4]. The remaining five can be expressed with the
help of the former three in the following way: AXp ≡ ¬EX¬p, AGp ≡ ¬EF¬p,
AFp ≡ ¬EG¬p, A[pUq] ≡ ¬E[¬q U(¬p ∧ ¬q)] ∧ ¬EG¬q, EFp ≡ E[true U p].

2.3 Saturation

Saturation is a symbolic algorithm for state space generation and model checking.
Decomposition serves as the prerequisite for the symbolic encoding: the algorithm
maps the state variables of the chosen high-level formalism into symbolic vari-
ables of the decision diagram. The global state of the model can be represented as
the composition of the local states of components: sg = (s1, s2, . . . , sn), where n
is the number of components. See Figure 1(b) for a possible decomposition and
the corresponding MDD representation of the example model in Figure 1(a).
Furthermore, decomposition helps the algorithm to efficiently exploit locality,
which is inherent in asynchronous systems. Locality ensures that a transition
usually affects only some components or some parts of the submodels. The al-
gorithm does not create a large, monolithic next state function representation.
Instead it divides the global next state function N into smaller parts, according
to the high-level model. Formally: N =

⋃
e∈E Ne, where E is the set of events in

the high level model. The granularity of the decomposition, i.e. the next state
relations represented by Ne can be chosen arbitrarily [3].

Saturation uses symbolic encoding of the next state function. In our work
we use the symbolic next state representation from [3]. This approach parti-
tions disjunctively the global next state function according to the high level
model events in the system: N =

⋃
e∈E Ne. Logically, if N is represented by the

relation between state variables (in the decision diagram representation) x,x′

with Re(x,x
′), then the global relation can be expressed by the symbolic next

state relations of the events: R(x,x′) =
∨

e∈E Re(x,x
′). This way the algo-

rithm can use smaller next state representations. However, in many cases the
computation of the local Ne functions is still expensive. The algorithm handles
this problem by conjunctive partitioning according to the enabling and updating
functions (denoted by N enable and N update) [3]: Ne =

⋂
∀i(N enable

e,i

⋂N update
e,i ),
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which can be symbolically computed by the following equation: Re(x,x
′) =∧

∀i(Renable
e,i (x,x′)

∧Rupdate
e,i (x,x′)). Applying Ne to a given set of states repre-

sented by states results inNe(states) = RelProd(Re(x,x
′), states), where RelProd

is the well-known relational product function [3]. The smaller the partitions we
create, the less computation they need. The limit for the size of the partitioning
comes from the used high level modelling formalism.

Saturation uses a special iteration strategy, which is efficient for asynchronous
systems. The construction of the MDD representation of the state space starts
by building the MDD representing the initial state. Then the algorithm saturates
every node in a bottom-up manner, by applying saturation recursively, if new
states are discovered. Saturation iterates through the MDD nodes and generates
the whole state space representation using a node-to-node transitive closure. In
this way saturation avoids the peak size of the MDD to be much larger than the
final size, which is a critical problem in traditional approaches. The result is the
state space representation encoded by MDD.

Saturation-based Structural Model Checking. Saturation-based struc-
tural CTL model checking was first presented in [2], where the authors intro-
duced how the least fixed point operators can be computed with the help of
saturation. CTL model checking explores the state space in a backward man-
ner. It constructs the inverse representation N−1 and computes the inverse next
state, greatest and least fixed points of the operators. The semantics of the three
implemented CTL operators [4] is:

– EX: i0 � EX p iff ∃i1 ∈ N (i0) s.t. i1 � p. This means that EX corresponds
to the function N−1, applying one step backward through the next state
relation.

– EG: i0 � EG p iff i0 � p and ∀n > 0,∃in ∈ N (in−1) s.t. in � p so that
there is a strongly connected component containing states satisfying p. This
computation needs a greatest fixed point computation, so that saturation
cannot be applied directly to it. Computing the fixed point, however, benefits
from the locality accompanying the decomposition.

– EU: i0 � E[p U q] iff i0 � p and ∃n > 0,∃i1 ∈ N (i0), . . . ,∃in ∈ N (in−1) s.t.
in � q and im � p for all m < n (or i0 � q). The states satisfying this property
are computed with the following least fixed-point: lfp Z[q ∨ (p ∧ EXZ)]
Informally: we search for a state q reached through only states satisfying p.

3 Bounded and Constrained Saturation

In this section we give an overview of the two saturation-based advanced algo-
rithms that form important parts of our new approach. Bounded saturation is
used for state space exploration. Constrained saturation is used to restrict struc-
tural model checking to the bounded state space. The integration of constrained
saturation with the bounded saturation-based state space generation lead to the
first saturation-based bounded model checking algorithm, which exploits the
efficiency of structural model checking for bounded state spaces.
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3.1 Bounded Saturation

It is difficult to exploit the efficiency of saturation for bounded state space ex-
ploration, because saturation uses an irregular recursive iteration order, which is
totally different from traditional breadth-first traversal. Consequently, bounding
the recursive exploration steps of saturation does not necessarily guarantee this
bound to be global for the state space representation.

There are different solutions for the above problem in the literature, both
for globally and locally bounded saturation-based state space generation. In
our work we chose one that has already proved its efficiency [11]. Although
MDDs provide a highly compact solution for state space representation, bounded
saturation needs additional distance information during the traversal. For this
reason, [11] uses Edge-valued Decision Diagrams (EDDs) instead of MDDs, and
—in addition to the state space— it also encodes the minimal distance of each
state from the initial state(s) into the EDD. The algorithm first iterates through
the state space until a given bound is reached, which is represented by an edge in
the EDD. After that it cuts the parts that are beyond the depth of the traversal
from the EDD, thereby computing the reachability set below the bound.

In our previous work [10] we extended the algorithm [11] with on-the-fly
updates [1] and an additional caching mechanism.

3.2 Constrained Saturation

In [12] the authors introduced an advanced saturation-based iteration strategy
for the purpose of structural model checking. The algorithm, called constrained
saturation, computes the least fixed point of the reachability relation that satis-
fies a given constraint.

The main novelty of the new algorithm is the slightly different iteration
style. Instead of combining saturation with breadth-first traversal, it uses a pre-
checking phase. The algorithm builds on the following observation [12]: in or-
der to do the symbolic step Ne from the set of state states to a set of states
satisfying the constraint C, we have to compute Ne(states) ∩ C. This contains
an expensive intersection operation after each step. Using the following obser-
vation: Ne(states) ∩ C = RelProd(Re(x,x

′), states) ∩ C = RelProd(Re(x,x
′) ∧

x′ ∩ C 6= 0, states) the algorithm can use pre-checking phase and it avoids the
computation-intensive intersection operation after the symbolic state space step,
instead it simply skips those steps which would go out of the constraint [12].

Algorithms 1 and 2 formalize the operation of the constrained saturation
algorithm. The lines starting with ∗ are the additions to traditional satura-
tion. In Algorithm 1 it is easy to see that the ConsSaturate(c,s) computes
RelProd(Re(x,x

′)∩C, states) without using the expensive symbolic intersection
operation. Research showed [12] that ConsSaturate is faster than traditional sat-
uration when there is a constraint on the possible states. This is the situation
e.g. in the case of the EU CTL operator.
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Algorithm 1: ConsSaturate

input : c, s : node
// c: constraint,

// s: node to be saturated

output : node

1 l← s.level; r ← N−1
l ;

2 t← NewNode(l);
3 foreach i ∈ Sl : s[i] 6= 0 do
4∗ if c[i] 6= 0 then
5 t[i]← ConsSaturate(c[i], s[i]);
6 else
7∗ t[i]← s[i];

8 repeat
9 foreach i, i′ ∈ Sl : r[i][i′] 6= 0 do

10∗ if c[i′] 6= 0 then
11 u← RelProd(c[i′], t[i], r[i][i′]);
12 t[i′]← Union(t[i′], u);

13 until t unchanged ;
14 t← CheckIn(l, t);
15 return t;

Algorithm 2: RelProd

input : c, s, r : node
// c: constraint,

// s: node to be saturated,

// r: next state function

output : node

1 if s = 1 ∧ r = 1 then return 1;
2 ;
3 l← s.level; t← 0;
4 foreach i, i′ ∈ Sl : r[i][i′] 6= 0 do
5∗ if c[i′] 6= 0 then
6 u← RelProd(c[i′], t[i], r[i][i′]);
7 if u 6= 0 then
8 if t = 0 then

t← NewNode(l);
9 ;

10 t[i′]← Union(t[i′], u);

11 t← CheckIn(l, t);
12 t← ConsSaturate(c, t);
13 return t;

4 Efficient Saturation-based Bounded Model Checking

In this section we present our new, saturation-based bounded model checking
algorithm. In order to have an efficient model checking procedure that produces
the model checking result from the specification and the formal model, the fol-
lowing ingredients are needed:

– an efficient state space exploration method,
– an efficient model checking algorithm,
– a powerful search strategy,
– a mechanism to decide on the specification.

We use bounded saturation to efficiently explore the bounded state space
and produce a symbolic representation [8]. In this section we introduce a new
approach for model checking: we employ constrained saturation-based model
checking to provide full CTL model checking on this state space. The motivation
of the new approach is that this way we can constrain the CTL model checking
algorithm to traverse only the bounded state space which is not the situation
for traditional CTL model checking algorithms (for example presented in [8]).

4.1 Constrained Saturation using the Bounded State Space

Many model checking tools limit the specification syntax to a subset of the CTL
temporal language, in order to simplify the analysis task and boost performance.
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We want to support the full CTL semantics in model checking, and thus we must
use backward traversal. This is our main reason for choosing the traditional,
fixed-point–based algorithms; as the semantics of forward and backward CTL
model checking are different (and incomparable) [5].

The naive approach to combine bounded exploration and structural model
checking would be to apply the fixed point computations from the bounded state
space on the complete lattice. However, the efficiency of this naive approach
would converge to traditional fixed point computations. It could be improved by
constructing the intersection of the result from the fixed point iterations with
the bounded state space representation, practically restricting each iteration
of the fixed point computation to the bounded subspace. All the same, the
improvement still suffers from poor performance due to the extensive use of the
costly intersection operation.

Our aim is to utilize the saturation approach also during model checking,
and to exploit the constrained saturation iteration strategy to provide an effi-
cient bounded model checking algorithm. The main idea is that the symbolically
encoded explored bounded state space can serve as the constraint in the con-
strained saturation algorithm. This way we can expeditiously bound the least
fixed point computations. Below we define how the constrained saturation de-
cides on the following CTL operators (where lfp denotes the least fixed-point,
and bss denotes the bounded state space as stored by the MDD):

– EF: M, s �k EFp iff s0 ⊆ lfp Z[(p ∧ bss) ∨ (bss ∧ EXZ)] = ConsSatura-
tion(bss, p∩bss). This way we can directly exploit the constrained saturation
algorithm to produce the least fixed point in the given bounded state space
bss. The result can be utilised by other, both least and greatest fixed point
operators.

– EU: M, s �k E[pUq] iff s0 ⊆ lfp Z[(q ∧ bss) ∨ (bss ∧ p ∧ EXZ)] = ConsSat-
uration(bss ∩ q, bss ∩ p). This is similar to using the constrained saturation
algorithm in traditional saturation-based model checking [12], but within a
bounded setting. This result can also be nested into both least and greatest
fixed point operators.

As greatest fixed point computations (EG) and simple next state operators (EX)
does not require such restrictions in the exploration, we apply traditional fixed
point algorithms for them. Although operator EF is just a special case of operator
EU, for performance reasons it is worth to be implemented separately.

4.2 Search Strategies

The choice of the search strategy followed during bounded model checking has
a significant impact on performance. In this section we evaluate the possible
search strategy alternatives. With regard to bounded state space generation, we
can have two approaches:

– Given a fixed bound b, we explore the b bounded state space and evaluate
the specification on it. We call it the fixed bound strategy.
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– Given an initial bound init and increment value inc, we start exploring the
state space to the given bound init. The model checking algorithm then
decides whether it can stop, or it has to increase the bound by inc. The
procedure stops when it runs out of resources, or the model checking question
is answered. We call it the incremental strategy.

Traditional bounded model checking uses the increasing depth incremental
strategy, typically looking one step further in the state space in a breadth-first
manner. Applying this strategy in saturation would lead to lose the efficiency of
the special iteration order of saturation. Our experience shows that it is better to
let saturation increase the depth by at least 5–10 steps. Finding a good trade-off
in choosing the iteration depth is important. A one-step iteration results in the
loss of efficiency during saturation. On the other hand, a too large increase of
iteration depth results in the loss of efficiency during bounded model checking.
We have developed two different incremental search strategies:

– The restarting strategy starts again the iteration from the initial state after
each iteration, and uses the increased bound in the exploration.

– The continuing strategy reuses the formerly explored bounded state space
as the set of initial states in the next iteration, and extends it using the
bounded saturation algorithm to represent the state space of the increased
bound.

The restarting strategy was straightforward to implement, since it simply uses
the bounded saturation algorithm. For the continuing strategy we had to modify
the bottom-up building strategy of the saturation algorithm. For this purpose,
we needed to extend the algorithm to be able to handle even huge initial state
sets. This extension contained the modification of the truncating operations, the
caching mechanisms in order to preserve correctness, and the construction of the
decision diagram representation to be able to handle huge initial set of states.
The continuing strategy uses the formerly built data structures which can be
more efficient than building every data structure from scratch at each iteration.

4.3 Decision Mechanism

It is also important to be able to decide if the specification is satisfied. Bounded
model checking is a semi-decision procedure, therefore it can be used to ensure
the following behavioural properties of the specification:

– Invariant and safety : proving these properties needs the full state space to
be explored, or bounded model checking can give a short counterexample
(witness), if it exists.

– Liveness: bounded model checking can find a short witness to these proper-
ties, or the full state space has to be explored to refute them.

– Other properties, such as combination of safety and liveness properties:
3-valued logic can be used for decision.

Invariant and safety properties are usually proved (in symbolic model check-
ing) by finding inductive invariants without exploring the full state space. This
approach cannot be used directly for liveness properties.
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Finding Inductive Proof against Liveness Properties. EDD-based state
space representation helps us to tell more about liveness properties. Refuting
liveness properties may come from the fact that: (1) the algorithm has to ex-
plore more from the state space to find a witness, (2) the liveness property does
not hold, and there exists a counterexample in the bounded state space. Our
approach can handle these differences. This is in contrast to traditional bounded
model checking approaches, since they have to encode the difference of the two
cases into the SAT formula directly, which is inefficient.

If a liveness property EG p does not hold in the bounded state space bss, we
can decide whether to investigate the state space further, or to conclude that
it will never hold. Let pd=bound be the set of states, where p is true and their
distance from the initial state is d = bound. pd=bound is encoded in the EDD,
we need to traverse the EDD once to get this state set. It can be computed
efficiently from the symbolic encoding. Let result = lfp Z[pd=bound ∨ (p∧EXZ)]
= ConsSaturate(p, pd=bound), then s0 ∧ result = false⇒ EG p = false holds.

4.4 Summary of Our Contributions

In this section we described the first efficient saturation-based bounded model
checking algorithm, which combines the efficiency of constrained saturation and
bounded state space exploration. It has the following properties:

– ∀f(Z): fp f(Z) ⊆ bss, for all fixed point the bounded saturation algorithm
is bounded by the state space, even for the least fixed point computations.

– It is efficient from the model checking point of view as the algorithm traverses
the bounded state space with the saturation iteration strategy.

– With the creative use of constrained saturation it avoids to examine states
outside of the discovered bounded state space in the model checking phase.

– It avoids expensive intersection operators during the state traversal of least
fixed point operators.

5 Evaluation

We have performed measurements in order to confirm that the presented novel
constrained saturation-based bounded model checking algorithm performs better
than former approaches. This section summarizes our measurement results.

Our aim was to examine the efficiency of our new algorithm and compare
it to a classical saturation-based structural model checking algorithm. We have
also examined how saturation-based bounded state space traversal can make
CTL-based model checking more scalable. For this purpose we have developed
an experimental implementation of our algorithm using the C# programming
language. We have also implemented the algorithm taken from [12] as the refer-
ence for comparison, which we denoted in the measurements as “Unbounded”.
For the measurements we used a desktop PC (Intel Q8400 2.66 GHz CPU, 4 GB
memory with Windows 7 x64 and .NET 4.0 framework).
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The models we used for the evaluation are widely known in the model check-
ing community. We took the models of Tower of Hanoi from [10]. The state
space of the Tower of Hanoi models scales from 531 441 up to 3, 5 · 109 states.
The saturation algorithm does not perform well for this model, as it does not
correspond to an asynchronous system. These measurements demonstrate that
our bounded model checking algorithm can analyse even those models, which
are not well suited for saturation. The Slotted Ring (SR) is the model of a com-
munication protocol [1], [9]. The size of the state space of the SR–100 model is
about 10100 states. The Flexible Manufacturing System (FMS–N) is a model of
production systems [1]. The parameter N refers to the complexity of the model
checking problem. For N = 20 the state space of the FMS model has 1020 states.

Both the initial bound and the increment distance are changeable parameters,
thus our algorithm can be fine tuned by the user. If the properties to prove are
expected to be “shallow”, then the algorithm can be set to work optimally for
smaller distances. On the other hand, when the properties to prove are “deeper”,
then both the initial bound and the increment distance can be set bigger to find
a proof in fewer iterations. A priori knowledge about the expected behaviour of
the properties can significantly reduce the computational time.
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Fig. 2. Size of state space representation (EDD) at each iteration

Table 1 lists our run time measurements for simple reachability properties of
the structural model checking (Unbounded), and our bounded model checking
approach (Bounded, incremental, restarting strategy). Saturation-based model
checking is extremely efficient for asynchronous systems, and the modified iter-
ation strategy requires more computational resources, so one would expect that
for these models the traditional approach is better. In the case of Slotted Ring
(SR–N , where N is the number of components) models, the analysed property
was the following: E(B1 6= 1 ∨ F1 6= 1 U G2 = 1 ∧ A2 = 1). The advantage of
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Table 1. Comparing run times of model checking for different asynchronous models

Model Unbounded
Bounded, incremental,
restarting strategy

SR–100 > 1800 s 15.99 s
SR–200 > 1800 s 38.12 s
SR–300 > 1800 s 49.82 s

RR–100 0.24 s 0.27 s
RR–200 0.47 s 0.05 s
RR–1000 2.61 s 0.28 s
RR–10 000 32.54 s 3.39 s

DPhil–10 0.05 s 0.04 s
DPhil–100 0.40 s 0.53 s
DPhil–1000 5.26 s 5.14 s
DPhil–3000 16.19 s 19.52 s
DPhil–10 000 79.64 s 323.26 s

Table 2. Tower of Hanoi model checking run time results

Model Unbounded

Bounded,
incremental,
restarting
strategy

Bounded,
incremental,
continuing
strategy

Bounded,
fixed bound

Hanoi–12 39.2 s 6.45 s 2.15 s 1.62 s
Hanoi–14 > 1800 s 6.85 s 2.38 s 1.76 s
Hanoi–16 > 1800 s 10.09 s 2.72 s 1.92 s
Hanoi–18 > 1800 s 10.80 s 3.09 s 2.04 s
Hanoi–20 > 1800 s 11.26 s 3.12 s 2.64 s

Table 3. Comparing strategies for complex properties

Model Unbounded

Bounded,
incremental,
restarting
strategy

Bounded,
incremental,
continuing
strategy

Bounded,
fixed bound

FMS–25 1.70 s 1.01 s 1.14 s 0.39 s
FMS–50 9.58 s 2.37 s 3.00 s 1.03 s
FMS–100 82.39 s 4.88 s 6.55 s 1.93 s
FMS–1000 > 1800 s 5.58 s 6.49 s 1.93 s
FMS–10 000 > 1800 s 5.60 s 7.16 s 1.91 s
FMS–1 000 000 > 1800 s 5.68 s 7.11 s 1.95 s
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bounded model checking is revealed by the model, as traditional model checking
runs out of resources even for such a simple property.

We have also examined Round-Robin models (RR–N , where N is the number
of components), which are quite efficiently handled by the traditional saturation
based model checking approach. We chose the following property to be checked:
E(pload1 = 0 U psend0 = 1). This property is shallow, so the advantage of our
bounded model checking approach is well reflected in the results.

The model of the Dining Philosophers (DPhil–N , where N is the number
of philosophers) revealed that for those models, where the saturation algorithm
answers the model checking question (in this case: E(¬eating2 U eating1)) ex-
tremely fast, bounded model checking is slower. The reason for this is that the
overhead of bounded model checking simply does not pay off.

In Table 2 and Table 3 we compare the different approaches for complex
properties. Table 2 contains the measurements of the Tower of Hanoi models.
We have examined a combined safety-liveness property (EG(EF(B↓8 > 0)), where
B↓8 > 0 denotes the placement of the 8th disk to the 2nd rod). The traditional
structural model checking approach (Unbounded) runs out of resources early.
Knowing the exact bound can help the algorithm to answer the model checking
question as fast as possible (Bounded, fixed bound). Comparing the two different
bounded model checking strategies, the continuing strategy has advantage as it
uses up the formerly computed results during the model checking.

In Table 3 the run time results for the property EG(E(M1 > 0 U (P1s = P2s =
P3s = 8))) of the model FMS are depicted. This property is also a combined
safety-liveness property that represents the existence of a circle in a certain set of
states satisfying some safety requirements (based on [2]). The structural model
checking algorithm time-outs for big parameters. By setting an adequate bound,
the bounded model checking approach answers the model checking question very
fast (Bounded, fixed bound). When we compare the two bounded model check-
ing strategies, the result is surprising: the restarting strategy solves the model
checking problem for every parameter faster than the continuing strategy. We
investigated the reason for this. It can be seen in Figure 2 that for asynchronous
systems (like FMS) the state space representation grows steeply up to a given
value, but after that it starts decreasing (resembling a bell curve). The contin-
uing strategy uses these intermediate state space representations as the initial
state, which is a large computational overhead compared to starting the iteration
from the initial state. By beginning model checking from scratch (i.e., using the
restarting strategy) we can exploit the efficiency of saturation for building the
state space representation. By starting to modify an intermediate representation
(i.e., using the continuing strategy) the algorithm has to do more computations,
especially if the intermediate representation is larger than the final one.

6 Conclusion and future work

We have presented in this paper an advanced bounded model checking approach
based on the saturation algorithm. Our work exploits the efficiency of saturation
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and enables us to verify complex, or even infinite-state models. Our approach
also extends the set of asynchronous systems that can be analysed with the help
of symbolic methods. We have proved the efficiency of the new approach with
measurements.

We intend to develop our solution further. We will investigate the use of
forward model checking [6] instead of the classical backward fixed point compu-
tation, as we believe this can further improve the performance of our algorithm.
We also plan to use the constrained saturation algorithm in a different way, in
order to avoid redundant computations more efficiently.
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saturation based model checking. In: ISPDC11. IEEE Computer Society (2011)
10. Vörös, A., Darvas, D., Bartha, T.: Bounded Saturation Based CTL Model Check-

ing. In: Penjam [8], pp. 149–160
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